首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
R Fayer  T Nerad 《Applied microbiology》1996,62(4):1431-1433
Microcentrifuge tubes containing 8 x 10(6) purified oocysts of Cryptosporidium parvum suspended in 400 microliters of deionized water were stored at 5 degrees C for 168 h or frozen at -10, -15, -20, and -70 degrees C for 1 h to 168 h and then thawed at room temperature (21 degrees C). Fifty microliters containing 10(6) oocysts was administered to each of five to seven neonatal BALB/c mice by gastric intubation. Segments of ileum, cecum, and colon were taken for histology from each mouse 72 or 96 h later. Freeze-thawed oocysts were considered viable and infectious only when developmental-stage C. parvum organisms were found microscopically in the tissue sections. Developmental-stage parasites were not found in tissues from any mice that received oocysts frozen at -70 degrees C for 1, 8, or 24 h. All mice that received oocysts frozen at -20 degrees C for 1, 3, and 5 h had developmental-stage C. parvum; one of 6 mice that received oocysts frozen at -20 degrees C for 8 h had a few developmental-stage parasites; mice that received oocysts frozen at -20 degrees C for 24 and 168 h had no parasites. All mice that received oocysts frozen at -15 degrees C for 8 and 24 h had developmental-stage parasites; mice that received oocysts frozen at -15 degrees C for 168 h had no parasites. All mice that received oocysts frozen at -10 degrees C for 8, 24, and 168 h and those that received oocysts stored at 5 degrees C for 168 h had developmental-stage parasites. These findings demonstrate for the first time that oocysts of C. parvum in water can retain viability and infectivity after freezing and that oocysts survive longer at higher freezing temperatures.  相似文献   

2.
This study was undertaken to investigate the cryopreservation of Cryptosporidium parvum oocysts. Oocysts purified from mouse feces were suspended in distilled water, 10% glycerin, and 2.5% potassium dichromate. They were stored at -20 C and -80 C for 2, 7, and 30 days, respectively. In addition to the purified oocysts, the feces of C. parvum-infected mice were preserved under the same conditions described above. Purified and fecal oocysts were thawed at 4 C, and their viability was assessed by a nucleic acid stain, excystation test, tissue culture infectivity test, and infectivity to immunosuppressed adult mice. Oocysts purified from fecal material prior to cryopreservation lost most of their viability and all of their infectivity for tissue culture and mice. However, when oocysts were cryopreserved in feces, between 11.7 and 34.0% were judged to be viable and retained their infectivity for mice when stored at -20 C (but not -80 C) for 2, 7, and 30 days. Clearly, fecal material provides a cryoprotective environment for C. parvum oocysts stored at -20 C for at least 30 days.  相似文献   

3.
The importance of waterborne transmission of Cryptosporidium parvum to humans has been highlighted by recent outbreaks of cryptosporidiosis. The first step in a survey of contaminated water currently consists of counting C. parvum oocysts. Data suggest that an accurate risk evaluation should include a determination of viability and infectivity of counted oocysts in water. In this study, oocyst infectivity was addressed by using a suckling mouse model. Four-day-old NMRI (Naval Medical Research Institute) mice were inoculated per os with 1 to 1,000 oocysts in saline. Seven days later, the number of oocysts present in the entire small intestine was counted by flow cytometry using a fluorescent, oocyst-specific monoclonal antibody. The number of intestinal oocysts was directly related to the number of inoculated oocysts. For each dose group, infectivity of oocysts, expressed as the percentage of infected animals, was 100% for challenge doses between 25 and 1,000 oocysts and about 70% for doses ranging from 1 to 10 oocysts/animal. Immunofluorescent flow cytometry was useful in enhancing the detection sensitivity in the highly susceptible NMRI suckling mouse model and so was determined to be suitable for the evaluation of maximal infectivity risk.  相似文献   

