首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The contributions of circulating angiotensin II (Ang II) and catecholamines to cardiovascular control in the spiny dogfish were investigated by monitoring the effects of exogenous and endogenous dogfish [Asn1, Pro3, Ile5]-Ang II (dfAng II) on plasma catecholamine levels and blood pressure regulation. Bolus intravenous injections of dfAng II (30–1200 pmol kg−1) elicited dose-dependent increases in plasma adrenaline and noradrenaline concentrations, caudal artery pressure (P CA), and systemic vascular resistance (R S), and a decrease in cardiac output (Q). Similar injections of Ang II in dogfish pre-treated with the α-adrenoceptor antagonist yohimbine (4 mg kg−1) also elicited dose-dependent increases in plasma catecholamine levels yet the cardiovascular effects were abolished. Dogfish treated with yohimbine were hypotensive and had elevated levels of plasma Ang II and catecholamines. Intravenous injection of the smooth muscle relaxant papaverine (10 mg kg−1) elicited a transient decrease in P CA and R S, and increases in plasma Ang II and catecholamine levels. In dogfish first treated with lisinopril (10−4 mol kg−1), an angiotensin converting enzyme inhibitor, papaverine treatment caused a more prolonged and greater decrease in P CA and R S, an attenuated increase in plasma catecholamines, and no change in plasma Ang II. By itself, lisinopril treatment had little effect on P CA, and no effect on R S, plasma Ang II or catecholamines. In yohimbine-treated dogfish, papaverine treatment elicited marked decreases in P CA, R S, and Q, and increases in plasma Ang II and catecholamines. Among the three papaverine treatments, there was a positive linear relationship between plasma Ang II and catecholamine concentrations, and the cardiovascular and hormonal changes were most pronounced in the yohimbine + papaverine treatment. Therefore, under resting normotensive conditions, while Ang II does not appear to be involved in cardiovascular control, catecholamines play an important role. However, during a hypotensive stress elicited by vascular smooth muscle relaxation, Ang II indirectly contributes to cardiovascular control by dose-dependently stimulating catecholamine release. Accepted: 24 February 1999  相似文献   

2.
Venous blood flow was measured for the first time in a cephalopod. Blood velocity was determined in the anterior vena cava (AVC) of cuttlefish S. officinalis with a Doppler, while simultaneously, ventilatory pressure oscillations were recorded in the mantle cavity. In addition, magnetic resonance imaging (MRI) was employed to investigate pulsatile flow in other major vessels. Blood pulses in the AVC are obligatorily coupled to ventilatory pressure pulses, both in frequency and phase. AVC peak blood velocity (vAVC) in animals of 232 (± 30 SD) g wet mass at 15°C was found to be 14.2 (± 7.1) cm s−1, AVC stroke volume (SVAVC) was 0.2 (± 0.1) ml stroke−1, AVC minute volume (MVAVC) amounted to 5.5 (± 2.8) ml min−1. Intense exercise bouts of 1–2 min resulted in 2.2-fold increases in MVAVC, enabled by 1.6-fold increments in both, AVC pulse frequency (f AVC) and vAVC. As increases in blood flow occurred delayed in time by 1.7 min with regard to exercise periods, we concluded that it is not direct mantle cavity pressure conveyance that drives venous return in this cephalopod blood vessel. However, during jetting at high pressure amplitude (> 1 kPa), AVC blood flow and mantle cavity pressure pulse shapes completely overlap, suggesting that under these conditions, blood transport must be driven passively by mantle cavity pressure. MRI measurements at 15°C also revealed that under resting conditions, f AVC and ventilation frequency (f V) match at 31.6 (± 2.1) strokes min−1. In addition, rates of pulsations in the cephalic artery and in afferent branchial vessels did not significantly differ from f AVC and f V. It is suggested that these adaptations are beneficial for high rates of oxygen extraction observed in S. officinalis and the energy conserving mode of life of the cuttlefish ecotype in general.  相似文献   

