首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Acute pancreatitis is a major health burden for which there are currently no targeted therapies. Premature activation of digestive proenzymes, or zymogens, within the pancreatic acinar cell is an early and critical event in this disease. A high-amplitude, sustained rise in acinar cell Ca(2+) is required for zymogen activation. We previously showed in a cholecystokinin-induced pancreatitis model that a potential target of this aberrant Ca(2+) signaling is the Ca(2+)-activated phosphatase calcineurin (Cn). However, in this study, we examined the role of Cn on both zymogen activation and injury, in the clinically relevant condition of neurogenic stimulation (by giving the acetylcholine analog carbachol) using three different Cn inhibitors or Cn-deficient acinar cells. In freshly isolated mouse acinar cells, pretreatment with FK506, calcineurin inhibitory peptide (CiP), or cyclosporine (CsA) blocked intra-acinar zymogen activation (n = 3; P < 0.05). The Cn inhibitors also reduced leakage of lactate dehydrogenase (LDH) by 79%, 62%, and 63%, respectively (n = 3; P < 0.05). Of the various Cn isoforms, the β-isoform of the catalytic A subunit (CnAβ) was strongly expressed in mouse acinar cells. For this reason, we obtained acinar cells from CnAβ-deficient mice (CnAβ-/-) and observed an 84% and 50% reduction in trypsin and chymotrypsin activation, respectively, compared with wild-type controls (n = 3; P < 0.05). LDH release in the CnAβ-deficient cells was reduced by 50% (n = 2; P < 0.05). The CnAβ-deficient cells were also protected against zymogen activation and cell injury induced by the cholecystokinin analog caerulein. Importantly, amylase secretion was generally not affected by either the Cn inhibitors or Cn deficiency. These data provide both pharmacological and genetic evidence that implicates Cn in intra-acinar zymogen activation and cell injury during pancreatitis.  相似文献   

2.
The pancreatic acinar cell has several phenotypic responses to cAMP agonists. At physiological concentrations of the muscarinic agonist carbachol (1 microM) or the CCK analog caerulein (100 pM), ligands that increase cytosolic Ca(2+), cAMP acts synergistically to enhance secretion. Supraphysiological concentrations of carbachol (1 mM) or caerulein (100 nM) suppress secretion and cause intracellular zymogen activation; cAMP enhances both zymogen activation and reverses the suppression of secretion. In addition to stimulating cAMP-dependent protein kinase (PKA), recent studies using cAMP analogs that lack a PKA response have shown that cAMP can also act through the cAMP-binding protein, Epac (exchange protein directly activated by cyclic AMP). The roles of PKA and Epac in cAMP responses were examined in isolated pancreatic acini. The activation of both cAMP-dependent pathways or the selective activation of Epac was found to enhance amylase secretion induced by physiological and supraphysiological concentrations of the muscarinic agonist carbachol. Similarly, activation of both PKA or the specific activation of Epac enhanced carbachol-induced activation of trypsinogen and chymotrypsinogen. Disorganization of the apical actin cytoskeleton has been linked to the decreased secretion observed with supraphysiological concentrations of carbachol and caerulein. Although stimulation of PKA and Epac or Epac alone could largely overcome the decreased secretion observed with either supraphysiological carbachol or caerulein, stimulation of cAMP pathways did not reduce the disorganization of the apical cytoskeleton. These studies demonstrate that PKA and Epac pathways are coupled to both secretion and zymogen activation in the pancreatic acinar cell.  相似文献   

