首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Foxtail millet ( Setaria italica L.) is a tractable experimental model crop for studying functional genomics of millets and bioenergy grasses. But the limited availability of genomic resources, particularly expressed sequence-based genic markers is significantly impeding its genetic improvement. Considering this, we attempted to develop EST-derived-SSR (eSSR) markers and utilize them in germplasm characterization, cross-genera transferability and in silico comparative mapping. From 66,027 foxtail millet EST sequences 24,828 non-redundant ESTs were deduced, representing ~16 Mb, which revealed 534 (~2%) eSSRs in 495 SSR containing ESTs at a frequency of 1/30 kb. A total of 447 pp were successfully designed, of which 327 were mapped physically onto nine chromosomes. About 106 selected primer pairs representing the foxtail millet genome showed high-level of cross-genera amplification at an average of ~88% in eight millets and four non-millet species. Broad range of genetic diversity (0.02–0.65) obtained in constructed phylogenetic tree using 40 eSSR markers demonstrated its utility in germplasm characterizations and phylogenetics. Comparative mapping of physically mapped eSSR markers showed considerable proportion of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (~68%), maize (~61%) and rice (~42%) chromosomes. Synteny analysis of eSSRs of foxtail millet, rice, maize and sorghum suggested the nested chromosome fusion frequently observed in grass genomes. Thus, for the first time we had generated large-scale eSSR markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.  相似文献   

2.
Generating genomic resources in terms of molecular markers is imperative in molecular breeding for crop improvement. Though development and application of microsatellite markers in large-scale was reported in the model crop foxtail millet, no such large-scale study was conducted for intron-length polymorphic (ILP) markers. Considering this, we developed 5123 ILP markers, of which 4049 were physically mapped onto 9 chromosomes of foxtail millet. BLAST analysis of 5123 expressed sequence tags (ESTs) suggested the function for ∼71.5% ESTs and grouped them into 5 different functional categories. About 440 selected primer pairs representing the foxtail millet genome and the different functional groups showed high-level of cross-genera amplification at an average of ∼85% in eight millets and five non-millet species. The efficacy of the ILP markers for distinguishing the foxtail millet is demonstrated by observed heterozygosity (0.20) and Nei''s average gene diversity (0.22). In silico comparative mapping of physically mapped ILP markers demonstrated substantial percentage of sequence-based orthology and syntenic relationship between foxtail millet chromosomes and sorghum (∼50%), maize (∼46%), rice (∼21%) and Brachypodium (∼21%) chromosomes. Hence, for the first time, we developed large-scale ILP markers in foxtail millet and demonstrated their utility in germplasm characterization, transferability, phylogenetics and comparative mapping studies in millets and bioenergy grass species.  相似文献   

3.
Foxtail millet is one of the oldest domesticated diploid C4 Panicoid crops having a comparatively small genome size of approximately 515?Mb, short life cycle, and inbreeding nature. Its two species, Setaria italica (domesticated) and Setaria viridis (wild progenitor), have characteristics that classify them as excellent model systems to examine several aspects of architectural, evolutionary, and physiological importance in Panicoid grasses especially the biofuel crops such as switchgrass and napiergrass. Foxtail millet is a staple crop used extensively for food and fodder in parts of Asia and Africa. In its long history of cultivation, it has been adapted to arid and semi-arid areas of Asia, North Africa, South and North America. Foxtail millet has one of the largest collections of cultivated as well as wild-type germplasm rich with phenotypic variations and hence provides prospects for association mapping and allele-mining of elite and novel variants to be incorporated in crop improvement programs. Most of the foxtail millet accessions can be primarily abiotic stress tolerant particularly to drought and salinity, and therefore exploiting these agronomic traits can enhance its efficacy in marker-aided breeding as well as in genetic engineering for abiotic stress tolerance. In addition, the release of draft genome sequence of foxtail millet would be useful to the researchers worldwide in not only discerning the molecular basis of biomass production in biofuel crops and the methods to improve it, but also for the introgression of beneficial agronomically important characteristics in foxtail millet as well as in related Panicoid bioenergy grasses.  相似文献   