4.
Two commercial peroxygen-based disinfectants containing hydrogen peroxide plus either peracetic acid (Ox-Virin) or silver nitrate (Ox-Agua) were tested for their ability to inactivate Cryptosporidium parvum oocysts. Oocysts were obtained from naturally infected goat kids and exposed to concentrations of 2, 5, and 10% Ox-Virin or 1, 3, and 5% Ox-Agua for 30, 60, and 120 min. In vitro excystation, vital dyes (4',6'-diamidino-2-phenylindole and propidium iodide), and infectivity in neonatal BALB/c mice were used to assess the viability and infectivity of control and disinfectant-treated oocysts. Both disinfectants had a deleterious effect on the survival of C. parvum oocysts, since disinfection significantly reduced and in some cases eliminated their viability and infectivity. When in vitro assays were compared with an infectivity assay as indicators of oocyst inactivation, the excystation assay showed 98.6% inactivation after treatment with 10% Ox-Virin for 60 min, while the vital-dye assay showed 95.2% inactivation and the infectivity assay revealed 100% inactivation. Treatment with 3% Ox-Agua for 30 min completely eliminated oocyst infectivity for mice, although we were able to observe only 74.7% inactivation as measured by excystation assays and 24.3% with vital dyes (which proved to be the least reliable method for predicting C. parvum oocyst viability). These findings indicate the potential efficacy of both disinfectants for C. parvum oocysts in agricultural settings where soil, housing, or tools might be contaminated and support the argument that in comparison to the animal infectivity assay, vital-dye and excystation methods overestimate the viability of oocysts following chemical disinfection.  相似文献   

5.
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable.  相似文献   

6.
Demineralized water was seeded with controlled numbers of oocysts of Cryptosporidium parvum purified from fresh calf feces and subjected to different treatments with ozone or chlorine dioxide. The disinfectants were neutralized by sodium thiosulfate, and neonatal mice were inoculated intragastrically and sacrificed 7 days later for enumeration of oocyst production. Preliminary trials indicated that a minimum infection level of 1,000 oocysts (0.1-ml inoculum) per mouse was necessary to induce 100% infection. Treatment of water containing 10(4) oocysts per ml with 1.11 mg of ozone per liter (concentration at time zero [C0]) for 6 min totally eliminated the infectivity of the oocysts for neonatal mice. A level of 2.27 mg of ozone per liter (C0) was necessary to inactivate water containing 5 x 10(5) oocysts per ml within 8 min. Also, 0.4 mg of chlorine dioxide per liter (C0) significantly reduced infectivity within 15 min of contact, although some oocysts remained viable.  相似文献   

7.
Purified oocysts of Cryptosporidium parvum suspended in approximately 400 microliters of phosphate-buffered saline or deionized water in microcentrifuge tubes were exposed at 21 to 23 degrees C for 24 h to a saturated atmosphere of ammonia, carbon monoxide, ethylene oxide, formaldehyde, or methyl bromide gas. Controls were exposed to air. Oocysts in each tube were then rinsed and resuspended in fresh, deionized water, and 1 million oocysts exposed to each gas were orally administered to each of three to six neonatal BALB/c mice in replicate groups. Histologic sections of ileum, cecum, and colon tissues taken from each mouse 72 h after oral administration of oocysts were examined microscopically to determine if infection had been established. All 15 mice given oocysts exposed to carbon monoxide had numerous developmental stages of cryptosporidium in all three intestinal segments. Of 10 mice given oocysts exposed to formaldehyde, 6 had a few developmental stages of cryptosporidium in the ileum. No mice given oocysts exposed to ammonia, ethylene oxide, or methyl bromide were found to be infected. These findings indicate the efficacy of these low-molecular-weight gases (ammonia, ethylene oxide, and methyl bromide) as potential disinfectants for C. parvum oocysts where soil, rooms, buildings, tools, or instruments might be contaminated.  相似文献   