3.
Vacuolar ATPase regulates zymogen activation in pancreatic acini   总被引:4,自引:0,他引:4  
Supramaximal concentrations of cholecystokinin or its analogue caerulein have been shown to stimulate the proteolytic activation of zymogens within the pancreatic acinar cell and initiate acute pancreatitis. Previous studies suggest that a low pH compartment might be required for activation. To test this hypothesis, the effects of agents that modulate intracellular pH on caerulein-induced trypsin and chymotrypsin activation were studied. Pretreatment of pancreatic acini with the proto-ionophore monensin (10 microM) and the weak base chloroquine (40 microM) inhibited activation. Pre-incubation with the vacuolar ATPase (V-ATPase) inhibitors bafilomycin A(1) and concanamycin A also decreased activation in a concentration-dependent manner with 50% inhibition at approximately 50 and 25 nM, respectively. Caerulein stimulation caused a time- and concentration-dependent translocation of soluble V-ATPase V(1) subunits to a membrane fraction, a marker of V-ATPase activation. Carbachol also stimulated translocation at supramaximal concentrations. Elevation of cytosolic Ca(2+) by thapsigargin was sufficient to induce translocation. Thus, stimulation of V-ATPase activity appears to be required for agonist-induced zymogen activation in the pancreatic acinar cell.  相似文献   

4.
Isoforms of protein kinase C (PKC) have been shown to modulate some cellular responses such as pathological secretion and generation of inflammatory mediators during acute pancreatitis (AP). We propose that PKC also participates in premature zymogen activation within the pancreatic acinar cell, a key event in the initiation of AP. This hypothesis was examined in in vivo and cellular models of caerulein-induced AP using PKC activators and inhibitors. Phorbol ester, 12-O-tetradecanoylphorbol-13-acetate (TPA, 200 nM), a known activator of PKC, enhanced zymogen activation at both 0.1 nM and 100 nM caerulein, concentrations which mimic physiological and supraphysiological effects of the hormone cholecystokinin, respectively, in preparations of pancreatic acinar cells. Isoform-specific PKC inhibitors for PKC-delta and PKC-epsilon reduced supraphysiological caerulein-induced zymogen activation. Using a cell-free reconstitution system, we showed that inhibition of PKC-delta and -epsilon, reduced zymogen activation in both zymogen granule-enriched and microsomal fractions. In dispersed acinar cells, 100 nM caerulein stimulation caused PKC-delta and -epsilon isoform translocation to microsomal membranes using cell fractionation and immunoblot analysis. PKC translocation was confirmed with in vivo studies and immunofluorescence microscopy in pancreatic tissues from rats treated with or without 100 nM caerulein. PKC-epsilon redistributed from an apical to a supranuclear region following caerulein administration. The signal for PKC-epsilon overlapped with granule membrane protein, GRAMP-92, an endosomal/lysosomal marker, in a supranuclear region where zymogen activation takes place. These results indicate that PKC-delta and -epsilon isoforms translocate to specific acinar cell compartments and modulate zymogen activation.  相似文献   

5.
6.
Supramaximal stimulation of the rat pancreas with CCK, or its analog caerulein, triggers acute pancreatitis and a number of pancreatitis-associated acinar cell changes including intracellular activation of digestive enzyme zymogens and acinar cell injury. It is generally believed that some of these various acinar cell responses to supramaximal secretagogue stimulation are interrelated and interdependent. In a recent report, Lu et al. showed that secretin, by causing generation of cAMP and activation of PKA, sensitizes acinar cells to secretagogue-induced zymogen activation, and, as a result, submaximally stimulating concentrations of caerulein can, in the presence of secretin, trigger intracellular zymogen activation. We found that secretin also sensitizes acinar cells to secretagogue-induced cell injury and to subapical F-actin redistribution but that it did not alter the caerulein concentration dependence of other pancreatitis-associated changes such as the induction of a peak plateau intracellular [Ca(2+)] rise, inhibition of secretion, activation of ERK1/2, and activation of NF-kappaB. The finding that secretin sensitizes acinar cells to both intracellular zymogen activation and cell injury is consistent with the concept that these two early events in pancreatitis are closely interrelated and, possibly, interdependent. On the other hand, the finding that, in the presence of secretin, caerulein can trigger subapical F-actin redistribution without inhibiting secretion challenges the concept that disruption of the subapical F-actin web is causally related to high-dose secretagogue-induced inhibition of secretion in pancreatic acinar cells.  相似文献   