4.
Gupta S  Kumari K  Das J  Lata C  Puranik S  Prasad M 《Génome》2011,54(7):586-602
Introns are noncoding sequences in a gene that are transcribed to precursor mRNA but spliced out during mRNA maturation and are abundant in eukaryotic genomes. The availability of codominant molecular markers and saturated genetic linkage maps have been limited in foxtail millet (Setaria italica (L.) P. Beauv.). Here, we describe the development of 98 novel intron length polymorphic (ILP) markers in foxtail millet using sequence information of the model plant rice. A total of 575 nonredundant expressed sequence tag (EST) sequences were obtained, of which 327 and 248 unique sequences were from dehydration- and salinity-stressed suppression subtractive hybridization libraries, respectively. The BLAST analysis of 98 EST sequences suggests a nearly defined function for about 64% of them, and they were grouped into 11 different functional categories. All 98 ILP primer pairs showed a high level of cross-species amplification in two millets and two nonmillets species ranging from 90% to 100%, with a mean of ~97%. The mean observed heterozygosity and Nei's average gene diversity 0.016 and 0.171, respectively, established the efficiency of the ILP markers for distinguishing the foxtail millet accessions. Based on 26 ILP markers, a reasonable dendrogram of 45 foxtail millet accessions was constructed, demonstrating the utility of ILP markers in germplasm characterizations and genomic relationships in millets and nonmillets species.  相似文献   

5.
Zhang J  Lu H  Wu N  Yang X  Diao X 《PloS one》2011,6(5):e19726
Foxtail millet (Setaria italica) is one of the oldest domesticated cereal crops in Eurasia, but identifying foxtail millets, especially in charred grains, and differentiating it from its wild ancestor, green foxtail (Setaria viridis), in the archaeobotanical remains, is still problematic. Phytolithic analysis provides a meaningful method for identifying this important crop. In this paper, the silicon structure patterns in the glumes, lemmas, and paleas from inflorescence bracts in 16 modern plants of foxtail millet and green foxtail from China and Europe are examined using light microscopy with phase-contrast and a microscopic interferometer. Our research shows that the silicon structure of ΩIII from upper lemmas and paleas in foxtail millet and green foxtail can be correspondingly divided into two groups. The size of ΩIII type phytolith of foxtail millet is bigger than that from green foxtail. Discriminant function analysis reveals that 78.4% of data on foxtail millet and 76.9% of data on green foxtail are correctly classified. This means certain morphotypes of phytoliths are relatively reliable tools for distinguishing foxtail millet from green foxtail. Our results also revealed that the husk phytolith morphologies of foxtail millets from China and Eastern Europe are markedly different from those from Western Europe. Our research gives a meaningful method of separating foxtail millet and green foxtail. The implications of these findings for understanding the history of foxtail millet domestication and cultivation in ancient civilizations are significant.  相似文献   

6.
7.
Crop improvement is a multifaceted micro-evolutionary process, involving changes in breeding approaches, planting configurations and consumption preferences of human beings. Recent research has started to identify the specific genes or genomic regions correlate to improved agronomic traits, however, an apparent blank between the genetic structure of crop elite varieties and their improving histories in diverse modern breeding programs is still in existence. Foxtail millet (Setaria italica) was one of the earliest cereal crops to be domesticated and served as a staple crop for early civilizations in China, where it is still widely grown today. In the present trial, a panel of foxtail millet elite varieties, which were released in the last sixty years in different geographical regions of China, was characterized using microsatellite markers (SSRs). A clear separation of two subpopulations corresponding to the two eco-geographical regions of foxtail millet production in China was identified by the dataset, which also indicated that in more recently released elite varieties, large quantities of accessions have been transferred from spring-sowing to summer-sowing ecotypes, likely as a result of breeding response to planting configurations. An association mapping study was conducted to identify loci controlling traits of major agronomic interest. Furthermore, selective sweeps involved in improvement of foxtail millet were identified as multi-diverse minor effect loci controlling different agronomic traits during the long-term improvement of elite varieties. Our results highlight the effect of transition of planting configuration and breeding preference on genetic evolvement of crop species.  相似文献   

