首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hearing and balance depend on microvilli-like actin-based projections of sensory hair cells called stereocilia. Their sensitivity to mechanical displacements on the nanometer scale requires a highly organized hair bundle in which the physical dimension of each stereocilium is tightly controlled. The length and diameter of each stereocilium are established during hair bundle maturation and maintained by life-long continuing dynamic regulation. Here, we studied the role of the actin-bundling protein Espin in stereociliary growth by examining the hair cell stereocilia of Espin-deficient jerker mice (Espn(je)), and the effects of transiently overexpressing Espin in the neuroepithelial cells of the organ of Corti cultures. Using fluorescence scanning confocal and electron microscopy, we found that a lack of Espin results in inhibition of stereociliary growth followed by progressive degeneration of the hair bundle. In contrast, overexpression of Espin induced lengthening of stereocilia and microvilli that mirrored the elongation of the actin filament bundle at their core. Interestingly, Espin deficiency also appeared to influence the localization of Myosin XVa, an unconventional myosin that is normally present at the stereocilia tip at levels proportional to stereocilia length. These results indicate that Espin is important for the growth and maintenance of the actin-based protrusions of inner ear neuroepithelial cells.  相似文献   

2.
Uncv (uncovered): a new mutation causing hairloss on mouse chromosome 11.   总被引:4,自引:0,他引:4  
A pair of mutant mice with a first sparse coat appeared spontaneously in the production stock of BALB/c mice with a normal coat. After being sib-mated, they produced three phenotypes in their progeny: mice with normal hair, mice with a first sparse coat and then a fuzzy coat, and uncovered mice. Genetic studies revealed the mutants had inherited an autosomal monogene that was semi-dominant. By using 11 biochemical loci--Idh, Car2, Mup1, Pgm1, Hbb, Es1, Es10, Gdc, Ce2, Mod1 and Es3--as genetic markers, two-point linkage tests were made. The results showed the gene was assigned to chromosome 11. The result of a three-point test with Es3 and D11Mit8 (microsatellite DNA) as markers showed that the mutation was linked to Es3 with the recombination fraction 7.89 +/- 2.19%, and linked to D11Mit8 with the recombination fraction 26.30 +/- 3.57%. The recombination fraction between Es3 and D11Mit8 was 32.90 +/- 3.81%. It is suggested that the mutation is a new genetic locus that affected the skin and hair structure of the mouse. The mutation was named uncovered, with the symbol Uncv. Further studies showed the mutation affected not only the histology of skin and hair but also the growth and reproductive performance of the mice. The molecular characterization of the Uncv locus needs to be further studied.  相似文献   

3.
The espins are actin-bundling proteins of brush border microvilli and Sertoli cell-spermatid junctions. We have determined that espins are also present in hair cell stereocilia and have uncovered a connection between the espin gene and jerker, a recessive mutation that causes hair cell degeneration, deafness, and vestibular dysfunction. The espin gene maps to the same region of mouse chromosome 4 as jerker. The tissues of jerker mice do not accumulate espin proteins but contain normal levels of espin mRNAs. The espin gene of jerker mice has a frameshift mutation that affects the espin C-terminal actin-bundling module. These data suggest that jerker mice are, in effect, espin null and that the jerker phenotype results from a mutation in the espin gene.  相似文献   

4.
Circling mice manifest profound deafness, head-tossing, and bi-directional circling behavior, which they inherit in autosomal recessive manner. Histologic examination of the inner ear reveals abnormalities of the region around the organ of Corti, spiral ganglion neurons, and outer hair cells. A genetic linkage map was constructed for an intraspecific backcross between cir and C57BL/6J mice. The cir gene was mapped to a region between D9Mit116/D9Mit15 and D9Mit38 on mouse chromosome (Chr) 9. Estimated distances between cir and D9Mit116, and between cir and D9Mit38 were 0.70 +/- 0.40 and 0.23 +/- 0.23 cM, respectively. Order of the markers was defined as follows: centromere - D9Mit182 - D9Mit51/D9Mit79/D9Mit310 - D9Mit212/D184 - D9Mit116/D9Mit15 - cir - D9Mit38 - D9Mit20 - D9Mit243 - D9Mit16 - D9Mit55/D9Mit125 - D9Mit281. On the basis of genetic mapping, we constructed a yeast artificial chromosome (YAC) contig across the cir region. The cir gene is located between the lactotransferrin (ltf) and microtubule-associated protein (map4) genes. The distal portion of mouse Chr 9 encompassing the cir region is homologous with human chromosome 3p21, which contains the Deafness, form B: Autosomal Recessive Deafness (DFNB6) locus. Therefore, the circling mouse is a potential animal model for DFNB6 deafness in humans.  相似文献   

