首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To study a cyclin-dependent kinase (CDK) from alfalfa (Medicago sativa L.), an antibody was raised against the C-terminal 16 amino acids of the protein cdc2aMs. The cdc2Ms protein was immunopurified with this antibody and its histone kinase activity was measured. The cdc2Ms kinase is activated at the G1/S transition when phosphate-starved cells from the G0 phase re-enter the cell cycle and remain active as cells transit the S, G2, and M phases, indicating that the same CDK regulates all of these phases in alfalfa. In contrast, when cdc2Ms kinase was purified by binding to p13suc1, it was active only in the G2 and M phases. In immunoblots the C-terminal antibody detected an equal amount of the cdc2Ms protein in the cytoplasm and in the nucleus. By indirect immunofluorescence, however, the cytoplasmic form of cdc2Ms could not be found in the S phase of the cells, indicating that the epitope for the cdc2 antibody is not accessible. Binding of putative inhibitor proteins to cdc2 was shown by inactivation of purified plant CDK when cell extracts were added. Furthermore, purified CDK inhibitors, such as the mouse p27kip1 and the yeast p40sic1, blocked the purified plant CDK activity.  相似文献   

3.
4.
5.
Studies were undertaken to identify cell surface markers specific for different phases of the cell cycle. Antisera were prepared in rabbits against membrane protein preparations from synchronized BW 5147 cells, an AKR mouse T-lymphoma cell line, in the G1, S, G2 or M phases of the cell cycle. These antisera were used to precipitate radioiodinated surface proteins from synchronized cells in the different phases. The immunoprecipitates were quantitatively analyzed by sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cells in S phase had significantly higher concentrations of proteins weighing 70 × 103 and 165 × 103 D than cells in G1 or G2 phase. The other major labeled surface components did not vary. These results were confirmed by quantitative absorption of the antisera with synchronized cells. Comparative analysis of the antisera showed that the 165 × 103 D peak contained at least two antigens, one recognized by both a-G1 and a-S and the other by a-G1 only. Though cells in S phase had large quantities of the 70 × 103 D protein, intact and SDS-solubilized membrane preparations from S phase could not elicit in rabbits any antibody against that protein. These antisera did, however, have good antibody titers to the other major protein peaks and the antisera developed against cells in G1, G2 or M had good anti-70 × 103 activity. The results suggest a qualitative molecular change in the 70 × 103 protein during S phase.  相似文献   

6.
Studies were undertaken to identify cell surface markers specific for different phases of the cell cycle. Antisera were prepared in rabbits against membrane protein preparations from synchronized BW 5147 cells, an AKR mouse T-lymphoma cell line, in the G1, S, G2 or M phases of the cell cycle. These antisera were used to precipitate radioiodinated surface proteins from synchronized cells in the different phases. The immunoprecipitates were quantitatively analyzed by sodiumdodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE). Cells in S phase had significantly higher concentrations of proteins weighing 70 × 103 and 165 × 103 D than cells in G1 or G2 phase. The other major labeled surface components did not vary. These results were confirmed by quantitative absorption of the antisera with synchronized cells. Comparative analysis of the antisera showed that the 165 × 103 D peak contained at least two antigens, one recognized by both a-G1 and a-S and the other by a-G1 only. Though cells in S phase had large quantities of the 70 × 103 D protein, intact and SDS-solubilized membrane preparations from S phase could not elicit in rabbits any antibody against that protein. These antisera did, however, have good antibody titers to the other major protein peaks and the antisera developed against cells in G1, G2 or M had good anti-70 × 103 activity. The results suggest a qualitative molecular change in the 70 × 103 protein during S phase.  相似文献   

7.
Arterial remodeling in response to pathological insult is a complex process that depends in part on the balance between vascular cell apoptosis and proliferation. Studies in experimental models suggest that HO-1 mediates neointimal formation while limiting lumen stenosing, indicating a differential effect on vascular endothelial (EC) and smooth muscle cells (SMC). We investigated the effect of HO-1 expression on cell cycle progression in EC and SMC. The addition of SnMP (10 microM), an inhibitor of HO activity, to EC or SMC for 24h, resulted in significant abnormalities in DNA distribution and cell cycle progression compared to cells treated with the HO-1 inducers, heme (10 microM) or SnCl(2) (10 microM). SnMP increased G(1) phase and decreased S and G(2)/M phases in EC while heme or SnCl(2) decreased G(1) phase, but increased S and G(2)/M phases (p<0.05). Opposite effects were obtained in SMC. SnMP decreased G(1) phase and increased S and G(2)/M phases while heme or SnCl(2) increased G(1) phase but decreased S and G(2)/M phases (p<0.05). Our data demonstrate that HO-1 regulates the cell cycle in a cell-specific manner; it increases EC but decreases SMC cycle progression. The mechanisms underlying the HO-1 cell-specific effect on cell cycle progression within the vascular wall are yet to be explored. Nevertheless, these findings suggest that cell-specific targeting of HO-1 expression may provide a novel therapeutic strategy for the treatment of cardiovascular diseases.  相似文献   