8.
分蘖型谷子资源的表型和遗传多样性分析   总被引:1,自引:0,他引:1  
本研究选用了来自国外及国内的68份分蘖型谷子进行了表型及遗传多样性分析。表型分析表明,质量性状以绿鞘、白谷黄米、圆锥穗、松散穗码居多,数量性状变异系数除出谷率较小外,其他性状表现了丰富的遗传变异,来自山西的小软谷单株穗重、单株穗粒重、千粒重均为最高,而来自黑龙江的大青谷单株穗粒重、出谷率、千粒重均为最低。遗传多样性分析结果表明,77对引物共检测出202个等位位点,每对引物可检测到1~6个位点不等,平均为2.62个;77对引物多态性信息含量(PIC)在0.0283~0.6974之间,平均多态性信息量(PIC)为0.4169,68份材料间的遗传相似系数变化范围为0.59~0.96,平均值为0.68。利用软件NTSYSpc 2.10的UPGMA聚类方法对68份谷子分蘖材料进行了聚类,这些材料被划分为4个类群,即Ⅰ、Ⅱ、Ⅲ和Ⅳ。Ⅰ类群主要来自西北地区谷子分蘖种质,Ⅱ类群主要来自国外谷子分蘖种质,Ⅲ类群包括华北、华东和东北的谷子分蘖种质,Ⅳ类群仅包括一个种质。结合表型鉴定出10份优势谷子分蘖种质。这些结果揭示68份谷子分蘖种质遗传多样性较好,研究结果为挖掘谷子分蘖优良基因及谷子分蘖育种提供理论依据。  相似文献   

9.
10.
11.
Drought tolerance is an important breeding target for enhancing the yields of grain crop species in arid and semi-arid regions of the world. Two species of Setaria, domesticated foxtail millet (S. italica) and its wild ancestor green foxtail (S. viridis) are becoming widely adopted as models for functional genomics studies in the Panicoid grasses. In this study, the genomic regions controlling germination and early seedling drought tolerance in Setaria were identified using 190 F7 lines derived from a cross between Yugu1, a S. italica cultivar developed in China, and a wild S. viridis genotype collected from Uzbekistan. Quantitative trait loci were identified which contribute to a number of traits including promptness index, radical root length, coleoptile length and lateral root number at germinating stage and seedling survival rate was characterized by the ability of desiccated seedlings to revive after rehydration. A genetic map with 128 SSR markers which spans 1293.9 cM with an average of 14 markers per linkage group of the 9 linkage groups was constructed. A total of eighteen QTLs were detected which included nine that explained over 10% of the phenotypic variance for a given trait. Both the wild green foxtail genotype and the foxtail millet cultivar contributed the favorite alleles for traits detected in this trial, indicating that wild Setaria viridis populations may serve as a reservoir for novel stress tolerance alleles which could be employed in foxtail millet breeding.  相似文献   

12.
Liquid handling robotics and capillary electrophoresis genetic analyzers now offer high-throughput solutions for 2 of the 4 key steps in PCR-based DNA marker-assisted fingerprinting (DNA extraction, PCR amplification, electrophoresis, data analysis). Thus, DNA extraction remains the most significant bottleneck at the bench for large-scale applications in plant breeding and germplasm characterization. We report on a rapid and low-cost method for relatively high-throughput extraction of high-quality DNA from young and mature leaves of sorghum, pearl millet, chickpea, groundnut, and pigeonpea. The procedure uses a modified CTAB/β-mercaptoethanol method for DNA extraction in a 96-well plate. The quantity and quality of the DNA extracted per sample is adequate for more than 1000 PCR reactions. A relatively high throughput of 96–384 samples per person per day can be achieved, depending on the crop. A major timesaving aspect of the protocol is the absence of a manual sample-grinding step. Finally, the cost is a magnitude lower than commercial plate-based kits, and, as such, is likely to have substantial application in tropical molecular breeding programs.  相似文献   