5.
An autosomal recessive deafness mutant was discovered in our colony of Zucker (ZUC) rats. These mutants behave like shaker-waltzer deafness mutants, and their inner ear pathology classifies them among neuroepithelial degeneration type of deafness mutants. To determine whether this rat deafness mutation (−) defines a unique locus or one that has been previously described, we mapped its chromosomal location. F2 progeny of (Pbrc:ZUC × BN/Crl) A/a B/b H/h+/− F1 rats were scored for coat color and behavioral phenotypes. Segregation analysis indicated that the deafness locus might be loosely linked with B on rat Chromosome (Chr) 5 (RNO5). Therefore, 40 −/− rats were scored for BN and ZUC alleles at four additional loci, D5Mit11, D5Mit13, Oprd1, and Gnb1, known to map to RNO5 or its homolog, mouse Chr 4 (MMU4). Linkage analysis established the gene order (cM distance) as D5Mit11–(19.3)–B–(17.9)–D5Mit13–(19.2)–Oprd1–(21.5) − (1.2) Gnb1, placing the deafness locus on distal RNO5. The position of the deafness locus on RNO5 is similar to that ofjerker (je) on MMU4; the phenotypes and patterns of inheritance of the deafness mutation and je are also similar. It seems likely that the mutation affects the rat homolog of je. The rat deafness locus should, therefore, be named jerker and assigned the gene symbol Je. Received: 13 June 1995 / Accepted: 4 January 1996  相似文献   

6.
Inheritance of restriction fragment length polymorphisms associated with four anonymous DNA markers (D12Nyu1, 2, 3 and 4), the Fos proto-oncogene, the Mtv-9 viral integration site, and the alpha 1-antitrypsin (Aat-1) and immunoglobulin heavy chain (Igh) gene families in the mouse has been followed in a backcross experiment. A Bayesian multilocus map-building strategy yielded the map: centromere-D12Nyu2-10 cM-D12Nyu1-2 cM-D12Nyu3-15 cM-Fos-1 cM-D12Nyu4-2 cM-Mtv-9-8 cM-Aat-1-17 cM-Igh-C. A map constructed from male meiotic data was substantially shorter than one constructed from female meiotic data. Significant interference was observed for the linkage group. Two groups of markers studied in recombinant inbred strains of mice could be interpolated into the map: Es-25, D12Nyu10, D12Nyu7 and Apob form a cluster proximal to D12Nyu2, and Ly-18, Ah, and D12Nyu5 form a cluster between D12Nyu2 and D12Nyu1. These data establish an unambiguously ordered linkage group including Igh and Aat-1 that spans most of chromosome 12.  相似文献   

7.
Hindshaker (hsh), a spontaneous, autosomal recessive mouse mutation, displays a developmentally dependent tremor of the hindquarters due to hypomyelination in the CNS. This myelin deficit is followed by progressive, but incomplete, recovery by postnatal day 42. Herein we describe the construction of a genomic contig spanning the interval between the markers D3Mit187 (42.4 cM) and D3Mit232 (45.2 cM) on mouse chromosome 3, which we have previously shown to contain the hsh mutation. A physical map, covering approximately 3.5 Mb, was constructed from a series of overlapping yeast and bacterial artificial chromosomes. A 1.2- to 1.4-Mb segment central to the contig was compared extensively with the syntenic regions in human (chromosome 1q21-q23) and rat (chromosome 2). We present new data on 10 genes erroneously assigned to this area and on another 6 genes previously assigned elsewhere. For absent genes, our work suggests that they are telomeric to the region encompassed in our map. Accordingly, our findings both map the area surrounding the hsh mutation and present important corrections to the current maps in an area rich in genes related to the nervous system.  相似文献   