3.
Soil respiration (R s) is an important component of the carbon cycle in terrestrial ecosystems, and changes in soil respiration with land cover alteration can have important implications for regional carbon balances. In southeastern China (Xiashu Experimental Forest, Jiangsu Province), we used an automated LI-8100 soil CO2 flux system to quantify diurnal variation of soil respiration in a secondary oak forest and a pine plantation. We found that soil respiration in the pine plantation was significantly higher than that in the secondary oak forest. There were similar patterns of soil respiration throughout the day in both the secondary oak forest and the pine plantation during our 7-month study (March–September 2005). The maximum of R s occurred between 4:00 pm and 7:00 pm. The diurnal variations of R s were usually out of phase with soil surface (0.5 cm) temperature (T g). However, annual variation in R s correlated with surface soil temperature. Soil respiration reached to a maximum in June, and decreased thereafter. The Q10 of R s in the secondary oak forest was significantly higher than that in the pine plantation. The higher Q10 value in the secondary oak forest implied that it might release more CO2 than the pine plantation under a global-warming scenario. Our results indicated that land-use change from secondary forest to plantation may cause a significant increase in CO2 emission, and reduce the temperature sensitivity of soil respiration in southeastern China.  相似文献   

4.
Total stem, branch, twig, and coarse root respiration (Rt) of an adult Pinus cembra tree at the alpine timberline was measured continuously at ten positions from 7 October 2001 to 21 January 2003 with an automated multiplexing gas exchange system. There was a significant spatial variability in woody tissue respiration when expressed per unit surface area or per unit sapwood volume. Surface area related maintenance (Rm) respiration at 0°C ranged between 0.109 and 0.643 mol m–2 s–1 and there was no clear trend with respect to tissue type and diameter. Sapwood volume based Rm at 0°C by contrast, varied between 2.5 mol m–3 s–1 in the stem and 193.2 mol m–3 s–1 in thin twigs in the upper crown. Estimated Q10 values ranged from 1.7 to 3.1. These Q10 values were used along with Rm at 0°C and annual woody tissue temperature records to predict annual total Rm. Annual total Rm accounted for 73±6% of annual Rt in 2002.  相似文献   

5.
Tropical forests are the largest contributors to global emissions of carbon dioxide (CO2) to the atmosphere via soil respiration (Rs). As such, identifying the main controls on Rs in tropical forests is essential for accurately projecting the consequences of ongoing and future global environmental changes to the global C cycle. We measured hourly Rs in a secondary tropical moist forest in Puerto Rico over a 3‐year period to (a) quantify the magnitude of Rs and (b) identify the role of climatic, substrate, and nutrient controls on the seasonality of Rs. Across 3 years of measurements, mean Rs was 7.16 ± 0.02 μmol CO2 m‐2 s‐1 (or 2,710 g C m‐2 year‐1) and showed significant seasonal variation. Despite small month‐to‐month variation in temperature (~4°C), we found significant positive relationships between daily and monthly Rs with both air and soil temperature, highlighting the importance of temperature as a driver of Rs even in warm ecosystems, such as tropical forests. We also found a significant parabolic relationship between mean daily volumetric soil moisture and mean daily Rs, with an optimal moisture value of 0.34 m3 m‐3. Given the relatively consistent climate at this site, the large range in mean monthly Rs (~7 μmol CO2 m‐2 s‐1) was surprising and suggests that even small changes in climate can have large implications for ecosystem respiration. The strong positive relationship of Rs with temperature at monthly timescales particularly stands out, as moisture is usually considered a stronger control of Rs in tropical forests that already experience warm temperatures year‐round. Moreover, our results revealed the strong seasonality of Rs in tropical moist forests, which given its high magnitude, can represent a significant contribution to the seasonal patterns of atmospheric (CO2) globally.  相似文献   

6.
The African catfish, Clarias gariepinus, possesses a pair of suprabranchial chambers located in the dorsal-posterior part of the branchial cavity having extensions from the upper parts of the second and fourth gill arches, forming the arborescent organs. This structure is an air-breathing organ (ABO) and allows aerial breathing (AB). We evaluated its cardiorespiratory responses to aquatic hypoxia. To determine the mode of air-breathing (obligate or accessory), fish had the respiratory frequency (f R) monitored and were subjected to normoxic water (PwO2 = 140 mmHg) without becoming hyperactive for 30 h. During this period, all fish survived without displaying evidences of hyperactivity and maintained unchanged f R, confirming that this species is a facultative air-breather. Its aquatic O2 uptake ( [(V)\dot]\textO2 \dot{V}{\text{O}}_{2} ) was maintained constant down to a critical PO2 (PcO2) of 60 mmHg, below which [(V)\dot]\textO2 \dot{V}{\text{O}}_{2} declined linearly with further reductions of inspired O2 tension (PiO2). Just above the PcO2 the ventilatory tidal volume (V T) increased significantly along with gill ventilation ( [(V)\dot]\textG \dot{V}_{\text{G}} ), while f R changed little. Consequently, the water convection requirement ( [(V)\dot]\textG /[(V)\dot]\textO2 ) \left( {\dot{V}_{\text{G}} /\dot{V}{\text{O}}_{2} } \right) increased steeply. This threshold applied to a cardiac response that included reflex bradycardia. AB was initiated at PiO2 = 140 mmHg (normoxia) and air-breathing episodes increased linearly with more severe hypoxia, being significantly higher at PiO2 tensions below the PcO2. Air-breathing episodes were accompanied by bradycardia pre air-breath, to tachycardia post air-breath.  相似文献   