13.
In this study, 28 simple sequence repeat (SSR) primer sets were used to analyze the genetic diversity, population structure, and genetic relationships among 37 accessions of foxtail millet from Korea, China and Pakistan. A total of 298 alleles were detected with an average allele number of 10.6 per locus among 37 foxtail millet accessions. The number of alleles per locus ranged from 2 (b226) to 20 (b236). Of the 298 alleles, 138 alleles (46.3%) were rare (frequency < 0.05), 152 alleles (51.0%) were detected at an intermediate frequency (range, 0.05?C0.50), and eight alleles (2.7%) were abundant (frequency > 0.50), respectively. The average gene diversity values were 0.652, 0.692, and 0.491 and polymorphic information content values were 0.621, 0.653, and 0.438, for accessions from Korea, China, and Pakistan, respectively. The accessions from China showed higher SSR diversity than those from Korea and Pakistan. A phylogenetic tree constructed using the un-weighted pair group methods with arithmetic mean algorithm revealed three major groups of accessions that were not congruent with geographical distribution patterns with a few exceptions. The lack of correlation between the accession clusters and their geographic location indicates that the diffusion of foxtail millet from China to Korea might have occurred through multiple routes. Our results provide support for the origin and diffusion route of foxtail millet in East Asia. This SSR-based assessment of genetic diversity, genetic relationships, and population structure among genetic resources of foxtail millet landraces will be valuable to foxtail millet breeding and genetic conservation programs in Korea.  相似文献   

14.
中国禾谷类作物野生近缘植物在育种中的利用   总被引:8,自引:1,他引:7  
中国主要禾谷类作物有水稻、小麦、大麦、燕麦、玉米、高粱、粟、黍稷,它们的野生近缘植物在中国禾谷类作物育种中得到了较好的利用,不仅拓宽了作物的遗传基础,而且培育出优良品种在生产上大面积推广,在提高粮食产量中起到了重要作用.  相似文献   

15.
The unavailability of microsatellite markers and saturated genetic linkage map has restricted the genetic improvement of foxtail millet [Setaria italica (L.) P. Beauv.], despite the fact that in recent times it has been documented as a new model species for biofuel grasses. With the objective to generate a good number of microsatellite markers in foxtail millet cultivar ‘Prasad’, 690 clones were sequenced which generated 112.95 kb high quality sequences obtained from three genomic libraries each enriched with different microsatellite repeat motifs. Microsatellites were identified in 512 (74.2%) of the 690 positive clones and 172 primer pairs (pp) were successfully designed from 249 (48.6%) unique SSR-containing clones. The efficacies of the microsatellite containing genomic sequences were established by superior primer designing ability (69%), PCR amplification efficiency (85.5%) and polymorphic potential (52%) in the parents of F2 mapping population. Out of 172 pp, functional 147 markers showed high level of cross-species amplification (~74%) in six grass species. Higher polymorphism rate and broad range of genetic diversity (0.30–0.69 averaging 0.58) obtained in constructed phylogenetic tree using 52 microsatellite markers, demonstrated the utility of markers in germplasm characterizations. In silico comparative mapping of 147 foxtail millet microsatellite containing sequences against the mapping data of sorghum (~18%), maize (~16%) and rice (~5%) indicated the presence of orthologous sequences of the foxtail millet in the respective species. The result thus demonstrates the applicability of microsatellite markers in various genotyping applications, determining phylogenetic relationships and comparative mapping in several important grass species.  相似文献   