7.
An increase in cytosolic Ca2+ often begins as a Ca2+ wave, and this wave is thought to result from sequential activation of Ca(2+)-sensitive Ca2+ stores across the cell. We tested that hypothesis in pancreatic acinar cells, and since Ca2+ waves may regulate acinar Cl- secretion, we examined whether such waves also are important for amylase secretion. Ca2+ wave speed and direction was determined in individual cells within rat pancreatic acini using confocal line scanning microscopy. Both acetylcholine (ACh) and cholecystokinin-8 induced rapid Ca2+ waves which usually travelled in an apical-to-basal direction. Both caffeine and ryanodine, at concentrations that inhibit Ca(2+)-induced Ca2+ release (CICR), markedly slowed the speed of these waves. Amylase secretion was increased over 3-fold in response to ACh stimulation, and this increase was preserved in the presence of ryanodine. These results indicate that 1) stimulation of either muscarinic or cholecystokinin-8 receptors induces apical-to-basal Ca2+ waves in pancreatic acinar cells, 2) the speed of such waves is dependent upon mobilization of caffeine- and ryanodine-sensitive Ca2+ stores, and 3) ACh-induced amylase secretion is not inhibited by ryanodine. These observations provide direct evidence that Ca(2+)-induced Ca2+ release is important for propagation of cytosolic Ca2+ waves in pancreatic acinar cells.  相似文献   

8.
Pancreatic caerulein-induced activation of c-Jun NH(2)-terminal kinase (JNK) has been reported, and JNK has been proposed as a mediator during induction of hyperstimulated pancreatitis. CEP-1347 has recently been described as a specific JNK inhibitor. We tested whether CEP-1347 inhibits caerulein-induced pancreatic JNK activation in isolated acini and in vivo. CEP-1347 dose dependently inhibited acinar caerulein-induced JNK activation with nearly complete inhibition at 2 microM but had no effect on digestive enzyme release. For in vivo studies, rats were pretreated with CEP-1347 before caerulein hyperstimulation. For assessment of JNK activation and histological alterations, animals were killed 30 min or 2 and 4 h after caerulein hyperstimulation, respectively. Pancreatic wet weight, serum enzyme levels, and pancreatic activity of p38 and extracellular signal-regulated kinase (ERK) were also determined. Caerulein hyperstimulation strongly activated JNK, p38, and ERK. CEP-1347 pretreatment dose dependently reduced caerulein-induced pancreatic JNK activation without p38 or ERK inhibition. JNK inhibition also reduced pancreatic edema formation and reduced histological severity of pancreatitis. Thus we show that CEP-1347 inhibits JNK activation in vivo and ameliorates caerulein-induced pancreatitis.  相似文献   

9.
The effects of cyclic ADP-ribose (cADPR) and the immunosuppressant drug FK506 on microsomal Ca2+ release through a ryanodine-sensitive mechanism were investigated in rat pancreatic acinar cells. After a steady state of 45Ca2+ uptake into the microsomal vesicles, ryanodine or caffeine was added. Preincubation of the vesicles with cADPR (0.5 microM) shifted the dose-response curve of ryanodine- or caffeine-induced 45Ca2+ release from the vesicles to the left. Preincubation with cADPR shifted the dose-response curve of the FK506-induced 45Ca2+ release upward. Preincubation with FK506 (3 microM) shifted the dose-response curve of the ryanodine- or caffeine-induced 45Ca2+ release to the left by the same extent as that in the case of cADPR. FK506 shifted the dose-response curve of the cADPR-induced 45Ca2+ release upward. The presence of both cADPR and FK506 enhanced the ryanodine (30 microM)- or caffeine (10 mM)-induced 45Ca2+ release by the same extent as that in the case of cADPR alone or FK506 alone. These results indicate that cADPR and FK506 modulate the ryanodine-sensitive Ca2+ release mechanism of rat pancreatic acinar cells by increasing the ryanodine or caffeine sensitivity to the mechanism. In addition, there is a possibility that the mechanisms of modulation by cADPR and FK506 are the same.  相似文献   