7.
Understanding how soil microorganisms influence the direction and magnitude of soil carbon feedback to global warming is vital to predict future climate change. Although microbial activities are major contributors to soil respiration (RS) and its temperature sensitivity (Q10), the mechanisms underpinning microbial influence on RS and Q10 remain unclear. Coupling variation partitioning analysis (VPA), correlation analysis and multiple stepwise linear regression analysis, we illustrate that bacteria mainly affect RS and its temperature sensitivity (Q10) by shifting bacterial community composition (denoted by principal coordinates analysis). We also found that soil water content (SWC) and available nutrient (AN) were the factor key to changing bacterial community composition (P < 0.05). Co-occurrence network demonstrated that Mod 0 ecological cluster composed of copiotrophic taxa groups was significantly associated with RS and Q10 (P < 0.01, R > 0.5), including Proteobacteria, Actinobacteria, and Bacteroidetes. Illuminating the mechanisms underpinning the influence of soil microbes on RS and Q10 values is fundamental to understanding mechanistic soil-climate carbon cycles.  相似文献   

8.
The desmid Staurastrum luetkemuellerii Donat et Ruttner and the cyanobacterium Microcystis aeruginosa Kütz. showed pronounced differences in chemical composition and ability to maintain P fluxes. The cellular P:C ratio (Qp) and the surplus P:C ratio (Qsp) were higher in M. aeruginosa, indicating a lower yield of biomass C per unit of P. The subsistence quota (Qp) was 1.85 μg P·mg C?1in S. luetkemuellerii and 6.09 μg P·mg C?1in M. aeruginosa, whereas the respective Qp of P saturnted organisms (Qs) were 43 and 63 μg P·mg C?1. These stores could support four divisions in S. luetkemuellerii and three divisions in M. aeruginosa, which suggests that the former exhibited highest storage capacity (Qs/Q0). M. aeruginosa showed a tenfold higher activity of alkaline phosphatase than S. luetkemuellerii when P starved. The optimum N:P ratio (by weight) was 5 in S. luetkemuellerii and 7 in M. aeruginosa. The initial uptake of Pi pulses in the organisms was not inhibited by rapid (<1 h) internal feedback mechanisms and the short term uptake rote could be expressed solely as a function of ambient Pi. The maximum cellular C-based uptake rate (Vm) in P starved M. aeruginosa was up to 50 times higher than that of S. luetkemuellerii. It decreased with increasing growth rate (P status) in the former species and remained fairly constant in the latter. The corresponding cellular P-based value (Um= Vm/Qp) decreased with growth rate in both species and was about 10 times higher in P started M. aeruginosa than in S. luetkemuellerii. The average half saturation constant for uptake (Km) was equal for both species (22 μg P·L?1) and varied with the P status. S. luetkemuellerii exhibited shifts in the uptake rate of Pi that were characterized by increased affinity (Um/Km) at low Pi, concentrations (<4 μg P·L?1) compared to that at higher concentrations. The species thus was well adapted to uptake at low ambient Pi, but M. aeruginosa was superior in Pi uptake under steady state and transient conditions when the growth rate was lower than 0.75 d?1. Moreover, M. aeruginosa was favored by pulsed addition of Pi. M. aeruginosa relpased Pi at a higher rate than S. luetkemuellerii. Leakage of Pi from the cells caused C-shaped μ vs. Pi curves. Therefore, no unique Ks for growth could be estimated. The maximum growth rate (μm) (23° C) was 0.94 d?1for S. luetkemuellerii and 0.81 d?1for M. aeruginosa. The steady state concentration of Pi (P*) was lower in M. aeruginosa than in S. luetkemuellerii at medium growth rates. The concentration of Pi at which the uptake and release of Pi was equal (Pc was, however, lower in S. luetkemuellerii.  相似文献   