8.
Hearing and vestibular function depend on mechanosensory staircase collections of hair cell stereocilia, which are produced from microvillus-like precursors as their parallel actin bundle scaffolds increase in diameter and elongate or shorten. Hair cell stereocilia contain multiple classes of actin-bundling protein, but little is known about what each class contributes. To investigate the roles of the espin class of actin-bundling protein, we used a genetic approach that benefited from a judicious selection of mouse background strain and an examination of the effects of heterozygosity. A congenic jerker mouse line was prepared by repeated backcrossing into the inbred CBA/CaJ strain, which is known for excellent hearing and minimal age-related hearing loss. We compared stereocilia in wild-type CBA/CaJ mice, jerker homozygotes that lack espin proteins owing to a frameshift mutation in the espin gene, and jerker heterozygotes that contain reduced espin levels. The lack of espins radically impaired stereociliary morphogenesis, resulting in stereocilia that were abnormally thin and short, with reduced differential elongation to form a staircase. Mean stereociliary diameter did not increase beyond ~0.10-0.14 μm, making stereocilia ~30%-60% thinner than wild type and suggesting that they contained ~50%-85% fewer actin filaments. These characteristics indicate a requirement for espins in the appositional growth and differential elongation of the stereociliary parallel actin bundle and fit the known biological activities of espins in vitro and in transfected cells. The stereocilia of jerker heterozygotes showed a transient proximal-distal tapering suggestive of haploinsufficiency and a slowing of morphogenesis that revealed previously unrecognized assembly steps and intermediates. The lack of espins also led to a region-dependent degeneration of stereocilia involving shortening and collapse. We conclude that the espin actin-bundling proteins are required for the assembly and stabilization of the stereociliary parallel actin bundle.  相似文献   

9.
During the mouse ENU mutagenesis screen, mice were tested for the occurrence of dominant cataracts. One particular mutant was discovered as a progressive opacity (Po). Heterozygotes show opacification of a superficial layer of the fetal nucleus, which progresses and finally forms a nuclear opacity. Since the homozygotes have already developed the total cataract at eye opening, the mode of inheritance is semidominant. Linkage analysis was performed using a set of genome-wide microsatellite markers. The mutation was mapped to chromosome 11 distal of the marker D11Mit242 (9.3 +/- 4.4 cM) and proximal to D11Mit36 (2.3 +/- 2.3 cM). This position makes the betaA3/A1-crystallin encoding gene Cryba1 an excellent candidate gene. Mouse Cryba1 was amplified from lens mRNA. Sequence analysis revealed a mutation of a T to an A at the second base of exon 6, leading to an exchange of Trp by Arg. Computer analysis predicts that the fourth Greek key motif of the affected betaA3/A1-crystallin will not be formed. Moreover, the mutation leads also to an additional splicing signal, to the skipping of the first 3 bp of exon 6, and finally to the deletion of the Trp residue. Both types of mRNA are present in the homozygous mutant lenses. The mutation will be referred to as Cryba1(po1). This particular mouse mutation provides an excellent animal model for a human congenital zonular cataract with suture opacities, which is caused by a mutation in the homologous gene.  相似文献   

10.
The paracentric inversion In(3)55Rk on mouse Chromosome 3 (Chr 3) was induced by cesium irradiation. Genetic crosses indicate the proximal breakpoint cosegregates with D3Mit324 and D3Mit92; the distal breakpoint cosegregates with D3Mit127, D3Mit160, and D3Mit200. Giemsa-banded chromosomes show the inversion spans approximately 80% of Chr 3. The proximal breakpoint occurs within band 3A2, not 3B as reported previously; the distal breakpoint occurs within band 3H3. Mice homozygous for the inversion exhibit nephropathy indicative of uricase deficiency. Southern blot analyses of urate oxidase, Uox, show two RFLPs of genomic mutant DNA: an EcoRI site between exons 4-8 and a BamHI site 3' to exon 6. Mutant cDNA fails to amplify downstream of base 844 at the 3' end of exon 7. FISH analysis of chromosomes from inversion heterozygotes, using a cosmid clone containing genomic wild-type DNA for Uox exons 2-4, shows that a 5' segment of the mutated Uox allele on the inverted chromosome has been transposed from the distal breakpoint region to the proximal breakpoint region. Clinical, histopathological, and Northern analyses indicate that our radiation-induced mutation, uox(In), is a putative null.  相似文献   