10.
We examined phospholipid/calcium-dependent protein kinase (protein kinase C) activity and amylase secretion in isolated pancreatic acinar cells, when exposed to caerulein or carbachol. Upon stimulation with 10(-10) M caerulein or 10(-6) M carbachol cytosolic protein kinase C activity was increased in accordance with amylase secretion. Effect of carbachol on increase in membrane-associated protein kinase C activity was maximal at 10(-6) M where the rate of amylase secretion was highest. On the other hand, caerulein showed the maximal secretion of amylase at 10(-9) M, but the activity of the protein kinase C associated with membranes increased progressively with increasing concentration of caerulein. These results indicate different profiles of redistribution of protein kinase C upon stimulation of pancreatic acinar cells with carbachol or caerulein, and they were discussed in terms of amylase secretion.  相似文献   

11.
Chan YC  Leung PS 《Regulatory peptides》2011,166(1-3):128-134
Angiotensin II is a vasoactive peptide that controls blood pressure and homeostasis. Emerging evidence shows that locally generated angiotensin II plays a crucial role in normal physiology, as well as pathophysiological conditions such as pancreatitis. We recently reported that angiotensin II activates pancreatic NFκB in obstructive pancreatitis. However, the specific cell type responsible for this activation remains unclear. In this study, we investigated whether pancreatic acinar cells respond to angiotensin II. These cells are the most abundant pancreatic cells and the most vulnerable to pancreatitis. Pancreatic acinar AR42J cells were used as an in vitro model of pancreatic inflammation. Our results demonstrated that treatment with caerulein, a cholecystokinin receptor agonist, induced hypersecretion and NFκB activation, as demonstrated by elevated amylase secretion and degradation of inhibitor of NFκB (IκBβ). Angiotensin II, either alone or in combination with caerulein, augmented IκBβ degradation. Pre-treatment with losartan, an antagonist of the angiotensin type I (AT1) receptor, abolished NFκB activation by angiotensin II and caerulein in a dose-dependent manner. Treatment with PD123319, a blocker of the angiotensin type II (AT2) receptor, enhanced the activation of NFκB by angiotensin II and caerulein. Preliminary data further demonstrated that angiotensin II could extend caerulein-induced ERK1/2 activation in acinar cells. These results indicated that inflammation triggered by hyperstimulation of pancreatic acinar cells is enhanced by angiotensin II, via the AT1 receptor. In contrast, stimulation of the AT2 receptor protects against caerulein-induced NFκB activation. The differential roles of the AT1 and AT2 receptors might be useful in developing potential therapies for pancreatic inflammation.  相似文献   

12.
To determine how low or high dose of caerulein, a cholecystokinin analogue influence pancreatic growth, doses of caerulein were selected which were submaximal (1 microgram/kg i.p.) and supramaximal (10 micrograms/kg i.p.) for enzyme protein secretion. Rats were injected every 8 h for 7 days with saline, low, or high dose of caerulein. The low dose of caerulein significantly increased pancreatic weight and content of DNA, protein, and digestive enzymes. The high dose caerulein group did not differ from control in these parameters of pancreatic growth. The number of zymogen granules was increased in both caerulein-treated groups. However, zymogen granules in the high dose group were atypical, appearing lucent or having a dense core with a lucent halo. These results indicate that caerulein has a biphasic effect on both enzyme secretion and the trophic response of acinar cells, and that the inhibitory effect of high dose of caerulein on pancreatic growth is accompanied by alterations in acinar cell morphology.  相似文献   