8.
R Fayer 《Applied microbiology》1994,60(8):2732-2735
Cryptosporidium parvum oocysts suspended in 0.5 ml of distilled water were pipetted into plastic vials which were inserted into wells in the heated metal block of a thermal DNA cycler. Block temperatures were set at 5 degrees C incremental temperatures from 60 to 100 degrees C. At each temperature setting four vials containing C. parvum oocysts were placed into wells and held for 15 s before time was recorded as zero, and then pairs of vials were removed 1 and 5 min later. Upon removal, all vials were immediately cooled on crushed ice. Also, at each temperature interval one vial containing 0.5 ml of distilled water was placed in a well and a digital thermometer was used to record the actual water temperature at 30-s intervals. Heated oocyst suspensions as well as unheated control suspensions were orally inoculated by gavage into 7- to 10-day-old BALB/c mouse pups to test for infectivity. At 96 h after inoculation the ileum, cecum, and colon from each mouse were removed and prepared for histology. Tissue sections were examined microscopically. Developmental-stage C. parvum was found in all three gut segments from all mice that received oocysts in unheated water and in water that reached temperatures of 54.4, 59.9, and 67.5 degrees C at 1 min when vials were removed from the heat source. C. parvum was also found in the ileum of one of six mice that received oocysts in water that reached a temperature of 59.7 degrees C at 5 min.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Cryptosporidium parvum infectivity in a neonatal CD-1 mouse model was used to determine the dose needed to infect 50% of the population. The 50% infective dose was estimated to be 79 oocysts. It was observed that a mean oral inoculum of 23 oocysts produced infection in 2 of 25 neonatal mice 7 days postinoculation. All animals became infected when the mean oral dose exceeded 310 oocysts per animal. The dose response of C. parvum was modeled with a logit dose-response model suitable for use in water disinfection studies.  相似文献   

10.
AIMS: The aim of this research was to examine the effect of thermal treatments on the viability and infectivity of Cryptosporidium parvum oocysts attached to a beef surface. METHODS AND RESULTS: This study examined the effects of heat treatment (60 or 75 degrees C) on the viability of C. parvum oocysts inoculated onto the surface of beef muscle estimated by vital dye assay. The infectivity of the oocysts was assessed against monolayers of HCT-8 cells. At 60 degrees C viability of the oocysts decreased from 100% at T0 to 64.2% at T60. At 75 degrees C the viability of the oocysts decreased from 100% at T0 to 53.7% at T15 and finally to 11.2% at T60. Oocysts were rendered noninfective against monolayers of HCT-8 cells following treatments of 60 degrees C/45 s and 75 degrees C/20 s. CONCLUSION: The washing of carcasses with hot water and standard thermal treatments is sufficient to kill C. parvum on beef. SIGNIFICANCE AND IMPACT OF THE STUDY: This study found that relatively mild heat, currently used to decontaminate and heat treat beef carcasses and to cook meat products, is capable of inactivating C. parvum.  相似文献   

11.
12.
Transmission of infectious oocysts of Cryptosporidium parvum via surface- and drinking-water supplies has been reported and many surface waters flow into the sea, potentially causing runoff of animal-infected faeces. Eating raw mussels is a common practice in many countries, increasing the public's risk of acquiring enteric pathogens. The aims of the present study were to estimate how long C. parvum oocysts remain infectious in artificial seawater, to determine if the oocysts are retained in mussel tissues (Mytilus galloprovincialis), and how long they maintain their infectivity. Oocysts were incubated in artificial seawater at 6-8 degrees C under moderate oxygenation and the infectivity of oocysts was tested five times, over a 12 month period after incubation in seawater, in BALB/c mice. Each pup was inoculated per os with 10(5) oocysts and killed 5 days p.i. Oocysts remained infectious for 1 year. Forty mussels held in an aquarium containing artificial seawater filtered out more than 4 x 10(8) oocysts in a 24 h period. Oocysts were detected in the gill washing up to 3 days p.i., in the haemolymph up to 7 days p.i., and in the intestinal tract up to 14 days p.i. Oocysts collected from the gut of mussels 7 and 14 days p.i. were observed to have infected mice. These results suggest that C. parvum oocysts can survive in seawater for at least 1 year and can be filtered out by benthic mussels, retaining their infectivity up to 14 days, so seawater and molluscs are a potential source of C. parvum infection for humans.  相似文献   