11.
The espin actin-bundling proteins, which are the target of the jerker deafness mutation, caused a dramatic, concentration-dependent lengthening of LLC-PK1-CL4 cell microvilli and their parallel actin bundles. Espin level was also positively correlated with stereocilium length in hair cells. Villin, but not fascin or fimbrin, also produced noticeable lengthening. The espin COOH-terminal peptide, which contains the actin-bundling module, was necessary and sufficient for lengthening. Lengthening was blocked by 100 nM cytochalasin D. Espin cross-links slowed actin depolymerization in vitro less than twofold. Elimination of an actin monomer-binding WASP homology 2 domain and a profilin-binding proline-rich domain from espin did not decrease lengthening, but made it possible to demonstrate that actin incorporation was restricted to the microvillar tip and that bundles continued to undergo actin treadmilling at approximately 1.5 s-1 during and after lengthening. Thus, through relatively subtle effects on actin polymerization/depolymerization reactions in a treadmilling parallel actin bundle, espin cross-links cause pronounced barbed-end elongation and, thereby, make a longer bundle without joining shorter modules.  相似文献   

12.
13.
A recessive hairless mutation arose spontaneously in a congenic line of spontaneously hypertensive rats SHR.BN-(D1Mit3-Igf2)/Ipcv. The mutant rats develop generalized alopecia except for partial hair growth on their heads. Affected animals of the congenic line were crossed with LEW rats and randomly bred for several generations. A genome scan in 74 affected and 75 unaffected offspring localized the mutant gene on rat chromosome 18p12, near the marker D18Rat107, which is closely linked to the desmosomal cadherin gene cluster, syntenic to mouse chromosome 18 and human chromosome 18q12. Recently, the mouse and rat phenotypes lah/lah (lanceolate hair) and lah(J)/lah(J)(lanceolate hair-J) were found to be caused by mutations in the desmoglein 4 (Dsg4) gene. Direct sequencing of the Dsg4 gene in the SHR revealed a homozygous C-to-T transition generating a premature termination codon within exon 8 in the affected animals. Further studies on the skin histology in affected rats demonstrated features consistent with a lanceolate hair mutation, providing further support for the crucial role of desmoglein 4 in hair shaft differentiation.  相似文献   

14.
两例新的稀毛小鼠突变基因的染色体定位   总被引:8,自引:0,他引:8  
用连锁分析法对乙烷基亚硝基脲(ENU) 诱变获得的两例被毛突变小鼠(snthr 1Bao及snthr 2Bao) 的突变基因进行定位。选择平均分布于小鼠基因组且在C57BL/6J和DBA/2 间有差异的39 个微卫星对B6D2F1 互交得到的稀毛F2 进行全基因组扫描。扫描了9个微卫星后发现snthr 1Bao突变基因与D9Mit243 的LOD值为7 73。突变基因被定位于9号染色体。在此基础上又选择了D9Mit355 和D9Mit18 两个微卫星进行检测, 并扩大F2 的数量至145只。结果发现, snthr 1Bao与D9Mit18间无1 例重组, 稀毛突变基因与该微卫星紧密连锁, 距着丝点71cM。同理, 将snthr 2Bao突变基因也定位在与snthr 1Bao相近的区域。检索发现snthr 1Bao是一尚未克隆的新基因。  相似文献   

15.
We studied a family presenting 10 individuals affected by autosomal dominant deafness in all frequencies and three individuals affected by high frequency hearing loss. Genomic scanning using the 50k Affymetrix microarray technology yielded a Lod Score of 2.1 in chromosome 14 and a Lod Score of 1.9 in chromosome 22. Mapping refinement using microsatellites placed the chromosome 14 candidate region between markers D14S288 and D14S276 (8.85 cM) and the chromosome 22 near marker D22S283. Exome sequencing identified two candidate variants to explain hearing loss in chromosome 14 [PTGDR – c.G894A:p.R298R and PTGER2 – c.T247G:p.C83G], and one in chromosome 22 [MYH9, c.G2114A:p.R705H]. Pedigree segregation analysis allowed exclusion of the PTGDR and PTGER2 variants as the cause of deafness. However, the MYH9 variant segregated with the phenotype in all affected members, except the three individuals with different phenotype. This gene has been previously described as mutated in autosomal dominant hereditary hearing loss and corresponds to DFNA17. The mutation identified in our study is the same described in the prior report. Thus, although linkage studies suggested a candidate gene in chromosome 14, we concluded that the mutation in chromosome 22 better explains the hearing loss phenotype in the Brazilian family.  相似文献   