9.
Soil respiration (Rs) is the second‐largest terrestrial carbon (C) flux. Although Rs has been extensively studied across a broad range of biomes, there is surprisingly little consensus on how the spatiotemporal patterns of Rs will be altered in a warming climate with changing precipitation regimes. Here, we present a global synthesis Rs data from studies that have manipulated precipitation in the field by collating studies from 113 increased precipitation treatments, 91 decreased precipitation treatments, and 14 prolonged drought treatments. Our meta‐analysis indicated that when the increased precipitation treatments were normalized to 28% above the ambient level, the soil moisture, Rs, and the temperature sensitivity (Q10) values increased by an average of 17%, 16%, and 6%, respectively, and the soil temperature decreased by ?1.3%. The greatest increases in Rs and Q10 were observed in arid areas, and the stimulation rates decreased with increases in climate humidity. When the decreased precipitation treatments were normalized to 28% below the ambient level, the soil moisture and Rs values decreased by an average of ?14% and ?17%, respectively, and the soil temperature and Q10 values were not altered. The reductions in soil moisture tended to be greater in more humid areas. Prolonged drought without alterations in the amount of precipitation reduced the soil moisture and Rs by ?12% and ?6%, respectively, but did not alter Q10. Overall, our synthesis suggests that soil moisture and Rs tend to be more sensitive to increased precipitation in more arid areas and more responsive to decreased precipitation in more humid areas. The responses of Rs and Q10 were predominantly driven by precipitation‐induced changes in the soil moisture, whereas changes in the soil temperature had limited impacts. Finally, our synthesis of prolonged drought experiments also emphasizes the importance of the timing and frequency of precipitation events on ecosystem C cycles. Given these findings, we urge future studies to focus on manipulating the frequency, intensity, and seasonality of precipitation with an aim to improving our ability to predict and model feedback between Rs and climate change.  相似文献   

10.
In this study, we have examined several physiological, biochemical and morphological features of Buddleja davidii plants growing at 1300 m above sea level (a.s.l.) and 3400 m a.s.l., respectively, to identify coordinated changes in leaf properties in response to reduced CO2 partial pressure (Pa). Our results confirmed previous findings that foliar δ13C, photosynthetic capacity and foliar N concentration on a leaf area basis increased, whereas stomatal conductance (gs) decreased with elevation. The net CO2 assimilation rate (Amax), maximum rate of electron transport (Jmax) and respiration increased significantly with elevation, although no differences were found in carboxylation efficiency of Rubisco (Vcmax). Consequently, also the Jmax to Vcmax ratio was significantly increased by elevation, indicating that the functional balance between Ribulose‐1,5‐biphosphate (RuBP) consumption and RuBP regeneration changes as elevation increases. Our results also indicated a homeostatic response of CO2 transfer conductance inside the leaf (mesophyll conductance, gm) to increasing elevation. In fact, with elevation, gm also increased compensating for the strong decrease in gs and, thus, in the Pi (intercellular partial pressure of CO2) to Pa ratio, leading to similar chloroplast partial pressure of CO2 (Pc) to Pa ratio at different elevations. Because there were no differences in Vcmax, also A measured at similar PPFD and leaf temperature did not differ statistically with elevation. As a consequence, a clear relationship was found between A and gm, and between A and the sum of gs and gm. These data suggest that the higher dry mass δ13C of leaves at the higher elevation, indicative of lower long‐term Pc/Pa ratio, cannot be attributed to changes either in diffusional resistances or in carboxylation efficiency. We speculate that because temperature significantly decreases as the elevation increases, it dramatically affects CO2 diffusion and hence Pc/Pa and, consequently, is the primary factor influencing 13C discrimination at high elevation.  相似文献   

11.
Diurnal changes of photosynthesis in the leaves of grapevine (Vitis vinifera × V. labrusca) cultivars Campbell Early and Kyoho grown in the field were compared with respect to gas exchanges and actual quantum yield of photosystem 2 (ΦPS2) in late May. Net photosynthetic rate (PN) of the two cultivars rapidly increased in the morning, saturated at photosynthetic photon flux density (PPFD) from 1200 to 1500 μmol m−2 s−1 between 10:00 and 12:00 and slowly decreased after midday. Maximum PN was 13.7 and 12.5 μmol m−2 s−1 in Campbell Early and Kyoho, respectively. The stomatal conductance (gs) and transpiration rate changed in parallel with PN, indicating that PN was greatly affected by gs. However, the decrease in PN after midday under saturating PPFD was also associated with the observed depression of ΦPS2 at high PPFD. The substantial increase in the leaf to air vapour pressure deficit after midday might also contribute to decline of gs and PN.  相似文献   

