首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
Guo WQ  Yi HL  Xing Y 《生理科学进展》2010,41(4):291-294
放射状胶质细胞(radial glia/RG或radial glial cell/RGC)产生于神经上皮,在中枢神经系统发育过程中起重要作用,包括发育早期和出生后作为干细胞产生神经元或胶质细胞,发育中晚期提供放射状纤维支架引导神经元的正确迁移等。本文就放射状胶质细胞的产生、特性、功能等研究新进展做一综述。  相似文献   

2.
胶质细胞生长因子的研究进展   总被引:4,自引:0,他引:4  
Xue YJ  Dong Y  Jang JY 《生理科学进展》2003,34(2):159-161
胶质细胞生长因子(glial growth factor,GGF)是neuregulin基因的产物。GGF与erbB受体的异二聚体或同二聚体结合,催化多肽链中的酪氨酸磷酸化,激活下游信号分子而发挥其生理作用。GGF及其受体在发育及成熟神经系统中广泛分布。GGF限定神经嵴细胞,使其向雪旺氏细胞分化,并在雷旺氏细胞发育过程中发挥重要作用。GGF能够刺激少突胶质细胞前体细胞、少突胶质细胞和星形胶质细胞增殖,抑制少突胶质细胞前体细胞分化成少突胶质细胞,抑制O-2A细胞分化成星形胶质细胞。GGF能够促进神经元沿着放射状的胶质细胞迁移,促进培养的视网膜神经元存活和突触生长。  相似文献   

3.
近年来,对胶质细胞功能的研究迅速发展.诸多研究都表明胶质细胞不仅为神经元功能发挥提供良好环境,而且还直接影响突触形成及其功能完善.此外胶质细胞也可以通过自身释放化学递质与神经元形成突触联系,参与对神经元兴奋性及突触传导的调节.  相似文献   

4.
下丘脑神经内分泌系统的活动对机体水盐平衡、心血管活动、分娩与授乳等过程都具有关键性的调节作用;而这一系统的活动又与星状胶质细胞和神经内分泌神经元之间的相互作用密切相关。结合近年来实验发现,本文将系统地分析在渗透压与吸吮刺激下,下丘脑视上核星状胶质细胞对加压素与催产素神经元活动的影响,并探讨其作用的机制。  相似文献   

5.
近年的研究表明,神经元再生能够发生在高等脊椎动物鸟类的成体脑中。再生神经元前体细胞产生于端脑的室带区,在室带区星状胶质细胞长纤维的引导下能定向迁移到端脑的不同脑区并在那里分化成神经元。推测新生神经元的产生与鸟类的鸣啭、学习和记忆等功能有关。  相似文献   

6.
《生命科学》2008,20(1):85-85
2008年1月10日,Nature Neuroscience发表了中科院上海生科院神经所袁小兵研究组关于大脑皮层神经元放射状迁移导向机制的最新研究成果。这些研究首次证明了神经元的放射状迁移受胞外导向分子的指引。  相似文献   

7.
神经元树突上树突丝(filopodia)的形成及其运动,是神经元探索胞外环境、寻找突触前膜结构的一种方式.为研究星形胶质细胞的兴奋对神经元树突上树突丝运动的调节机制,在与神经元混合培养的星形胶质细胞中转染光敏感通道(channelrhodopsin-2).Channelrhodopsin-2是一种可表达于细胞膜表面的非选择性阳离子通道,可被特定模式的蓝光激活,导致大量钙离子内流并进一步诱发星形胶质细胞产生钙波,从而实现了选择性激活星形胶质细胞的目的.研究结果显示,在混合培养的神经元与星形胶质细胞模型中,激活的星形胶质细胞可以抑制神经元filopodia的运动,与外源性ATP、谷氨酸的作用效果一致.这表明星形胶质细胞激活后可能通过释放ATP和谷氨酸等递质来抑制神经元filopodia的运动.  相似文献   

8.
上海大学生命科学学院颜建华等三位科研工作者对神经干细胞作了研究,他们认为神经干细胞是在神经系统中发现的一种可以再生的细胞,不仅有自我分化的能力,还可以分化为神经元、星状胶质细胞和少突胶质细胞,这对研究神经退行性疾病和神经系统的发育过程产生很大影响,但其增殖,分化和迁移机制还待研究。RNA抑制技术是目前流行的基因沉默法,利用导入小片段核酸进入细胞,对特定基因表达的翻译阶段进行抑制,以观察基因对细胞的影响。作者在获得分化相关基因的基础上,利用RNA干扰(RNAi)和反义RNA(antisense RNA)法检测几个基因对神经于细胞的影响。  相似文献   

