首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 429 毫秒
1.
Breast cancers exhibit high intertumoral heterogeneity in genetic alterations as well as histopathological and other phenotypic characteristics. The contribution of the initiating oncogenic mutation to tumor phenotype remains controversial, largely due to the technical difficulties in delivering genetic alterations into well-defined subsets of mammary epithelial cells. To examine how different initiating oncogenes drive tumor phenotype, we somatically delivered two oncogenes (ErbB2, PyMT) into a narrow and distinct subset of the mouse mammary epithelium defined by the expression of the progenitor marker keratin 6a (Krt6a), and compared the phenotypes of the resulting mammary tumors. While PyMT-induced tumors were well-differentiated and displayed glandular and papillary features, ErbB2-induced tumors were poorly differentiated and exhibited epithelial-to-mesenchymal transition as well as β-catenin activation. These in vivo data demonstrate that the initiating oncogene plays a key role in driving mammary tumor phenotype.  相似文献   

2.
A line of mouse mammary epithelial cells (NMuMG) has been characterized for its ability to be stably transfected with exogenous DNA. A transfection frequency of at least 1 cell per 1,000 was obtained with the pSV2neo plasmid. Several thousand G418-resistant NMuMG cell clones can easily be generated in cotransfection of genomic DNA and pSV2neo. The NMuMG cells were isolated from normal mammary glands and do not form malignant lesions when injected into nude mice. We have cotransfected NMuMG cells with pSV2neo and genomic DNA from the human EJ bladder carcinoma line, a cell line which contains an activated c-rasH oncogene. When a pool of 4,700 G418-resistant colonies was injected into nude mice, tumors were obtained. These tumors contain a transfected human rasH gene. Genomic DNA transfection into a line of mouse epithelial cells, in combination with the selection of stable transfectants and tumor induction in nude mice, can be used to screen human tumor DNA for the presence of activated oncogenes.  相似文献   

3.
4.
We have established an explant-cell culture system for mammary gland tumors from c-myc oncogene-expressing transgenic mice and potentially other transgenic strains. By coating culture dish surfaces with fetal bovine serum and using culture media supplemented with low serum and growth factors, the mammary tumor specimens could be maintained in culture for over 3 mo. Throughout the culture period, the explants produced abundant outgrowths of epithelial cells. As the outgrowths of epithelial cells filled the dishes, the explants were serially transferred from one dish to another-a process that could be repeated at least six times, thus providing a continuous supply of primary tumor cells. This culture system provides a useful tool for studying the biology of mouse mammary gland tumors and possibly tumors from other organ sites.  相似文献   

5.
We have used transgenic mice that carry an activated c-neu oncogene driven by a mouse mammary tumor virus (MMTV) promoter to assess the stepwise progression of carcinogenesis in mammary epithelium. Unlike the stochastic occurrence of solitary mammary tumors in transgenic mice bearing the MMTV/c-myc or the MMTV/v-Ha-ras oncogenes, transgenic mice uniformly expressing the MMTV/c-neu gene develop mammary adenocarcinomas that involve the entire epithelium in each gland. Because these tumors arise synchronously and are polyclonal in origin, expression of the activated c-neu oncogene appears to be sufficient to induce malignant transformation in this tissue in a single step. In contrast, expression of the c-neu transgene in the parotid gland or epididymis leads to benign, bilateral epithelial hypertrophy and hyperplasia which does not progress to full malignant transformation during the observation period. These results indicate that the combination of activated oncogene and tissue context are major determinants of malignant progression and that expression of the activated form of c-neu in the mammary epithelium has particularly deleterious consequences.  相似文献   

6.
We have generated a new and improved transgenic mouse strain that permits a temporally controlled expression of transgenes throughout mammary gland development. High expression of the tetracycline-regulatible transactivator (tTA) under control of the mouse mammary tumor virus long terminal repeat (MMTV-LTR) is restricted to mammary epithelial cells and the salivary gland. The novel MMTV-tTA mouse strain induces a sustained transactivation of responder transgenes, which can be swiftly suppressed through administration of doxycycline (Dox). An important characteristic of this strain is its expression in early progenitor cells of mammary gland anlagen beginning at day 13.5 of embryonic development. We show here that the MMTV-tTA can be used in combination with GFP reporter strains to visualize CK8/CK14-dual positive progenitors in newborn females and their derived basal and luminal epithelial cell lineages in adult females. Our observations suggest that the novel MMTV-tTA can be utilized to express exogenous proteins in multipotent mammary progenitors during the earliest stages of mammary gland development to assess their biological significance throughout mammogenesis. Moreover, we demonstrate that the expression of the MMTV-tTA is sustained during mammary gland tumorigenesis in female mice expressing wildtype ErbB2. This makes this strain particular valuable to target the expression of exogenous proteins into developing mammary tumors to assess their significance in biological processes, such as tumor cell growth and survival, metabolism, and metastasis.  相似文献   

