首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The circadian clock is finely regulated by posttranslational modifications of clock components. Mouse CRY2, a critical player in the mammalian clock, is phosphorylated at Ser557 for proteasome-mediated degradation, but its in vivo role in circadian organization was not revealed. Here, we generated CRY2(S557A) mutant mice, in which Ser557 phosphorylation is specifically abolished. The mutation lengthened free-running periods of the behavioral rhythms and PER2::LUC bioluminescence rhythms of cultured liver. In livers from mutant mice, the nuclear CRY2 level was elevated, with enhanced PER2 nuclear occupancy and suppression of E-box-regulated genes. Thus, Ser557 phosphorylation-dependent regulation of CRY2 is essential for proper clock oscillation in vivo.  相似文献   

3.
Circadian rhythms in metabolism, physiology, and behavior originate from cell-autonomous circadian clocks located in many organs and structures throughout the body and that share a common molecular mechanism based on the clock genes and their protein products. In the mammalian neural retina, despite evidence supporting the presence of several circadian clocks regulating many facets of retinal physiology and function, the exact cellular location and genetic signature of the retinal clock cells remain largely unknown. Here we examined the expression of the core circadian clock proteins CLOCK, BMAL1, NPAS2, PERIOD 1(PER1), PERIOD 2 (PER2), and CRYPTOCHROME2 (CRY2) in identified neurons of the mouse retina during daily and circadian cycles. We found concurrent clock protein expression in most retinal neurons, including cone photoreceptors, dopaminergic amacrine cells, and melanopsin-expressing intrinsically photosensitive ganglion cells. Remarkably, diurnal and circadian rhythms of expression of all clock proteins were observed in the cones whereas only CRY2 expression was found to be rhythmic in the dopaminergic amacrine cells. Only a low level of expression of the clock proteins was detected in the rods at any time of the daily or circadian cycle. Our observations provide evidence that cones and not rods are cell-autonomous circadian clocks and reveal an important disparity in the expression of the core clock components among neuronal cell types. We propose that the overall temporal architecture of the mammalian retina does not result from the synchronous activity of pervasive identical clocks but rather reflects the cellular and regional heterogeneity in clock function within retinal tissue.  相似文献   

4.
Previous studies have demonstrated that the mammalian retina contains a circadian clock system that controls several retinal functions. In mammals the location of the retinal circadian clock is unknown whereas, in non-mammalian vertebrates, earlier work has demonstrated that photoreceptor cells contain the circadian clock. New experimental evidence has suggested that in mammals the retinal circadian clock may be located outside the photoreceptor cells. In this study we report that circadian rhythms in Aa-nat mRNA (in vivo) and melatonin synthesis (in vitro) are still present in the retina of rats lacking photoreceptors. The circadian pacemaker(s) controlling such rhythms is probably located in kainic acid sensitive neurons in the inner retina since kainic acid injections abolished the rhythmicity. These data are the first direct demonstration that circadian rhythmicity in the mammalian retina can be generated independently from the photoreceptors and the suprachiasmatic nuclei of the hypothalamus.  相似文献   

5.
6.
Fluctuations in circulating estrogen and progesterone levels associated with the estrous cycle alter circadian rhythms of physiology and behavior in female rodents. Endogenously applied estrogen shortens the period of the locomotor activity rhythm in rodents. We recently found that estrogen implants affect Period (Per) gene expression in the suprachiasmatic nucleus (SCN; central clock) and uterus of rats in vivo. To explore whether estrogen directly influences the circadian clock in the SCN and/or tissues of the reproductive system, we examined the effects of 17beta-estradiol (E(2)) on PER2::LUCIFERASE (PER2::LUC) expression in tissue explant cultures from ovariectomized PER2::LUC knockin mice. E(2) applied to explanted cultures shortened the period of rhythmic PER2::LUC expression in the uterus but did not change the period of PER2::LUC expression in the SCN. Raloxifene, a selective estrogen receptor modulator and known E(2) antagonist in uterine tissues, attenuated the effect of E(2) on the period of the PER2::LUC rhythm in the uterus. These data indicate that estrogen directly affects the timing of the molecular clock in the uterus via an estrogen receptor-mediated response.  相似文献   