9.
Usowicz等发现,取自大鼠小脑进行培养的2型星状胶质细胞上有能被谷氨酸激活的离子通道,这种由谷氨酸激活而形成的离子流在零电位附近发生反转,并且可被谷氨酸拮抗剂kynurenic acid(犬尿喹啉酸)大部分阻滞。2型星状胶质细胞上的谷氨酸受体只有非-NMDA一种受体亚型,而神经元上则往往是  相似文献   

10.
本实验采用对照组不含有而实验组含有B104-CM分别培养新生大鼠视神经外植块.根据迁出细胞的形态特征,分类少突胶质细胞和星形胶质细胞,并以植块中心为参照点,在Leica Q500IW图像分析仪下测量两类细胞的迁移距离,最后2天用CDM培养.结果发现对照组视神经植块内的细胞呈放射状连续性迁出,第3、6天时迁出的少突胶质细胞和星形胶质细胞均约各占一半,迁移速度相似,约5μm/小时;实验组视神经植块的边界清晰,细胞迁出速度快,迁出的少突胶质细胞比率>90%,两类细胞迁移速度相似,第1天约20μm/小时,第2天约13μm/小时.经CDM培养后,少突胶质细胞表达半乳糖脑苷脂.结果提示B104-CM较特异地迁出视神经外植块中的少突胶质细胞并加速细胞的迁移,本实验方法也可作为研究少突胶质细胞发育的新模型.  相似文献   

11.
The developing central nervous system of vertebrates contains an abundant cell type designated radial glial cells. These cells are known as guiding cables for migrating neurons, while their role as precursor cells is less clear. Since radial glial cells express a variety of astroglial characteristics and differentiate as astrocytes after completing their guidance function, they have been considered as part of the glial lineage. Using fluorescence-activated cell sorting, we show here that radial glial cells also are neuronal precursors and only later, after neurogenesis, do they shift towards an exclusive generation of astrocytes. These results thus demonstrate a novel function for radial glial cells, namely their ability to generate two major cell types found in the nervous system, neurons and astrocytes.  相似文献   

12.
Radial glial cells play a significant role in the repair of spinal cord injuries as they exert critical role in the neurogenesis and act as a scaffold for neuronal migration. Our previous study showed that mature astrocytes of spinal cord can undergo a de-differentiation process and further transform into pluripotential neural precursors; the occurrence of these complex events arise directly from the induction of diffusible factors released from scratch-insulted astrocytes. However, it is unclear whether astrocytes can also undergo rejuvenation to revert to a radial glial progenitor phenotype after the induction of scratch-insulted astrocytes conditioned medium (ACM). Furthermore, the mechanism of astrocyte de-differentiation to the progenitor cells is still unclear. Here we demonstrate that upon treating mature astrocytes with ACM for 10 days, the astrocytes exhibit progressive morphological and functional conversion to radial glial cells. These changes include the appearance of radial glial progenitor cells, changes in the immunophenotypical profiles, characterized by the co-expression of nestin, paired homeobox protein (Pax6) and RC2 as well as enhanced capability of multipotential differentiation. Concomitantly, ErbB2 protein level was progressively up-regulated. Thereby these results provide a potential mechanism by which ACM could induce mature astrocytes to regain the profile of radial glial progenitors due to activating the ErbB2 signaling pathways.  相似文献   

13.
Lineage of radial glia in the chicken optic tectum.   总被引:7,自引:0,他引:7  
In many parts of the central nervous system, the elongated processes of radial glial cells are believed to guide immature neurons from the ventricular zone to their sites of differentiation. To study the clonal relationships of radial glia to other neural cell types, we used a recombinant retrovirus to label precursor cells in the chick optic tectum with a heritable marker, the E. coli lacZ gene. The progeny of the infected cells were detected at later stages of development with a histochemical stain for the lacZ gene product. Radial glia were identified in a substantial fraction of clones, and these were studied further. Our main results are the following. (a) Clones containing radial glia frequently contained neurons and/or astrocytes, but usually not other radial glia. Thus, radial glia derive from a multipotential progenitor rather than from a committed radial glial precursor. (b) Production of radial glia continues until at least embryonic day (E) 8, after the peak of neuronal birth is over (approximately E5) and after radial migration of immature neurons has begun (E6-7). Radial glial and neuronal lineages do not appear to diverge during this interval, and radial glia are among the last cells that their progenitors produce. (c) As they migrate, many cells are closely apposed to the apical process of their sibling radial glia. Thus, radial glia may frequently guide the migration of their clonal relatives. (d) The population of labelled radial glia declines between E15 and E19-20 (just before hatching), concurrent with a sharp increase in the number of labelled astrocytes. This result suggests that some tectal radial glia transform into astrocytes, as occurs in mammalian cerebral cortex, although others persist after hatching. To reconcile the observations that many radial glia are present early, that radial glia are among the last offspring of a multipotential stem cell, and that most clones contain only a single radial glial cell, we suggest that the stem cell is, or becomes, a radial glial cell.  相似文献   