13.
Shellfish have been identified as a potential source of Cryptosporidium infection for humans. The inactivation of C. parvum and other pathogens in raw molluscan shellfish would provide increased food safety for normal and at-risk consumers. The present study examined the efficacy of two alternative food-processing treatments, e-beam irradiation and microwave energy, on the viability of C. parvum oocysts in Eastern Oysters (Crassostrea virginica), which were artificially infected with the Beltsville strain of C. parvum. The effects of the treatments were evaluated by oral feeding of the processed oyster tissues to neonatal mice. Significant reductions (P<0.05) in infectivity were observed for in-shell and shucked oysters treated with e-beam irradiation at doses of 1.0, 1.5, or 2 kGy vs. untreated controls. A dose of 2 kGy completely eliminated C. parvum infectivity and did not adversely affect the visual appearance of the oysters. Oyster tissue treated with microwave exposures of 1 s (43.2 degrees C), 2 s (54.0 degrees C), and 3 s (62.5 degrees C) showed a reduction in C. parvum mouse infectivity, but the effects were not significantly different (P>0.05) from controls. Microwave energy treatments at 2 and 3 s showed extensive changes in oyster meat texture and color. Thus, because of lack of efficacy and unacceptable tissue changes, microwave treatment of oysters is not considered a viable food-processing method.  相似文献   

14.
AIMS: To determine the effect of biotic and abiotic components of soil on the viability and infectivity of Cryptosporidium parvum, and evaluate the suitability of viability tests as a surrogate for oocyst infectivity under various environmental settings. METHODS AND RESULTS: The die-off of C. parvum in saturated and dry loamy soil was monitored over time by immunofluorescence assay (IFA) and PCR to estimate oocysts viability and by cell culture to estimate oocysts infectivity. Pseudomonas aeruginosa activity resulted in digestion of the outer layer of the oocysts, as demonstrated by loss of the ability to react in IFA. Whereas, P. aeruginosa activity did not affect the DNA amplification by PCR. A 1-log reduction in the oocysts infectivity was observed at 30 degrees C in distilled water and in saturated soil while oocysts viability was unchanged. Incubation for 10 days in dry loamy soil at 32 degrees C resulted in a 3-log(10) reduction in their infectivity while no change of oocysts viability was recorded. CONCLUSIONS: Under low temperature, C. parvum oocysts may retain their infectivity for a long time. Soil desiccation and high temperatures enhance the die-off rate of C. parvum. SIGNIFICANCE AND IMPACT OF THE STUDY: Previous die-off studies of C. parvum used viability tests that do not necessarily reflect the oocyst infectivity. Under low temperatures, there was an agreement observed between viability and infectivity tests and oocysts retained their infectivity for a long time. Desiccation and high temperatures enhance the loss of infectivity of C. parvum. The presented die-off data have significant implications on the management of wastewater reuse in warm environments.  相似文献   

15.
We reexamined the finding of Neumann et al. that intact Cryptosporidium parvum oocysts obtained after in vitro excystation were infectious for neonatal CD-1 mice. We used both established excystation protocols and our own protocol that maximized excystation. Although intact oocysts isolated after any of three protocols were infectious for neonatal CD-1 mice, the infectivity of intact oocysts isolated with our optimized excystation protocol was significantly lower than the infectivity of intact oocysts isolated after established protocols or from fresh oocysts. Excystation should not be considered a valid measure of C. parvum viability, given that it is biologically implausible for oocysts to be nonviable and yet infectious.  相似文献   

16.
Cryptosporidium parvum is 1 of the major causative organisms in waterborne diarrheal illness. Not only does C. parvum spread ubiquitously in our environment, it is also highly resistant to harsh environmental conditions and disinfectants. Therefore, a control measure for this protozoon is urgently required. This study investigated the effect of gamma-irradiation, in the range of 1,000-50,000 Gy, on the viability of C. parvum oocysts. Oocyst viability was determined by a combined indirect immunofluorescence and nucleic acid staining and animal infectivity study. The proportion of viable oocysts estimated by nucleic acid staining ranged from 94.2 to 89.4% in the 0- to 10,000-Gy groups, whereas it was reduced significantly to 58.6 or 45.7% in the 25,000- or 50,000-Gy group, respectively, at 24 hr postirradiation. In an animal infectivity study, oocysts irradiated with less than 10,000 Gy induced infections in mice wherein there were low numbers of oocysts per gram of feces amounting to 8-10.8% of the values in control mice, whereas with 50,000 Gy-irradiated oocysts, no oocysts were produced in the mice. This study suggests that at least 50,000 Gy of gamma-irradiation is necessary for the complete elimination of oocyst infectivity in mice.  相似文献   