8.
In plants multiple A-type cyclins with distinct expression patterns have been isolated and classified into three subgroups (A1-A3), while in animal somatic cells a single type of cyclin A is required for cell-cycle regulation from the S to M phases. We studied the function of an A2-type cyclin from Medicago sativa (Medsa;cycA2) which, in contrast to animal and most plant A-type cyclins, was expressed in all phases of the cell cycle. Using synchronized alfalfa cell cultures and anti-Medsa;CycA2 polyclonal antibodies, we showed that while the mRNA level increased steadily from the late G1 to the G2-M phase, the protein level after a rapid increase in S-phase reached a plateau during the G2 phase. In the yeast two-hybrid system, the Medsa;CycA2 protein interacted with the PSTAIRE-motif-containing cyclin-dependent kinase Cdc2MsA and with the maize retinoblastoma protein. Unexpectedly, the CycA2-associated kinase activity was biphasic: a first activity peak occurred in the S phase while the major one occurred during the G2/M transition, with no apparent dependence upon the actual levels of the Medsa;CycA2 and Cdc2MsA proteins. Immunohistological localization of the cyclin A2 protein by immunofluorescence and immunogold labelling revealed the presence of Medsa;CycA2 in the nucleus of the interphase and prophase cells, while it was undetectable thereafter during mitosis. Together these data suggest that Medsa;CycA2 plays a role both in the S phase and at the G2/M transition.  相似文献   

9.
Apoptosis and cell cycle progression in HL60 cells irradiated in an acidic environment were investigated. Apoptosis was determined by TUNEL staining, PARP cleavage, DNA fragmentation, and flow cytometry. The majority of the apoptosis that occurred in HL60 cells after 4 Gy irradiation took place after G(2)/M-phase arrest. When irradiated with 12 Gy, a fraction of the cells underwent apoptosis in G(1) and S phases while the rest of the cells underwent apoptosis in G(2)/M phase. The apoptosis caused by 4 and 12 Gy irradiation was transiently suppressed in medium at pH 7.1 or lower. An acidic environment was found to perturb progression of irradiated cells through the cell cycle, including progression through G(2)/ M phase. Thus it was concluded that the suppression of apoptosis in the cells after 4-12 Gy irradiation in acidic medium was due at least in part to a delay in cell cycle progression, particularly the prolongation of G(2)/M-phase arrest. Irradiation with 20 Gy indiscriminately caused apoptosis in all cell cycle phases, i.e. G(1), S and G(2)/M phases, rapidly in neutral pH medium and relatively slowly in acidic pH medium. The delay in apoptosis in acidic medium after 20 Gy irradiation appeared to result from mechanisms other than prolonged G(2)/ M-phase arrest.  相似文献   

10.
11.
The activity of cyclin-dependent kinases (CDK) is crucial for cell-cycle transitions. Here, we report the identification of a CDK activity that phosphorylates the retinoblastoma-related (RBR) protein. A CDK/cyclin complex that binds to and phosphorylates RBR may be isolated from various plant sources, e.g. wheat, maize, Arabidopsis thaliana and tobacco, and from cells growing under various conditions. The presence of an RBR-associated CDK activity correlates with the proliferative activity, suggesting that phosphorylation of RBR is a major event in actively proliferating tissues. In A. thaliana, this activity comprises a PSTAIRE CDKA and at least cyclin D2. Furthermore, this CDK activity is cell-cycle-regulated, as revealed by studies with highly synchronized tobacco BY-2 cells where it is maximal in late G1 and early S phase cells and progressively decreases until G2 phase. Aphidicolin-arrested but not roscovitine-arrested cells contain a PSTAIRE-type CDK that binds to and phosphorylates RBR. Thus, association with a D-type cyclin is a likely mechanism leading to CDK activation late in G1. Our studies constitute the first report measuring the activity of CDK/cyclin complexes formed in vivo on RBR, an activity that fluctuates in a cell-cycle-dependent manner. This work provides the basis for further studies on the impact of phosphorylation of RBR on its function during the cell cycle and development.  相似文献   