7.
Disruption of circadian rhythms is a risk factor for several human gastrointestinal (GI) diseases, ranging from diarrhea to ulcers to cancer. Four-dimensional tissue culture models that faithfully mimic the circadian clock of the GI epithelium would provide an invaluable tool to understand circadian regulation of GI health and disease. We hypothesized that rhythmicity of a key circadian component, PERIOD2 (PER2), would diminish along a continuum from ex vivo intestinal organoids (epithelial ‘miniguts’), nontransformed mouse small intestinal epithelial (MSIE) cells and transformed human colorectal adenocarcinoma (Caco-2) cells. Here, we show that bioluminescent jejunal explants from PERIOD2::LUCIFERASE (PER2::LUC) mice displayed robust circadian rhythms for >72 hours post-excision. Circadian rhythms in primary or passaged PER2::LUC jejunal organoids were similarly robust; they also synchronized upon serum shock and persisted beyond 2 weeks in culture. Remarkably, unshocked organoids autonomously synchronized rhythms within 12 hours of recording. The onset of this autonomous synchronization was slowed by >2 hours in the presence of the glucocorticoid receptor antagonist RU486 (20 μM). Doubling standard concentrations of the organoid growth factors EGF, Noggin and R-spondin enhanced PER2 oscillations, whereas subtraction of these factors individually at 24 hours following serum shock produced no detectable effects on PER2 oscillations. Growth factor pulses induced modest phase delays in unshocked, but not serum-shocked, organoids. Circadian oscillations of PER2::LUC bioluminescence aligned with Per2 mRNA expression upon analysis using quantitative PCR. Concordant findings of robust circadian rhythms in bioluminescent jejunal explants and organoids provide further evidence for a peripheral clock that is intrinsic to the intestinal epithelium. The rhythmic and organotypic features of organoids should offer unprecedented advantages as a resource for elucidating the role of circadian rhythms in GI stem cell dynamics, epithelial homeostasis and disease.KEY WORDS: Circadian rhythm, Intestinal organoid, PERIOD2, R-spondin, RU486  相似文献   

8.
Valproic acid (VPA) is an anticonvulsant used to treat bipolar disorder, a psychiatric disease associated with disturbances in circadian rhythmicity. Little is known about how VPA affects circadian rhythms. The authors cultured tissues containing the master brain pacemaker for circadian rhythmicity, the suprachiasmatic nuclei (SCN), and skin fibroblasts from transgenic PERIOD2::LUCIFERASE (PER2::LUC) mice and studied the effect of VPA on the circadian PER2::LUC rhythm by measuring bioluminescence. VPA (1 mM) significantly phase advanced the PER2::LUC rhythm when applied at a time point corresponding to the lowest (trough, ~ZT 0) PER2::LUC expression but phase delayed the PER2::LUC rhythm when the drug was administered at the time of highest (peak, ~ZT 12) protein expression. In addition, it significantly increased the overall amplitude of PER2::LUC oscillations at time points at or close to ZT 12 but had no effect on period. Real-time PCR analyses on mouse and human fibroblasts revealed that expressions of other clock genes were increased after 2 h treatment with VPA. Because VPA is known to inhibit histone deacetylation, the authors treated cultures with an established histone deacetylation inhibitor, trichostatin A (TSA; 20 ng/mL), to compare the effect of VPA and TSA on molecular rhythmicity. They found that TSA had similar effects on the PER2::LUC rhythm as VPA. Furthermore, VPA and TSA significantly increased acetylation on histone H3 but in comparison little on histone H4. Lithium is another commonly used treatment for bipolar disorder. Therefore, the authors also studied the impact of lithium chloride (LiCl; 10 mM) on the PER2::LUC rhythm. LiCl delayed the phase, but in contrast to VPA and TSA, LiCl lengthened the PER2::LUC period and had no effect on histone acetylation. These results demonstrate that VPA can delay or advance the phase, as well as increase the amplitude, of the PERIOD2::LUCIFERASE rhythm depending on the circadian time of application. Furthermore, the authors show that LiCl delays the phase and lengthens the period of the PER2::LUC rhythm, confirming previous reports on circadian lithium effects. These different molecular effects may underlie differential chronotherapeutic effects of VPA and lithium.  相似文献   