7.
Several oncogenes have now been implicated in mammary carcinogenesis. We investigated the phenotypic effects of expressing three representative oncogenes in mammary epithelial cells. v-myc (coding for a nuclear protein), v-Ha-ras (a G-protein homologue) and v-fgr (a tyrosine kinase) genes were introduced into the nontumorigenic clone 14 of the mouse mammary epithelial cell line COMMA-1D. Their effects upon growth and differentiation were determined. Anchorage-independent growth was induced by all three oncogenes with low efficiency. v-Ha-ras and v-fgr induced tumorigenicity in nude mice. The effect of oncogenes upon parameters unique to mammary epithelial cells in vitro was assayed. Both v-myc and v-fgr abolished the ability of clone 14 to grow as three-dimensional branching structures in hydrated collagen gel. v-fgr completely and v-myc partially inhibited the expression of the epithelium specific cytokeratins. Clone 14 can be induced to produce the beta-casein milk protein by the combination of the lactogenic hormones, dexamethasone, insulin, and PRL. Introduction of v-myc into clone 14 cells resulted in an estimated 50-fold increased induction of beta-casein protein and at least a 60-fold increase in beta-casein mRNA. The number of cells stained with anti-beta casein antibodies also showed a 10-fold increase after v-myc introduction. This still required the synergistic action of all three lactogenic hormones. Thus v-myc can alter the normal response of mammary epithelial cells to lactogenic hormones.  相似文献   

8.
Cadherins comprise a family of cell-cell adhesion proteins critical to the architecture and function of tissues. Expression of family members E-, N-, and P-cadherin is regulated in a spatial and temporal fashion in the developing and adult organism. Using in vivo and in vitro experimental systems, perturbation of cadherin expression by genetic deletion, overexpression, mutant dominant-negative constructs, and, to a lesser degree, expression of an inappropriate cadherin have all been shown to alter embryogenesis, tissue architecture, and cell behavior. Here we studied how expression of an inappropriate cadherin affects the adult mouse mammary gland. Human P-cadherin was expressed in mammary epithelial cells under control of the mouse mammary tumor virus (MMTV) promoter, and the effect on mammary gland behavior was studied. Typically, E-cadherin is expressed by mammary epithelial cells, whereas P-cadherin is found in myoepithelial cells and cap cells of the ductal terminal end bud. However, breast cancers frequently express P-cadherin, even though they are thought to arise from epithelial cells, and it is a marker of poor prognosis. We developed two independent transgenic mouse lines that exhibited high levels of P-cadherin protein expression in the mammary epithelium. P-cadherin was detected in most, but not all, luminal epithelial cells, and was appropriately localized to cell-cell borders. It was detected in the mammary glands of virgin, pregnant, lactating, post-lactation, and aged parous female mice. Despite the robust and widespread expression of an inappropriate cadherin, no effect was observed on mammary gland morphogenesis, architecture, lactation, or involution in transgenic mice compared to wild-type mice. No mammary tumors formed spontaneously in either wild-type or transgenic mice. Moreover, mammary tumors induced by the neu oncogene, which was introduced by a breeding strategy, showed no differences between mice with or without hP-cadherin. Surprisingly, however, none of the tumors expressed hP-cadherin protein. Together, our studies show no apparent effect on adult mammary gland or tumor behavior by inappropriate expression of P-cadherin in normal mammary epithelial cells.  相似文献   