12.
13.
The effects of cell cycle on recombinant protein production and infection yield in the baculovirus-insect cell expression system (BES) were investigated. When, at any cell cycle phase, the host cell was infected by baculovirus, the cell cycle was finally arrested at the S or G(2)/M phase with 4n DNA. In the case of G(1) or S phase-infection, cell cycle of virus-infected cells began to be arrested at S phase from 8 h post-infection or at G(2)/M phase from 4 h post-infection, respectively; while, in the case of M phase-infection, cell cycle was arrested at S phase after 12 h post-infection. When the host cell was infected at the G(1) phase, average intracellular GFPuv fluorescence intensity was 1.3-fold higher than that at G(2)/M phase at 24 h post-infection. The GFPuv expression corresponded to the profile of the G(1) cell cycle in the BES. Infection yield was measured by detection of intracellular DNA binding protein using immunohistochemical method within 7 h post-infection. The infection yield at G(1) or S phase-infection was 1.5-1.8-fold higher than that at G(2)/M phase-infection.  相似文献   

14.
Rad50, an structural maintenance of chromosomes (SMC) protein family member, participates in a variety of cellular processes, including DNA double-strand break repair, cell cycle checkpoint activation, telomere maintenance, and meiosis. Disruption of Rad50 in mice leads to lethality during early embryogenesis, indicating its essential function in normal proliferating cells. In addition to its ability to form a complex with the DNA double-strand break repair proteins Mre11 and NBS1, Rad50 may interact with other cellular proteins to execute its full range of biological activities. A novel 87-kDa protein named RINT-1 was identified using the C-terminal region of human Rad50 as the bait in a yeast two-hybrid screen. Human RINT-1 shares sequence homology with a novel protein identified in Drosophila melanogaster, including a coiled-coil domain within its N-terminal 150 amino acids, a conserved central domain of about 350 amino acids, and a C-terminal region of 90 amino acids exhibiting 35--38% identity. The conserved central and C-terminal regions of RINT-1 are required for its interaction with Rad50. While Rad50 and RINT-1 are both expressed throughout the cell cycle, RINT-1 specifically binds to Rad50 only during late S and G(2)/M phases, suggesting that RINT-1 may be involved in cell cycle regulation. Consistent with this possibility, MCF-7 cells expressing an N-terminally truncated RINT-1 protein displayed a defective radiation-induced G(2)/M checkpoint. These results suggest that RINT-1 may play a role in the regulation of cell cycle control after DNA damage.  相似文献   

15.
Serotype-specific differences in the capacity of reovirus strains to inhibit proliferation of murine L929 cells correlate with the capacity to induce apoptosis. The prototype serotype 3 reovirus strains Abney (T3A) and Dearing (T3D) inhibit cellular proliferation and induce apoptosis to a greater extent than the prototype serotype 1 reovirus strain Lang (T1L). We now show that reovirus-induced inhibition of cellular proliferation results from a G(2)/M cell cycle arrest. Using T1L x T3D reassortant viruses, we found that strain-specific differences in the capacity to induce G(2)/M arrest, like the differences in the capacity to induce apoptosis, are determined by the viral S1 gene. The S1 gene is bicistronic, encoding the viral attachment protein sigma1 and the nonstructural protein sigma1s. A sigma1s-deficient reovirus strain, T3C84-MA, fails to induce G(2)/M arrest, yet retains the capacity to induce apoptosis, indicating that sigma1s is required for reovirus-induced G(2)/M arrest. Expression of sigma1s in C127 cells increases the percentage of cells in the G(2)/M phase of the cell cycle, supporting a role for this protein in reovirus-induced G(2)/M arrest. Inhibition of reovirus-induced apoptosis failed to prevent virus-induced G(2)/M arrest, indicating that G(2)/M arrest is not the result of apoptosis related DNA damage and suggests that these two processes occur through distinct pathways.  相似文献   

16.
TbNOP86 and TbNOP66 are two novel nucleolar proteins isolated in Trypanosoma brucei. They share 92.6% identity, except for an additional C-terminal domain of TbNOP86 of 182 amino acids in length. Both proteins are found in Trypanosomatidae, but similarity to other eukaryotic proteins could not be found. TbNOP86 and TbNOP66 are expressed at similar level in procyclic and bloodstream forms, although the relative level of expression of TbNOP66 is 11 times lower. TbNOP86 undergoes post-translational modifications, as it is found predominantly at 110 kDa compared with the predicted 86 kDa. Immunofluorescence of overexpressed ty-tagged TbNOP86 and TbNOP66 showed that both proteins accumulated in the nucleolus of G(1) cells. This was confirmed by the co-localization of an endogenous TbNOP86-myc with the nucleolar protein Nopp140. TbNOP86-ty localization is cell cycle-regulated, because it colocalizes with the mitotic spindle in mitotic cells. TbNOP86 is required for mitotic progression in both life stages as depleted cells are enriched in the G(2)/M phase. In procyclic cells, a reduced growth rate is accompanied by an accumulation of zoids (0N1K), 2N1K, and multinucleated cells (xNyK). The 2N1K cells are blocked in late mitosis as nucleolar segregation is completed. TbNOP86 depletion in bloodstream form caused a drastic growth inhibition producing cells bearing two kinetoplasts and an enlarged nucleus (1N(*)2K), followed by an accumulation of 2N2K cells with connected nuclei and xNyK cells. These studies of TbNOP86 provide a more comprehensive account of proteins involved in mitotic events in trypanosomes and should lead to the identification of partners with similar function.  相似文献   