14.
The major role of radial glial cells in neuronal development is to provide support and guidance for neuronal migration. In vitro, neurons, astrocytes and oligodendrocytes have also been generated from neural stem cells and embryonic stem cells, but the generation of radial glial cells in vitro has not yet been reported. Since radial glial cells can lead to neurons and astrocytes during brain development, neurogenesis and gliogenesis of stem cells in vitro may at least in part also utilize the same mechanisms. To test this hypothesis, we utilized five different clones of embryonic (ES) and embryonal carcinoma (EC) stem cell lines to investigate the differentiation of radial glial cells during in vitro neural differentiation. Here, we demonstrate that radial glial cells can be generated from ES/EC cell lines. These ES/EC cell‐derived radial glial cells are similar in morphology to radial glial cells in vivo. They also express several cytoskeletal markers that are characteristics of radial glial cells in vivo. The processes of these in vitro‐generated radial glial cells are organized into scaffolds that appear to support the migration of newly generated neurons in culture. Like radial glial cells in vivo, they appear to differentiate subsequently into astrocytes. Differentiation of radial glial cells may be a common pathway during in vitro neural differentiation of ES cells. This novel in vitro model system may facilitate the investigation of regulation of radial glial cell differentiation and its biological function. Acknowledgements: Supported by USPHS Grant NS11853 and a grant from the Children's Medical Research Foundation.  相似文献   

15.
Radial glial cells are astrocyte precursors, which are transiently present in the developing central nervous system and transform eventually into astrocytes in the cerebral cortex and into Bergmann glia in the cerebellum. Previous reports indicate that the transformation from radial glia to astrocytes can be reversed by diffusible chemical signals derived from embryonic forebrain in vitro and by freezing injury in vivo. But there is no direct evidence proving that mature astrocytes can de-differentiate into radial glial cells. Here we show that purified astrocytes could de-differentiate into radial glial-like cells (RGLCs) in vitro with freeze-thaw stimulation. RGLCs had the expression of markers for radial glia including Nestin and Pax6, and astrocyte markers, the glial fibrillary acidic protein and Vimentin. Cortical neurons, when co-cultured with RGLCs, migrated along the processes of RGLCs at an average speed of 26.26 +/- 3.36 microm/h. Moreover, the proliferation of RGLCs was significantly promoted by epidermal growth factor (EGF) at the concentration of 10-30 ng/ml. These results reveal that low temperature induces astrocytes to de-differentiate into immature RGLCs, which provides an in vitro model to investigate mechanisms of astroglial cells de-differentiation.  相似文献   

16.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region-specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal-specific nuclear protein (NeuN) and microtubule-associated protein (MAP-2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period.  相似文献   

17.
Three midline glial populations are found at the corticoseptal boundary: the glial wedge (GW), glia within the indusium griseum (IGG), and the midline zipper glia (MG). Two of these glial populations are involved in axonal guidance at the cortical midline, specifically development of the corpus callosum. Here we investigate the phenotypic and molecular characteristics of each population and determine whether they are generated at the same developmental stage. We find that the GW is derived from the radial glial scaffold of the cortex. GW cells initially have long radial processes that extend from the ventricular surface to the pial surface, but by E15 loose their pial attachment and extend only part of the way to the pial surface. Later in development the radial morphology of cells within the GW is replaced by multipolar astrocytes, providing supportive evidence that radial glia can transform into astrocytes. IGG and MG do not have a radial morphology and do not label with the radial glial markers, Nestin and RC2. We conclude that the GW and IGG have different morphological and molecular characteristics and are born at different stages of development. IGG and MG have many phenotypic and molecular characteristics in common, indicating that they may represent a common population of glia that becomes spatially distinct by the formation of the corpus callosum.  相似文献   