9.
CCAAT/Enhancer binding proteins (C/EBPs) play important roles in the regulation of cell growth and differentiation. This study investigated the expression and function of C/EBPbeta isoforms in the mouse mammary gland, mammary tumors, and a nontransformed mouse mammary epithelial cell line (HC11). C/EBPbeta mRNA levels are 2-5-fold higher in mouse mammary tumors derived from MMTV/c-neu transgenic mice compared with lactating and involuting mouse mammary gland. The "full-length" 38 kd C/EBPbeta LAP ("Liver-enriched Activator Protein") isoform is the predominant C/EBPbeta protein isoform in mammary tumor whole cell lysates, however, the truncated 20 kd C/EBPbeta LIP ("Liver-enriched Inhibitory Protein") isoform is also present at detectable levels (mean LAP:LIP ratio 5.3:1). The mammary tumor C/EBPbeta LAP:LIP ratio decreases 70% (from 5.3:1 to 1.6:1) when lysate preparation is switched from a rapid whole cell lysis protocol to a multistep nuclear/cytoplasmic fractionation protocol. In contrast to mammary tumors, only the C/EBPbeta LAP isoform is detectable in the mammary gland whole cell and nuclear lysates; the truncated "LIP" isoform is undetectable regardless of isolation protocol. Ectopic over expression of C/EBPbeta LIP or C/EBPbeta LAP did not alter HC11 growth rates. However, C/EBPbeta LIP over expressing HC11 cells (LAP:LIP ratio of approximately 1:1) exhibited a consistent 2-4 h delay in G(0)/S phase transition. C/EBPbeta LIP overexpressing HC11 cells did not express beta-casein mRNA (mammary epithelial cell differentiation marker) in response to lactogenic hormones. This defect in beta-casein expression was not corrected by carrying out the differentiation protocol in the presence of an artificial extracellular matrix. These results demonstrate that the "full-length" C/EBPbeta LAP isoform is the predominant C/EBPbeta protein isoform expressed in mouse mammary gland in vivo and mouse mammary epithelial cell cultures in vitro. C/EBPbeta LIP detected in mammary tumor lysates may result from in vivo production or ex vivo isolation-induced proteolysis of C/EBPbeta LAP. Ectopic overexpression of C/EBPbeta LIP (LAP:LIP ratio of approximately 1:1) inhibits mammary epithelial cell differentiation (beta-casein expression).  相似文献   

10.
Mammary epithelial (ME) cells cultured under conventional conditions senesce after several passages. Here, we demonstrate that mouse ME cells isolated from normal mammary glands or from mouse mammary tumor virus (MMTV)-Neu–induced mammary tumors, can be cultured indefinitely as conditionally reprogrammed cells (CRCs) on irradiated fibroblasts in the presence of the Rho kinase inhibitor Y-27632. Cell surface progenitor-associated markers are rapidly induced in normal mouse ME-CRCs relative to ME cells. However, the expression of certain mammary progenitor subpopulations, such as CD49f+ ESA+ CD44+, drops significantly in later passages. Nevertheless, mouse ME-CRCs grown in a three-dimensional extracellular matrix gave rise to mammary acinar structures. ME-CRCs isolated from MMTV-Neu transgenic mouse mammary tumors express high levels of HER2/neu, as well as tumor-initiating cell markers, such as CD44+, CD49f+, and ESA+ (EpCam). These patterns of expression are sustained in later CRC passages. Early and late passage ME-CRCs from MMTV-Neu tumors that were implanted in the mammary fat pads of syngeneic or nude mice developed vascular tumors that metastasized within 6 weeks of transplantation. Importantly, the histopathology of these tumors was indistinguishable from that of the parental tumors that develop in the MMTV-Neu mice. Application of the CRC system to mouse mammary epithelial cells provides an attractive model system to study the genetics and phenotype of normal and transformed mouse epithelium in a defined culture environment and in vivo transplant studies.  相似文献   

11.
Nonimmortalized mouse mammary epithelial cells expressing Escherichia coli beta-galactosidase from a murine amphotropic packaged retroviral vector were injected into the epithelium-divested mammary fat pads of syngeneic mice. Mammary glands formed from the injected mammary epithelial cells contained ductal and lobular cells, both of which expressed beta-galactosidase when examined in situ more than 12 months later. These results indicate that stable recombinant gene expression can be achieved in vivo in the mammary gland without altering the growth properties of normal mammary epithelium.  相似文献   