12.
In 20-year-old longleaf pine, we examined short-term effects of reduced live leaf area (A L) via canopy scorching on sap flow (Q; kg H2O h−1), transpiration per unit leaf area (E L; mm day−1), stem CO2 efflux (R stem; μmol m−2 s−1) and soil CO2 efflux (R soil; μmol m−2 s−1) over a 2-week period during early summer. R stem and Q were measured at two positions (1.3-m or BH, and base of live crown—BLC), and R soil was measured using 15 open-system chambers on each plot. E L before and after treatment was estimated using Q measured at BLC with estimates of A L before and after scorching. We expected Q to decrease in scorched trees compared with controls resulting from reduced A L. We expected R stem at BLC and BH and R soil to decrease following scorching due to reduced leaf area, which would decrease carbon supply to the stem and roots. Scorching reduced A L by 77%. Prior to scorching, Q at BH was similar between scorch and control trees. Following scorching, Q was not different between control and scorch trees; however, E L increased immediately following scorching by 3.5-fold compared to control trees. Changes in E L in scorched trees corresponded well with changes in VPD (D), whereas control trees appeared more decoupled over the 5-day period following treatment. By the end of the study, R stem decreased to 15–25% in scorched trees at both stem positions compared to control trees. Last, we found that scorching resulted in a delayed and temporary increase in R soil rather than a decrease. No change in Q and increased E L following scorching indicates a substantial adjustment in stomatal conductance in scorched trees. Divergence in R stem between scorch and control trees suggests a gradual decline in stem carbohydrates following scorching. The absence of a strong R soil response is likely due to non-limiting supplies of root starch during early summer.  相似文献   

13.
Understanding anthropogenic influences on soil respiration (Rs) is critical for accurate predictions of soil carbon fluxes, but it is not known how Rs responds to grazing exclusion (GE). Here, we conducted a manipulative experiment in a meadow grassland on the Tibetan Plateau to investigate the effects of GE on Rs. The exclusion of livestock significantly increased soil moisture and above‐ground biomass, but it decreased soil temperature, microbial biomass carbon (MBC), and Rs. Regression analysis indicated that the effects of GE on Rs were mainly due to changes in soil temperature, soil moisture, and MBC. Compared with the grazed blocks, GE significantly decreased soil carbon release by 23.6% over the growing season and 21.4% annually, but it increased the temperature sensitivity (Q10) of Rs by 6.5% and 14.2% for the growing season and annually respectively. Therefore, GE may reduce the release of soil carbon from the Tibetan Plateau, but under future climate warming scenarios, the increases in Q10 induced by GE could lead to increased carbon emissions.  相似文献   

14.
Zhang Z  Jia Y  Gao H  Zhang L  Li H  Meng Q 《Planta》2011,234(5):883-889
By simultaneously analyzing the chlorophyll a fluorescence transient and light absorbance at 820 nm as well as chlorophyll fluorescence quenching, we investigated the effects of different photon flux densities (0, 15, 200 μmol m−2 s−1) with or without 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) on the repair process of cucumber (Cucumis sativus L.) leaves after treatment with low temperature (6°C) combined with moderate photon flux density (200 μmol m−2 s−1) for 6 h. Both the maximal photochemical efficiency of Photosystem II (PSII) (F v/F m) and the content of active P700 (ΔI/I o) significantly decreased after chilling treatment under 200 μmol m−2 s−1 light. After the leaves were transferred to 25°C, F v/F m recovered quickly under both 200 and 15 μmol m−2 s−1 light. ΔI/I o recovered quickly under 15 μmol m−2 s−1 light, but the recovery rate of ΔI/I o was slower than that of F v/F m. The cyclic electron transport was inhibited by chilling-light treatment obviously. The recovery of ΔI/I o was severely suppressed by 200 μmol m−2 s−1 light, whereas a pretreatment with DCMU effectively relieved this suppression. The cyclic electron transport around PSI recovered in a similar way as the active P700 content did, and the recovery of them was both accelerated by pretreatment with DCMU. The results indicate that limiting electron transport from PSII to PSI protected PSI from further photoinhibition, accelerating the recovery of PSI. Under a given photon flux density, faster recovery of PSII compared to PSI was detrimental to the recovery of PSI or even to the whole photosystem.  相似文献   