18.
This study examines the early organization of glial cells, together with the expression of chondroitin sulfate proteoglycans in the developing thalamus of ferrets. Glia were identified with antibodies against vimentin and glial fibrillary acidic protein and the chondroitin sulfate proteoglycans were identified by using an antibody against chondroitin sulfate side chains. Our results reveal three striking features of early thalamic development. First, there is a distinct population of glial fibrillary acidic protein-immunoreactive astrocytes (first seen at E30) that resides in the perireticular thalamic nucleus of the primordial internal capsule. These glial fibrillary acidic protein-immunoreactive astrocytes of the perireticular nucleus are transient and form a conspicuous feature of the early developing forebrain. They are first apparent well before any glial fibrillary acidic protein-immunoreactive astrocytes are seen in other regions of the thalamus (at about P8). Further, unlike in other thalamic regions, these peculiar perireticular astrocytes do not express vimentin before they express glial fibrillary acidic protein. Second, in the reticular thalamic nucleus, the radial glial cells express glial fibrillary acidic protein; they are the only ones to do so in the thalamus during development. The glial fibrillary acidic protein-immunoreactive radial glial cells of the reticular nucleus form a rather distinct band across the developing thalamus at these early stages (E30–P1). Finally, and preceding the expression of glial fibrillary acidic protein, the radial glial cells of the reticular nucleus, unlike those in other thalamic regions, are associated closely with the expression of chondroitin sulfate proteoglycans (E20–E30). Later (after E30), the expression of the chondroitin sulfate proteoglycans in the reticular nucleus declines sharply. The significance of this finding is related to the early organization of the cortico-fugal and cortico-petal pathways.  相似文献   

19.
In the human brain, the transformation of radial glial cells (RGC) into astrocytes has been studied only rarely. In this work, we were interested in studying the morphologic aspects underlying this transformation during the fetal/perinatal period, particularly emphasizing the region‐specific glial fiber anatomy in the medial cortex. We have used carbocyanine dyes (DiI/DiA) to identify the RGC transitional forms and glial fiber morphology. Immunocytochemical markers such as vimentin and glial fibrillary acidic protein (GFAP) were also employed to label the radial cells of glial lineage and to reveal the early pattern of astrocyte distribution. Neuronal markers such as neuronal‐specific nuclear protein (NeuN) and microtubule‐associated protein (MAP‐2) were employed to discern whether or not these radial cells could, in fact, be neurons or neuronal precursors. The main findings concern the beginning of RGC transformation showing loss of the ventricular fixation in most cases, followed by transitional figures and the appearance of mature astrocytes. In addition, diverse fiber morphology related to depth within the cortical mantle was clearly demonstrated. We concluded that during the fetal/perinatal period the cerebral cortex is undergoing the final stages of radial neuronal migration, followed by involution of RGC ventricular processes and transformation into astrocytes. None of the transitional or other radial glia were positive for neuronal markers. Furthermore, the differential morphology of RGC fibers according to depth suggests that factors may act locally in the subplate and could have a role in the process of cortical RGC transformation and astrocyte localization. The early pattern of astrocyte distribution is bilaminar, sparing the cortical plate. Few astrocytes (GFAP+) in the upper band could be found with radial processes at anytime. This suggests that astrocytes in the marginal zone could be derived from different precursors than those that differentiate from RGCs during this period. © 2003 Wiley Periodicals, Inc. J Neurobiol 55: 288–298, 2003  相似文献   

20.
Summary Immunohistochemical and ultrastructural techniques have been used to demonstrate glial fibrillary acidic protein (GFAP) immuno-positive cells in the adult toad spinal cord. Two types of GFAP-immunoreactive cells were observed: ependymocytes and radial astrocytes. GFAP-positive ependymocytes were scarce and contained the immunoreactive product in their processes. They showed intermediate filaments in the basal pole and in their processes when studied with the electron microscope. These immuno-positive ependymocytes represent the tanycytic form of ependymal cells because their processes ended at the subpial zone. The radial astrocytes showed a more intensive immunoreactive product in somata and processes when they were located far away from the ependymal layer. Cell bodies and processes were also associated with blood vessels, but most of the processes ended at the subpial zone forming a continuous subpial glia limitans. The GFAP-positive processes, which form this subpial glia limitans in the toad spinal cord, belong to both tanycytic ependymocytes and radial astrocytes, whose somata are located in the grey matter. These findings lead us to suggest that both types of GFAP-immunopositive cells might be the functional equivalents of mammalian astrocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号