12.
We have developed transgenic mice in which expression of the mouse int-2/Fgf-3 gene is regulated by a single long terminal repeat from mouse mammary tumor virus. Such mice contain and transmit a replica of the activated int-2/Fgf-3 allele present in a spontaneous mammary tumor from a BR6 mouse. Although free of infectious mouse mammary tumor virus and with a different genetic background, the transgenic mice develop pregnancy-responsive mammary epithelial proliferations that are similar to the early stages of tumorigenesis in the BR6 strain. Histological examination revealed that most of these tumors showed pronounced tubular and acinar structures, features usually associated with morphological differentiation. In some cases, the tumors were locally invasive, causing disruption of the dermis which manifested itself as local hair loss. In situ hybridization showed that patterns of transgene expression in the abnormal glands were markedly nonuniform. In contrast, mouse mammary tumor virus-induced neoplasms showed more uniform expression of int-2/Fgf-3, as did the urogenital epithelial proliferations that occur among males of this transgenic line. These data suggest that mammary tumors in virally infected animals may depend primarily on autocrine stimulation by the int-2/Fgf-3 gene product, whereas both autocrine and paracrine mechanisms may contribute to tumors and hyperplasias found in transgenic animals.  相似文献   

13.
The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MC-F10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different "immortalizing agents", oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor "oncogene and chromosome addiction", intra-/intertumor heterogeneity, and chromosome instability.  相似文献   

14.
The process of cellular transformation has been amply studied in vitro using immortalized cell lines. Immortalized cells never have the normal diploid karyotype, nevertheless, they cannot grow over one another in cell culture (contact inhibition), do not form colonies in soft agar (anchorage-dependent growth) and do not form tumors when injected into immunodeficient rodents. All these characteristics can be obtained with additional chromosome changes. Multiple genetic rearrangements, including whole chromosome and gene copy number gains and losses, chromosome translocations, gene mutations are necessary for establishing the malignant cell phenotype. Most of the experiments detecting transforming ability of genes overexpressed and/or mutated in tumors (oncogenes) were performed using mouse embryonic fibroblasts (MEFs), NIH3T3 mouse fibroblast cell line, human embryonic kidney 293 cell line (HEK293), and human mammary epithelial cell lines (mainly HMECs and MCF10A). These cell lines have abnormal karyotypes and are prone to progress to malignantly transformed cells. This review is aimed at understanding the mechanisms of cell immortalization by different “immortalizing agents”, oncogene-induced cell transformation of immortalized cells and moderate response of the advanced tumors to anticancer therapy in the light of tumor “oncogene and chromosome addiction”, intra-/intertumor heterogeneity, and chromosome instability.  相似文献   

15.
Transgenic mice expressing the polyomavirus (PyV) middle T antigen (MT) develop multifocal mammary tumors which frequently metastasize to the lung. The potent transforming activity of PyV MT is correlated with its capacity to activate and associate with a number of signaling molecules, including the Src family tyrosine kinases, the 85-kDa Src homology 2 subunit of the phosphatidylinositol 3′ (PI-3′) kinase, and the Shc adapter protein. To uncover the role of these signaling proteins in MT-mediated mammary tumorigenesis, we have generated transgenic mice that express mutant PyV MT antigens decoupled from either the Shc or the PI-3′ kinase signaling pathway. In contrast to the rapid induction of metastatic mammary tumors observed in the strains expressing wild-type PyV MT, mammary epithelial cell-specific expression of either mutant PyV MT resulted in the induction of extensive mammary epithelial hyperplasias. The mammary epithelial hyperplasias expressing the mutant PyV MT defective in recruiting the PI-3′ kinase were highly apoptotic, suggesting that recruitment of PI-3′ kinase by MT affects cell survival. Whereas the initial phenotypes observed in both strains were global mammary epithelial hyperplasias, focal mammary tumors eventually arose in all female transgenic mice. Genetic and biochemical analyses of tumorigenesis in the transgenic strains expressing the PyV MT mutant lacking the Shc binding site revealed that a proportion of the metastatic tumors arising in these mice displayed evidence of reversion of the mutant Shc binding site. In contrast, no evidence of reversion of the PI-3′ kinase binding site was noted in tumors derived from the strains expressing the PI-3′ kinase binding site MT mutant. Tumor progression in both mutant strains was further correlated with upregulation of the epidermal growth factor receptor family members which are known to couple to the PI-3′ kinase and Shc signaling pathways. Taken together, these observations suggest that PyV MT-mediated tumorigenesis requires activation of both Shc and PI-3′ kinase, which appear to be required for stimulation of cell proliferation and survival signaling pathways, respectively.  相似文献   