15.
Using CO2 gasometry, net photosynthetic (P N) and dark respiration rates (R D) were measured in leaves or traps of 12 terrestrial carnivorous plant species usually grown in the shade. Generally, mean maximum P N (60 nmol CO2 g−1(DM) s−1 or 2.7 μmol m−2 s−1) was low in comparison with that of vascular non-carnivorous plants but was slightly higher than that reported elsewhere for carnivorous plants. After light saturation, the facultatively heliophytic plants behaved as shade-adapted plants. Mean R D in leaves and traps of all species reached about 50% of maximum P N and represents the high photosynthetic (metabolic) cost of carnivory.  相似文献   

16.
In one series of experiments, heart frequency (f H), blood pressure (P a), gill ventilation frequency (f R ), ventilation amplitude (V AMP) and total gill ventilation (V TOT) were measured in intact jeju (Hoplerythrinus unitaeniatus) and jeju with progressive denervation of the branchial branches of cranial nerves IX (glossopharyngeal) and X (vagus) without access to air. When these fish were submitted to graded hypoxia (water PO2 ~140, normoxia to 17 mmHg, severe hypoxia), they increased f R , V AMP, V TOT and P a and decreased f H. In a second series of experiments, air-breathing frequency (f RA), measured in fish with access to the surface, increased with graded hypoxia. In both series, bilateral denervation of all gill arches eliminated the responses to graded hypoxia. Based on the effects of internal (caudal vein, 150 μg NaCN in 0.2 mL saline) and external (buccal) injections of NaCN (500 μg NaCN in 1.0 mL water) on f R , V AMP, V TOT, P a and f H we conclude that the O2 receptors involved in eliciting changes in gill ventilation and associated cardiovascular responses are present on all gill arches and monitor the O2 levels of both inspired water and blood perfusing the gills. We also conclude that air breathing arises solely from stimulation of branchial chemoreceptors and support the hypothesis that internal hypoxaemia is the primary drive to air breathing.  相似文献   

17.
Ethanol fermentation from sweet sorghum juice containing 240 g/l of total sugar by Saccharomyces cerevisiae TISTR 5048 and S. cerevisiae NP 01 immobilized on low-cost support materials, corncob pieces, was investigated. In batch fermentation, S. cerevisiae TISTR 5048 immobilized on 6 × 6 × 6 mm3 corncobs gave higher ethanol production than those immobilized on 12 × 12 × 12 mm3 corncobs in terms of ethanol concentration (P), yield (Y p/s ) and productivity (Q p ) with the values of 102.39 ± 1.11 g/l, 0.48 ± 0.01 and 2.13 ± 0.02 g/l h, respectively. In repeated-batch fermentation, the yeasts immobilized on the 6 × 6 × 6 mm3 corncobs could be used at least eight successive cycles with the average P, Y p/s and Q p of 97.19 ± 5.02 g/l, 0.48 ± 0.02 and 2.02 ± 0.11 g/l h, respectively. Under the same immobilization and repeated-batch fermentation conditions, P (90.75 ± 3.05 g/l) and Q p (1.89 ± 0.06 g/l h) obtained from S. cerevisiae NP 01 were significantly lower than those from S. cerevisiae TISTR 5048 (P < 0.05), while Y p/s from both strains were not different. S. cerevisiae TISTR 5048 immobilized on the corncobs also gave significantly higher P, Y p/s and Q p than those immobilized on calcium alginate beads (P < 0.05).  相似文献   