13.
Role of calcium in pancreatic islet cell death by IFN-gamma/TNF-alpha   总被引:8,自引:0,他引:8  
We studied the intracellular events associated with pancreatic beta cell apoptosis by IFN-gamma/TNF-alpha synergism. IFN-gamma/TNF-alpha treatment of MIN6N8 insulinoma cells increased the amplitude of high voltage-activated Ca(2+) currents, while treatment with IFN-gamma or TNF-alpha alone did not. Cytosolic Ca(2+) concentration ([Ca(2+)](c)) was also increased by IFN-gamma/TNF-alpha treatment. Blockade of L-type Ca(2+) channel by nifedipine abrogated death of insulinoma cells by IFN-gamma/TNF-alpha. Diazoxide that attenuates voltage-activated Ca(2+) currents inhibited MIN6N8 cell death by IFN-gamma/TNF-alpha, while glibenclamide that accentuates voltage-activated Ca(2+) currents augmented insulinoma cell death. A protein kinase C inhibitor attenuated MIN6N8 cell death and the increase in [Ca(2+)](c) by IFN-gamma/TNF-alpha. Following the increase in [Ca(2+)](c), calpain was activated, and calpain inhibitors decreased insulinoma cell death by IFN-gamma/TNF-alpha. As a downstream of calpain, calcineurin was activated and the inhibition of calcineurin activation by FK506 diminished insulinoma cell death by IFN-gamma/TNF-alpha. BAD phosphorylation was decreased by IFN-gamma/TNF-alpha because of the increased calcineurin activity, which was reversed by FK506. IFN-gamma/TNF-alpha induced cytochrome c translocation from mitochondria to cytoplasm and activation of caspase-9. Effector caspases such as caspase-3 or -7 were also activated by IFN-gamma/TNF-alpha treatment. These results indicate that IFN-gamma/TNF-alpha synergism induces pancreatic beta cell apoptosis by Ca(2+) channel activation followed by downstream intracellular events such as mitochondrial events and caspase activation and also suggest the therapeutic potential of Ca(2+) modulation in type 1 diabetes.  相似文献   

14.
CCK acts on pancreatic acinar cells to increase intracellular Ca(2+) leading to secretion of digestive enzymes and, in the long term, pancreatic growth. Calcineurin (CN) is a serine/threonine-specific protein phosphatase activated by Ca(2+) and calmodulin that recently has been shown to participate in the growth regulation of cardiac and skeletal myocytes. We therefore tested the effect of two different CN inhibitors, cyclosporine A (CsA) and FK506, on mouse pancreatic growth induced by oral administration of the synthetic protease inhibitor camostat, a known stimulator of endogenous CCK release. Mice were fed a powdered diet with or without 0.1% camostat. Pancreatic wet weight, protein, and DNA were increased in response to camostat in a time-dependent manner over 10 days in ICR mice but not in CCK-deficient mice. Both CsA (15 mg/kg) and FK506 (3 mg/kg) given twice daily blocked the increase in pancreatic wet weight and protein and DNA content induced by camostat. The increase in plasma CCK induced by camostat was not blocked by CsA or FK506. Camostat feeding also increased the relative amount of CN protein, whereas levels of MAPKs, ERKs, and p38 were not altered. In summary, 1) CCK released by chronic camostat feeding induces pancreatic growth in mice; 2) this growth is blocked by treatment with both CsA and FK506, indicating a role for CN; 3) CCK stimulation also increases CN protein. In conclusion, activation and possibly upregulation of CN may participate in regulation of pancreatic growth by CCK in mice.  相似文献   