17.
The prevalence of pathogenic microorganisms in seawater can result in waterborne and food borne outbreaks. This study was performed to determine the effect of sunlight and salinity on the die-off of Cryptosporidium parvum. Cryptosporidium parvum oocysts, Escherichia coli, and MS2 coliphage were seeded into tap water and seawater samples and then exposed to sunlight. The die-off of C. parvum in seawater, as measured by infectivity, was greater under sunlight (-3.08 log10) than under dark conditions (-1.31 log10). While, no significant difference was recorded in the die-off of C. parvum, under dark conditions, in tap water as compared to seawater (P < 0.05), indicating that the synergistic effect of salinity and sunlight was responsible for the enhanced die-off in seawater. The die-off of MS2 coliphage and E. coli was greater than that observed for C. parvum under all tested conditions. This indicates that these microorganisms cannot serve as indicators for the presence of C. parvum oocysts in seawaters. The results of the study suggest that C. parvum can persist as infectious oocysts for a long time in seawater and can thus pose a serious hazard by direct and indirect contact with humans.  相似文献   

18.
Centrifugation was evaluated as a method to improve infectivity assays of Cryptosporidium parvum in cell culture using the focus detection method, an immunofluorescence-based method for detecting infectious C. parvum oocysts in vitro. Human ileocecal adenocarcinoma (HCT-8) cells were grown for 48 hr on 13-mm cover slips in 24-well microtiter plates and infected with bleach-treated C. parvum oocysts. Plates were centrifuged at 228 g for 10 min and incubated at 37 C for 5, 12, 18, 24, and 48 hr. Foci of infection were stained by immunofluorescence and enumerated using epifluorescent microscopy. Results were compared to noncentrifuged controls. Foci in centrifuged samples could be enumerated after 18 hr. According to most probable number (MPN) analysis, the number of infectious oocysts estimated at 48 hr (13,326 infectious oocysts) was reached by 18 hr in centrifuged samples. After 48 hr, there was no significant difference (P < 0.05) between centrifuged and noncentrifuged samples enumerated by number of foci or the MPN of infectious oocysts. Centrifugation may expedite detection during C. parvum infectivity assays. Furthermore, multiwell plate formats are more cost effective than traditional chamber slides.  相似文献   

19.
The purpose of this study was to characterize the viral symbiont (CPV) of Cryptosporidium parvum sporozoites and evaluate the CPV capsid protein (CPV40) as a target for sensitive detection of the parasite. Recombinant CPV40 was produced in Escherichia coli, purified by affinity chromatography, and used to prepare polyclonal rabbit sera specific for the viral capsid protein. Anti-rCPV40 recognized a 40 kDa and a 30 kDa protein in C. parvum oocysts and appeared to localize to the apical end of the parasite. Anti-rCPV40 serum was capable of detecting as few as 1 C. parvum oocyst in a dot blot assay, the sensitivity being at least 1000-fold greater than sera reactive with total native C. parvum oocyst protein or specific for the 41 kDa oocyst surface antigen. Water samples were seeded with C. parvum oocysts and incubated at 4, 20, or 25 degrees C for greater than 3 months to determine if CPV levels were correlated with oocyst infectivity. Samples were removed monthly and subjected to mouse and cell culture infectivity, as well as PCR analysis for infectivity and viral particle presence. While sporozoite infectivity declined by more than 75% after 1 month at 25 degrees C, the CPV signal was similar to that of control samples at 4 degrees C. By 3 months at 20 degrees C, the C. parvum oocysts were found to be non-infectious, but retained a high CPV signal. This study indicates that CPV is an excellent target for sensitive detection of C. parvum oocysts in water, but may persist for an indefinite time after oocysts become non-infectious.  相似文献   

20.
Abstract The present study was undertaken to determine the infectivity of Cryptosporidium parvum oocysts for immunosup-pressed adult C57BL/6N mice after the oocysts had been stored from 1–48 months at 4°C in 2.5% potassium dichromate. All mice inoculated with oocysts 1–18 months old developed patent infections, while mice inoculated with older oocysts remained uninfected. The prepatent period was extended from 2 to 6 or 7 days as the storage time for oocysts increased. The finding that C. parvum oocysts remain infective for mice for at least 18 months offers important economic and time-saving advantages for investigators who frequently require large numbers of oocysts that must be painstakingly purified from calf manure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号