18.
In vitro regeneration of black nightshade (Solanum nigrum L.) plants was achieved through callus-mediated shoot organogenesis followed by 30 d indoor ex vitro adaptation to nutritional stress under environmental ambience and thereafter 6-d outdoor acclimatization in pots prior to field establishment. Relevant physiological parameters including pigment content, chlorophyll a fluorescence, net photosynthetic rate (P N), transpiration rate (E), and stomatal conductance (g s) of in vitro-regenerated plants were investigated during the course of ex vitro adaptation. During the first 4 d of indoor transplantation to potting substrate, there was a marginal reduction in the leaf chlorophyll and carotenoid contents but P N and E were strongly reduced. The stomatal conductance and E/P N ratio were significantly higher in plants up to 20 d of indoor adaptation than those of comparable age grown naturally from seeds. The shape of the OJIP fluorescence transient varied significantly with acclimatization, and the maximum change was observed at 2.0 ms. The 2.0 ms variable fluorescence (V j), 30 ms relative fluorescence (M 0), photon trapping probability (TR0/Abs), and photosystem II (PSII) trapping rate (TR0/RC) showed initial disturbance and subsequent stabilization during 30 d of indoor acclimatization. Energy dissipation (DI0/RC) and electron transport probability (ET0/TR0) showed an initial phase of increase during the 4 d after plants were transplanted outdoors. During the 6-d outdoor acclimatization after transfer of plants to soil, no significant change in total chlorophylls and carotenoids, E, and g s were observed, but P N improved after reduction on the first d. The OJIP-derived parameters experienced change on the first d but were stabilized quickly thereafter. There was no significant difference between outdoor acclimatized plants and those of the seed-grown plants of comparable age with respect to photosynthetic and fluorescence parameters. Direct transfer of plants without indoor acclimatization, however, showed a completely different trend with respect to P N, E, and OJIP fluorescence transients. The bearing of this study on optimizing micropropagation is discussed.  相似文献   

19.
The relationship between pulmonary artery pressure (P LA) and oxygen saturation of mixed venous blood (S V ) has been studied in subjects (1750 men and 1026 women) subdivided into 12 groups. Functional relationships have been found between P LA and S V , P LA = f(S V ), and S V = f(P LA), which were estimated using direct measurement of P LA and S V for each group. These factors have been found to obey the following dependences: P LA = f(S V ) and P LA = a(S V )b , where b = −0.2284a + 0.6564 in men and b = −0.285a + 1.2947 in women; S V = f(P LA) and S V = c(P LA)d , where d = −0.25131Ln(c) + 1.0212; R 2 = 0.8993 in men and d = −1.9645Ln(c) + 2.852; and R 2 = 0.9674 in women. Each group occupies a position on the curves specified by the equations. Subjects with the diagnosis of a functional heart murmur and patients with congenital aortic valve stenosis were grouped together to form the so-called normal group characterized by specific P LA = f(S V ) and S V = f(P LA) dependences. Male patients with coronary heart disease were also included in the normal group. An equation was derived to relate P LA caused by different reasons with the corresponding saturation of mixed venous blood. In the case of the changing saturation of mixed venous blood, this equation gives the corresponding value of P LA. Equilibrium between systemic and pulmonary circulations is established through interdependent changes in the physiological indices of blood circulation and gas exchange in humans.  相似文献   

20.
Although the temperature response of soil respiration (Rs) has been studied extensively, several issues remain unresolved, including hysteresis in the Rs–temperature relationship and differences in the long- vs. short-term Rs sensitivity to temperature. Progress on these issues will contribute to reduced uncertainties in carbon cycle modeling. We monitored soil CO2 efflux with an automated chamber system in a Pinus tabulaeformis plantation near Beijing throughout 2011. Soil temperature at 10-cm depth (Ts) exerted a strong control over Rs, with the annual temperature sensitivity (Q 10) and basal rate at 10°C (Rs 10) being 2.76 and 1.40 µmol m−2 s−1, respectively. Both Rs and short-term (i.e., daily) estimates of Rs 10 showed pronounced seasonal hysteresis with respect to Ts, with the efflux in the second half of the year being larger than that early in the season for a given temperature. The hysteresis may be associated with the confounding effects of microbial population dynamics and/or litter input. As a result, all of the applied regression models failed to yield unbiased estimates of Rs over the entire annual cycle. Lags between Rs and Ts were observed at the diel scale in the early and late growing season, but not in summer. The seasonality in these lags may be due to the use of a single Ts measurement depth, which failed to represent seasonal changes in the depth of CO2 production. Daily estimates of Q 10 averaged 2.04, smaller than the value obtained from the seasonal relationship. In addition, daily Q 10 decreased with increasing Ts, which may contribute feedback to the climate system under global warming scenarios. The use of a fixed, universal Q 10 is considered adequate when modeling annual carbon budgets across large spatial extents. In contrast, a seasonally-varying, environmentally-controlled Q 10 should be used when short-term accuracy is required.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号