15.
16.
A characteristic of acute pancreatitis is the premature activation and retention of enzymes within the pancreatic acinar cell. Because ligands linked to cAMP production may prevent some forms of pancreatitis, we evaluated the effects of increased intracellular cAMP in the rat pancreatic acinar cell. Specifically, this study examined the effects of the cholinergic agonist carbachol and agents that increase cAMP [secretin and 8-bromoadenosine 3',5'-cyclic monophosphate (8-Br-cAMP)] on zymogen activation (trypsin and chymotrypsin), enzyme secretion, and cellular injury in isolated pancreatic acini. Although cAMP agonists affected the responses to physiological concentrations of carbachol (1 microM), their most prominent effects were observed with supraphysiological concentrations (1 mM). When secretin was added to 1 mM carbachol, there was a slight increase in zymogen activation, but no change in the secretion of amylase or chymotrypsin. Furthermore, coaddition of secretin increased parameters of cell injury (trypan blue exclusion, lactic dehydrogenase release, and morphological markers) compared with carbachol (1 mM) alone. Although directly increasing cellular cAMP by 8-Br-cAMP caused much greater zymogen activation than carbachol (1 mM) alone or with secretin, 8-Br-cAMP cotreatment reduced all parameters of injury to the level of unstimulated acini. Furthermore, 8-Br-cAMP dramatically enhanced the secretion of amylase and chymotrypsin from the acinar cell. This study demonstrates that increasing acinar cell cAMP can overcome the inhibition of enzyme secretion caused by high concentrations of carbachol and eliminate acinar cell injury.  相似文献   

17.
Biliary pancreatitis is the leading cause of acute pancreatitis in both children and adults. A proposed mechanism is the reflux of bile into the pancreatic duct. Bile acid exposure causes pancreatic acinar cell injury through a sustained rise in cytosolic Ca2+. Thus, it would be clinically relevant to know the targets of this aberrant Ca2+ signal. We hypothesized that the Ca2+-activated phosphatase calcineurin is such a Ca2+ target. To examine calcineurin activation, we infected primary acinar cells from mice with an adenovirus expressing the promoter for a downstream calcineurin effector, nuclear factor of activated T-cells (NFAT). The bile acid taurolithocholic acid-3-sulfate (TLCS) was primarily used to examine bile acid responses. TLCS caused calcineurin activation only at concentrations that cause acinar cell injury. The activation of calcineurin by TLCS was abolished by chelating intracellular Ca2+. Pretreatment with 1,2-bis(o-aminophenoxy)ethane-N,N,N′,N′-tetraacetic acid (acetoxymethyl ester) (BAPTA-AM) or the three specific calcineurin inhibitors FK506, cyclosporine A, or calcineurin inhibitory peptide prevented bile acid-induced acinar cell injury as measured by lactate dehydrogenase leakage and propidium iodide uptake. The calcineurin inhibitors reduced the intra-acinar activation of chymotrypsinogen within 30 min of TLCS administration, and they also prevented NF-κB activation. In vivo, mice that received FK506 or were deficient in the calcineurin isoform Aβ (CnAβ) subunit had reduced pancreatitis severity after infusion of TLCS or taurocholic acid into the pancreatic duct. In summary, we demonstrate that acinar cell calcineurin is activated in response to Ca2+ generated by bile acid exposure, bile acid-induced pancreatic injury is dependent on calcineurin activation, and calcineurin inhibitors may provide an adjunctive therapy for biliary pancreatitis.  相似文献   

18.
In isolated rat pancreatic acini, protein expression of RhoA and Rho-associated kinase, ROCK-II, and the formation of immunocomplex of RhoA with ROCK-II were enhanced by CCK-8, carbachol, and the phorbol ester TPA. The ROCK-specific inhibitor, Y-27632, did not alter basal amylase secretion, whereas it potentiated CCK-stimulated pancreatic enzyme secretion in vitro. During caerulein-induced pancreatitis occurring in mice in vivo, Y-27632 enhanced serum amylase levels and the formation of interstitial edema and vacuolization at 12-18h after the first injection of caerulein. Y-27632 in turn inhibited the recovery of protein expression of ROCK-II at 18h after the first caerulein injection. These results suggest that RhoA and ROCK-II assemble normal CCK-stimulated pancreatic enzyme secretion and prevent caerulein-induced acute pancreatitis.  相似文献   