9.
We have recently demonstrated that the outcome of repeated social defeat (SD) on behavior, physiology and immunology is more negative when applied during the dark/active phase as compared with the light/inactive phase of male C57BL/6 mice. Here, we investigated the effects of the same stress paradigm, which combines a psychosocial and novelty stressor, on the circadian clock in transgenic PERIOD2::LUCIFERASE (PER2::LUC) and wildtype (WT) mice by subjecting them to repeated SD, either in the early light phase (social defeat light?=?SDL) or in the early dark phase (social defeat dark?=?SDD) across 19 days. The PER2::LUC rhythms and clock gene mRNA expression were analyzed in the suprachiasmatic nucleus (SCN) and the adrenal gland, and PER2 protein expression in the SCN was assessed. SDD mice showed increased PER2::LUC rhythm amplitude in the SCN, reduced Per2 and Cryptochrome1 mRNA expression in the adrenal gland, and increased PER2 protein expression in the posterior part of the SCN compared with single-housed control (SHC) and SDL mice. In contrast, PER2::LUC rhythms in the SCN of SDL mice were not affected. However, SDL mice exhibited a 2-hour phase advance of the PER2::LUC rhythm in the adrenal gland compared to SHC mice. Furthermore, plasma levels of brain-derived neurotrophic factor (BDNF) and BDNF mRNA in the SCN were elevated in SDL mice. Taken together, these results show that the SCN molecular rhythmicity is affected by repeated SDD, but not SDL, while the adrenal peripheral clock is influenced mainly by SDL. The observed increase in BDNF in the SDL group may act to protect against the negative consequences of repeated psychosocial stress.  相似文献   

10.
11.
Circadian rhythms in physiology and behavior are known to be influenced by the estrous cycle in female rodents. The clock genes responsible for the generation of circadian oscillations are widely expressed both within the central nervous system and peripheral tissues, including those that comprise the reproductive system. To address whether the estrous cycle affects rhythms of clock gene expression in peripheral tissues, we first examined rhythms of clock gene expression (Per1, Per2, Bmal1) in reproductive (uterus, ovary) and non-reproductive (liver) tissues of cycling rats using quantitative real-time PCR (in vivo) and luminescent recording methods to measure circadian rhythms of PER2 expression in tissue explant cultures from cycling PER2::LUCIFERASE (PER2::LUC) knockin mice (ex vivo). We found significant estrous variations of clock gene expression in all three tissues in vivo, and in the uterus ex vivo. We also found that exogenous application of estrogen and progesterone altered rhythms of PER2::LUC expression in the uterus. In addition, we measured the effects of ovarian steroids on clock gene expression in a human breast cancer cell line (MCF-7 cells) as a model for endocrine cells that contain both the steroid hormone receptors and clock genes. We found that progesterone, but not estrogen, acutely up-regulated Per1, Per2, and Bmal1 expression in MCF-7 cells. Together, our findings demonstrate that the timing of the circadian clock in reproductive tissues is influenced by the estrous cycle and suggest that fluctuating steroid hormone levels may be responsible, in part, through direct effects on the timing of clock gene expression.  相似文献   