16.
The induction of mammary tumors by mouse mammary tumor virus (MMTV) is thought to occur through proviral activation of one or more cellular genes. One of these, int-2, encodes a 27 kd protein which exhibits striking homology to the basic fibroblast growth factor family. To assess directly the role of the int-2 protein in cell proliferation, we have established transgenic mice which carry the int-2 gene driven by the MMTV promoter/enhancer. Expression of the int-2 gene in female transgenic mice results in pronounced mammary gland hyperplasia. Interestingly, expression of the MMTV-int-2 transgene in the prostate gland of male carriers results in a benign, but dramatic, epithelial hyperplasia similar to benign prostatic hypertrophy (BPH), a common but poorly understood disorder in human populations. Together, these results indicate that the int-2 product can act as a potent growth factor in these epithelial tissues.  相似文献   

17.
The human papillomavirus type 16 (HPV-16) E6 and E7 oncogenes are thought to play a role in the development of most human cervical cancers. These E6 and E7 oncoproteins affect cell growth control at least in part through their association with and inactivation of the cellular tumor suppressor gene products, p53 and Rb. To study the biological activities of the HPV-16 E6 and E7 genes in epithelial cells in vivo, transgenic mice were generated in which expression of E6 and E7 was targeted to the ocular lens. Expression of the transgenes correlated with bilateral microphthalmia and cataracts (100% penetrance) resulting from an efficient impairment of lens fiber cell differentiation and coincident induction of cell proliferation. Lens tumors formed in 40% of adult mice from the mouse lineage with the highest level of E6 and E7 expression. Additionally, when lens cells from neonatal transgenic animals were placed in tissue culture, immortalized cell populations grew out and acquired a tumorigenic phenotype with continuous passage. These observations indicate that genetic changes in addition to the transgenes are likely necessary for tumor formation. These transgenic mice and cell lines provide the basis for further studies into the mechanism of action of E6 and E7 in eliciting the observed pathology and into the genetic alterations required for HPV-16-associated tumor progression.  相似文献   

18.
Female murine mammary tumor virus (MMTV)/neu transgenic mice, expressing a wild-type rat neu oncogene driven by an MMTV promoter, develop focal mammary adenocarcinomas that are pathologically very similar to human breast tumors. Two new cell lines were established from a mammary tumor that arose in a female MMTV/neu transgenic mouse. One of these lines, mammary carcinoma from Neu transgenic mouse A (MCNeuA), has an epithelial morphology, is cytokeratin positive, and expresses high levels of the neu transgene. Karyotyping and comparative genomic hybridization analyses demonstrated genomic alterations in the MCNeuA cell line. The other line, N202Fb3, has a fibroblast morphology, is cytokeratin negative, and expresses the neu transgene at a very low level. This cell line also expresses smooth muscle alpha-actin, suggesting that it is a myofibroblast line. The MCNeuA cell line is tumorigenic when injected into syngeneic MMTV/neu transgenic mice, with an in vivo doubling time of about 14 d. The rationale for establishing this tumor cell line was to provide a tumor transplantation system for rapidly assessing immunotherapeutic interventions before testing in the more cumbersome model of spontaneous tumor development in the MMTV/neu transgenic mice. Mice immunized with a Neu extracellular domain protein vaccine were protected against a subsequent inoculation of MCNeuA cells, indicating that this cell line will be useful for evaluating cancer vaccine strategies. This tumor cell line may also prove useful in studying the biological properties of the neu oncogene and its role in the malignant process. In addition, the tumor-derived fibroblast line may be useful for studying tumor-stromal cell interactions.  相似文献   

19.
CDC37 encodes a 50-kDa protein that targets intrinsically unstable oncoprotein kinases including Cdk4, Raf-1, and v-src to the molecular chaperone Hsp90, an interaction that is thought to be important for the establishment of signaling pathways. CDC37 is required for proliferation in budding yeast and is coexpressed with cyclin D1 in proliferative zones during mouse development, a finding consistent with a positive role in cell proliferation. CDC37 expression may not only be required to support proliferation in cells that are developmentally programmed to proliferate but may also be required in cells that are inappropriately induced to initiate proliferation by oncogenes. Here we report that mouse mammary tumor virus (MMTV)-CDC37 transgenic mice develop mammary gland tumors at a rate comparable to that observed previously in MMTV-cyclin D1 mice. Moreover, CDC37 was found to collaborate with MMTV-c-myc in the transformation of multiple tissues, including mammary and salivary glands in females and testis in males, and also collaborates with cyclin D1 to transform the female mammary gland. These data indicate that CDC37 can function as an oncogene in mice and suggests that the establishment of protein kinase pathways mediated by Cdc37-Hsp90 can be a rate-limiting event in epithelial cell transformation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号