19.
An early feature of acute pancreatitis is activation of zymogens, such as trypsinogen, within the pancreatic acinar cell. Supraphysiologic concentrations of the hormone cholecystokinin (CCK; 100 nM), or its orthologue cerulein (CER), induce zymogen activation and elevate levels of cAMP in pancreatic acinar cells. The two classes of adenylyl cyclase, trans-membrane (tmAC) and soluble (sAC), are activated by distinct mechanisms, localize to specific subcellular domains, and can produce locally high concentrations of cAMP. We hypothesized that sAC activity might selectively modulate acinar cell zymogen activation. sAC was identified in acinar cells by PCR and immunoblot. It localized to the apical region of the cell under resting conditions and redistributed intracellularly after treatment with supraphysiologic concentrations of cerulein. In cerulein-treated cells, pre-incubation with a trans-membrane adenylyl cyclase inhibitor did not affect zymogen activation or amylase secretion. However, treatment with a sAC inhibitor (KH7), or inhibition of a downstream target of cAMP, protein kinase A (PKA), significantly enhanced secretagogue-stimulated zymogen activation and amylase secretion. Activation of sAC with bicarbonate significantly inhibited secretagogue-stimulated zymogen activation; this response was decreased by inhibition of sAC or PKA. Bicarbonate also enhanced secretagogue-stimulated cAMP accumulation; this effect was inhibited by KH7. Bicarbonate treatment reduced secretagogue-stimulated acinar cell vacuolization, an early marker of pancreatitis. These data suggest that activation of sAC in the pancreatic acinar cell has a protective effect and reduces the pathologic activation of proteases during pancreatitis.  相似文献   

20.
In smooth muscle, the ryanodine receptor (RyR) mediates Ca(2+) release from the sarcoplasmic reticulum (SR) Ca(2+) store. Release may be regulated by the RyR accessory FK506-binding protein (FKBP12) either directly, as a result of FKBP12 binding to RyR, or indirectly via modulation of the activity of the phosphatase calcineurin or kinase mTOR. Here we report that RyR-mediated Ca(2+) release is modulated by FKBP12 in colonic but not aortic myocytes. Neither calcineurin nor mTOR are required for FKBP12 modulation of Ca(2+) release in colonic myocytes to occur. In colonic myocytes, co-immunoprecipitation techniques established that FKBP12 and calcineurin each associated with the RyR2 receptor isoform (the main isoform in this tissue). Single colonic myocytes were voltage clamped in the whole cell configuration and cytoplasmic Ca(2+) concentration ([Ca(2+)](c)) increases evoked by the RyR activator caffeine. Under these conditions FK506, which displaces FKBP12 (to inhibit calcineurin) and rapamycin, which displaces FKBP12 (to inhibit mTOR), each increased the [Ca(2+)](c) rise evoked by caffeine. Notwithstanding, neither mTOR nor calcineurin are required to potentiate caffeine-evoked Ca(2+) increases evoked by each drug. Thus, the mTOR and phosphatidylinositol 3-kinase inhibitor, LY294002, which directly inhibits mTOR without removing FKBP12 from RyR, did not alter caffeine-evoked [Ca(2+)](c) transients. Nor did inhibition of calcineurin by cypermethrin, okadaic acid or calcineurin inhibitory peptide block the FK506-induced increase in RyR-mediated Ca(2+) release. In aorta, although RyR3 (the main isoform), FKBP12 and calcineurin were each present, RyR-mediated Ca(2+) release was unaffected by either FK506, rapamycin or the calcineurin inhibitors cypermethrin and okadaic acid in single voltage clamped aortic myocytes. Presumably failure of FKBP12 to associate with RyR3 resulted in the immunosuppressant drugs (FK506 and rapamycin) being unable to alter the activity of RyR. The effects of these drugs are therefore, apparently dependent on an association of FKBP12 with RyR. Together, removal of FKBP12 from RyR augmented Ca(2+) release via the channel in colonic myocytes. Neither calcineurin nor mTOR are required for the FK506- or rapamycin-induced potentiation of RyR Ca(2+) release to occur. The results indicate that FKBP12 directly inhibits RyR channel activity in colonic myocytes but not in aorta.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号