16.
The asebia (ab) mutation in the mouse is an autosomal recessive trait with hypoplastic sebaceous glands. As a first step toward cloning the ab gene, we report here the genetic mapping of the ab locus with respect to Chromosome 19 microsatellite markers. 644 backcross progeny were generated by mating (CAST/EiJ × DBA/1LacJ-ab2J/ab2J) F1 heterozygous females and parental ab2J/ab2J mutant males. Our results located the ab gene to an interval of 1.6 cM on mouse Chromosome 19 defined by flanking markers D19Mit11 and D19Mit53/D19Mit27, and identified a tightly linked polymorphic marker, D19Mit67, that co-segregates with the mutation in the backcross progeny examined. This places ab locus 4 cM distal to its present position as indicated in Mouse Genome Database at The Jackson Laboratory. We have also mapped a yeast artificial chromosome (YAC) contig in this locus interval which suggests the ab interval to be less than one megabase of DNA.  相似文献   

17.
In malaria parasites, mutations in two genes of folate biosynthesis encoding dihydrofolate reductase (dhfr) and dihydropteroate synthase (dhps) modify responses to antifolate therapies which target these enzymes. However, the involvement of other genes which modify the availability of exogenous folate, for example, has been proposed. Here, we used short-read whole-genome re-sequencing to determine the mutations in a clone of the rodent malaria parasite, Plasmodium chabaudi, which has altered susceptibility to both sulphadoxine and pyrimethamine. This clone bears a previously identified S106N mutation in dhfr and no mutation in dhps. Instead, three additional point mutations in genes on chromosomes 2, 13 and 14 were identified. The mutated gene on chromosome 13 (mdr2 K392Q) encodes an ABC transporter. Because Quantitative Trait Locus analysis previously indicated an association of genetic markers on chromosome 13 with responses to individual and combined antifolates, MDR2 is proposed to modulate antifolate responses, possibly mediated by the transport of folate intermediates.  相似文献   

18.
OBJECTIVE: To localize the chromosomal position of a novel cataract mutation (juvenile recessive cataract; jrc) in mice. METHODS: A mapping population was developed by crossing cataract males (albino MH) to wild-type females (black C57BL/6J). F1 females were backcrossed to albino MH males with cataracts. RESULTS: The results were consistent with a model of a single autosomal recessive gene [153 cataract, 169 wild-type; chi2 = 0.8, 1 degree of freedom (d.f.), p > 0.35]. Linkage with the albino (tyrosinase; Tyr) locus was evident (chi2 = 61.5, 1 d.f., p < 0.0001), implicating chromosome 7 as the location of jrc. Recombination percentages (+/- SE) between jrc and D7Mit340 (1.2 cM location), D7Mit227 (16.0 cM) and D7Mit270 (18.0 cM) were 17.1 +/- 2.1, 3.7 +/- 1.1 and 6.2 +/- 1.3%, respectively. Multi-point mapping determined that the most likely order of these loci is D7Mit340 - jrc - D7Mit227 - D7Mit270 - Tyr. Although animals with the mutant phenotype appeared to have little or no sense of sight, their growth was not different (p >0.20) from that of normal mice. CONCLUSION: The jrc mutation model may be useful in the study of the genetics of cataracts in other animal species, including humans.  相似文献   

19.
Wasif N  Naqvi SK  Basit S  Ali N  Ansar M  Ahmad W 《Human genetics》2011,129(4):419-424
Autosomal dominant woolly hair (ADWH) is an inherited condition of tightly curled and twisted scalp hair. Recently, a mutation in human keratin-74 (KRT74) gene has been shown to cause this form of hereditary hair disorder. In the present study, we have described two families (A and B) having multiple individuals affected with autosomal dominant form of hair loss disorders. In family A, 10 individuals showed ADWH phenotype while in the family B, 14 individuals showed hypotrichosis of the scalp. Genotyping using polymorphic microsatellite markers showed linkage of both the families to type II keratin gene cluster on the chromosome 12q12-14.1. Mutation analysis of the KRT74 gene identified two novel mutations in the affected individuals of the families. The sequence analysis revealed a splice acceptor site mutation (c.IVS8-1G>A) in family A and a missense variant (c.1444G>A, p.Asp482Asn) in family B. Mutations identified in the present study extend the body of evidence implicating the KRT74 gene in the pathogenesis of autosomal dominant hair loss disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号