16.
Pearl millet is an important component of food security in the semi-arid tropics and is assuming greater importance in the context of changing climate and increasing demand for highly nutritious food and feed. Molecular tools have been developed and applied for pearl millet on a limited scale. However, the existing tool kit needs to be strengthened further for its routine use in applied breeding programs. Here, we report enrichment of the pearl millet molecular linkage map by exploiting low-cost and high-throughput Diversity Arrays Technology (DArT) markers. Genomic representation from 95 diverse genotypes was used to develop a DArT array with circa 7,000 clones following PstI/BanII complexity reduction. This array was used to genotype a set of 24 diverse pearl millet inbreds and 574 polymorphic DArT markers were identified. The genetic relationships among the inbred lines as revealed by DArT genotyping were in complete agreement with the available pedigree data. Further, a mapping population of 140 F7 Recombinant Inbred Lines (RILs) from cross H 77/833-2 × PRLT 2/89-33 was genotyped and an improved linkage map was constructed by integrating DArT and SSR marker data. This map contains 321 loci (258 DArTs and 63 SSRs) and spans 1148 cM with an average adjacent-marker interval length of 3.7 cM. The length of individual linkage groups (LGs) ranged from 78 cM (LG 3) to 370 cM (LG 2). This better-saturated map provides improved genome coverage and will be useful for genetic analyses of important quantitative traits. This DArT platform will also permit cost-effective background selection in marker-assisted backcrossing programs as well as facilitate comparative genomics and genome organization studies once DNA sequences of polymorphic DArT clones are available.  相似文献   

17.

Key message

Association analyses accounting for population structure and relative kinship identified eight SSR markers ( p < 0.01) showing significant association ( R 2  = 18 %) with nine agronomic traits in foxtail millet.

Abstract

Association mapping is an efficient tool for identifying genes regulating complex traits. Although association mapping using genomic simple sequence repeat (SSR) markers has been successfully demonstrated in many agronomically important crops, very few reports are available on marker-trait association analysis in foxtail millet. In the present study, 184 foxtail millet accessions from diverse geographical locations were genotyped using 50 SSR markers representing the nine chromosomes of foxtail millet. The genetic diversity within these accessions was examined using a genetic distance-based and a general model-based clustering method. The model-based analysis using 50 SSR markers identified an underlying population structure comprising five sub-populations which corresponded well with distance-based groupings. The phenotyping of plants was carried out in the field for three consecutive years for 20 yield contributing agronomic traits. The linkage disequilibrium analysis considering population structure and relative kinship identified eight SSR markers (p < 0.01) on different chromosomes showing significant association (R 2 = 18 %) with nine agronomic traits. Four of these markers were associated with multiple traits. The integration of genetic and physical map information of eight SSR markers with their functional annotation revealed strong association of two markers encoding for phospholipid acyltransferase and ubiquitin carboxyl-terminal hydrolase located on the same chromosome (5) with flag leaf width and grain yield, respectively. Our findings on association mapping is the first report on Indian foxtail millet germplasm and this could be effectively applied in foxtail millet breeding to further uncover marker-trait associations with a large number of markers.  相似文献   

18.
We carried out genetic analysis and mapping of a gene for the tip-branched panicle (Nekode or Neko-ashi in Japanese) in foxtail millet. We revealed that this trait is controlled by a single dominant gene by using two F2 populations and designated the gene as NEKODE1. By using an F2 population between closely related Taiwanese landraces with a new method based on next-generation sequencing (NGS), QTL-seq, we successfully and rapidly mapped the responsible gene (NEKODE1) on chromosome 9. We also mapped the gene by using SSR markers to verify that this gene is located at the position on chromosome 9, suggested by QTL-seq, and we obtained SSR markers closely linked to the gene and found several candidate genes for this trait in a foxtail millet genome sequence database. The use of a foxtail millet genome sequence and NGS enables rapid mapping of a gene(s) by using a segregation population derived from a cross even between closely related foxtail millet landraces.  相似文献   

19.
Millets such as proso millet have excellent nutritional properties and could become a basic resource for crop breeding programs and food diversification. In this study, 25 polymorphic microsatellite markers were developed and characterized through construction of an SSR-enriched library from genomic DNA of proso millet (Panicum miliaceum L.). In total, 110 alleles were detected, with an average of 4.4 alleles per locus. Values of major allele frequency (M AF ) and expected heterozygosity (H E ) ranged from 0.36 to 0.98 (mean = 0.73) and from 0.04 to 0.74 (mean = 0.37), respectively. The mean genetic similarity coefficient was 0.3711, indicating that among 50 accessions of proso millet there was wide genetic variation. The newly developed microsatellite markers should be useful tools for assessing genetic diversity, understanding population structure, and breeding of proso millet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号