12.
Circadian rhythms in physiology and behavior are coordinated by the brain's dominant circadian pacemaker located in the suprachiasmatic nuclei (SCN) of the hypothalamus. Vasoactive intestinal polypeptide (VIP) and its receptor, VPAC(2), play important roles in the functioning of the SCN pacemaker. Mice lacking VPAC(2) receptors (Vipr2(-/-)) express disrupted behavioral and metabolic rhythms and show altered SCN neuronal activity and clock gene expression. Within the brain, the SCN is not the only site containing endogenous circadian oscillators, nor is it the only site of VPAC(2) receptor expression; both VPAC(2) receptors and rhythmic clock gene/protein expression have been noted in the arcuate (Arc) and dorsomedial (DMH) nuclei of the mediobasal hypothalamus, and in the pituitary gland. The functional role of VPAC(2) receptors in rhythm generation and maintenance in these tissues is, however, unknown. We used wild type (WT) and Vipr2(-/-) mice expressing a luciferase reporter (PER2::LUC) to investigate whether circadian rhythms in the clock gene protein PER2 in these extra-SCN tissues were compromised by the absence of the VPAC(2) receptor. Vipr2(-/-) SCN cultures expressed significantly lower amplitude PER2::LUC oscillations than WT SCN. Surprisingly, in Vipr2(-/-) Arc/ME/PT complex (Arc, median eminence and pars tuberalis), DMH and pituitary, the period, amplitude and rate of damping of rhythms were not significantly different to WT. Intriguingly, while we found WT SCN and Arc/ME/PT tissues to maintain a consistent circadian phase when cultured, the phase of corresponding Vipr2(-/-) cultures was reset by cull/culture procedure. These data demonstrate that while the main rhythm parameters of extra-SCN circadian oscillations are maintained in Vipr2(-/-) mice, the ability of these oscillators to resist phase shifts is compromised. These deficiencies may contribute towards the aberrant behavior and metabolism associated with Vipr2(-/-) animals. Further, our data indicate a link between circadian rhythm strength and the ability of tissues to resist circadian phase resetting.  相似文献   

13.
14.
15.
16.
17.
18.
Retinas of all classes of vertebrates contain endogenous circadian clocks that control many aspects of retinal physiology, including retinal sensitivity to light, neurohormone synthesis, and cellular events such as rod disk shedding, intracellular signaling pathways, and gene expression. The vertebrate retina is an example of a "peripheral" oscillator that is particularly amenable to study because this tissue is well characterized, the relationships between the various cell types are extensively studied, and many local clock-controlled rhythms are known. Although the existence of a photoreceptor clock is well established in several species, emerging data are consistent with multiple or dual oscillators within the retina that interact to control local physiology. A prominent example is the antiphasic regulation of melaton in and dopamine in photoreceptors and inner retina, respectively. This review focuses on the similarities and differences in the molecular mechanisms of the retinal versus the SCN oscillators, as well as on the expression of core components of the circadian clockwork in retina. Finally, the interactions between the retinal clock(s) and the master clock in the SCN are examined.  相似文献   

19.
The Drosophila shaggy gene product is a mammalian glycogen synthase kinase-3beta (GSK-3beta) homologue that contributes to the circadian clock of the Drosophila through TIMELESS phosphorylation, and it regulates nuclear translocation of the PERIOD/TIMELESS heterodimer. We found that mammalian GSK-3beta is expressed in the suprachiasmatic nucleus and liver of mice and that GSK-3beta phosphorylation exhibits robust circadian oscillation. Rhythmic GSK-3beta phosphorylation is also observed in serum-shocked NIH3T3 cells. Exposing serum-shocked NIH3T3 cells to lithium chloride, a specific inhibitor of GSK-3beta, increases GSK-3beta phosphorylation and delays the phase of rhythmic clock gene expression. On the other hand, GSK-3beta overexpression advances the phase of clock gene expression. We also found that GSK-3beta interacts with PERIOD2 (PER2) in vitro and in vivo. Recombinant GSK-3beta can phosphorylate PER2 in vitro. GSK-3beta promotes the nuclear translocation of PER2 in COS1 cells. The present data suggest that GSK-3beta plays important roles in mammalian circadian clock.  相似文献   

20.
It is not known whether the endogenous mammalian core clock proteins sustain measurable oscillations in cells in culture where de novo translation is pharmacologically inhibited. We studied here the mammalian core clock protein PER2, which undergoes robust circadian oscillations in both abundance and phosphorylation. With a newly developed antibody that enables tracing the endogenous PER2 protein oscillations over circadian cycles with cultured mouse embryonic fibroblast cells, we provide evidence that PER2 does not persist noticeable circadian rhythms when translation is inhibited.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号