17.
18.
Several proteins involved in DNA synthesis are part of the so-called 'replication factories' that are anchored on non-chromatin nuclear structures. We report here that human kin17, a nuclear stress-activated protein, associates with both chromatin and non-chromatin nuclear structures in a cell cycle- and DNA damage-dependent manner. After L-mimosine block and withdrawal we observed that kin17 protein was recruited in the nucleus during re-entry and progression through S phase. These results are consistent with a role of kin17 protein in DNA replication. About 50% of the total amount of kin17 protein was detected on nuclear structures and could not be released by detergents. Furthermore, the amount of kin17 protein greatly increased in both G(1)/S and S phase-arrested cells in fractions containing proteins anchored to nuclear structures. The detection of kin17 protein showed for the first time its preferential assembly within non-chromatin nuclear structures in G(1)/S and S phase-arrested cells, while the association with these structures was found to be less stable in the G(2)/M phase, as judged by fractionation of human cells and immunostaining. In asynchronous growing cells, kin17 protein interacted with both chromatin DNA and non-chromatin nuclear structures, while in S phase-arrested cells it interacted mostly with non-chromatin nuclear structures, as judged by DNase I treatment and in vivo UV cross-linking. In the presence of DNA damage in S phase cells, the distribution of kin17 protein became mainly associated with chromosomal DNA, as judged by limited formaldehyde cross-linking of living cells. The physical interaction of kin17 protein with components of the nuclear matrix was confirmed and visualized by indirect immunofluorescence and immunoelectron microscopy. Our results indicate that, during S phase, a fraction of the human kin17 protein preferentially associates with the nuclear matrix, a fundamentally non-chromatin higher order nuclear structure, and to chromatin DNA in the presence of DNA damage.  相似文献   

19.
Saccharomyces cerevisiae proteins Cdc4 and Cdc20 contain WD40 repeats and participate in proteolytic processes. However, they are thought to act at two different stages of the cell cycle: Cdc4 is involved in the proteolysis of the Cdk inhibitor, Sic1, necessary for G(1)/S transition, while Cdc20 mediates anaphase-promoting complex-dependent degradation of anaphase inhibitor Pds1, a process necessary for the onset of chromosome segregation. We have isolated three mutant alleles of CDC4 (cdc4-10, cdc4-11, and cdc4-16) which suppress the nuclear division defect of cdc20-1 cells. However, the previously characterized mutation cdc4-1 and a new allele, cdc4-12, do not alleviate the defect of cdc20-1 cells. This genetic interaction suggests an additional role for Cdc4 in G(2)/M. Reexamination of the cdc4-1 mutant revealed that, in addition to being defective in the onset of S phase, it is also defective in G(2)/M transition when released from hydroxyurea-induced S-phase arrest. A second function for CDC4 in late S or G(2) phase was further confirmed by the observation that cells lacking the CDC4 gene are arrested both at G(1)/S and at G(2)/M. We subsequently isolated additional temperature-sensitive mutations in the CDC4 gene (such as cdc4-12) that render the mutant defective in both G(1)/S and G(2)/M transitions at the restrictive temperature. While the G(1)/S block in both cdc4-12 and cdc4Delta mutants is abolished by the deletion of the SIC1 gene (causing the mutants to be arrested predominantly in G(2)/M), the preanaphase arrest in the cdc4-12 mutant is relieved by the deletion of PDS1. Collectively, these observations suggest that, in addition to its involvement in the initiation of S phase, Cdc4 may also be required for the onset of anaphase.  相似文献   

20.
The activity of nuclear phosphoinositide 3-kinase C2beta (PI3K-C2beta) was investigated in HL-60 cells blocked by aphidicolin at G(1)/S boundary and allowed to progress synchronously through the cell cycle. The activity of immunoprecipitated PI3K-C2beta in the nuclei and nuclear envelopes showed peak activity at 8 h after release from the G(1)/S block, which correlates with G(2)/M phase of the cell cycle. In the nuclei and nuclear envelopes isolated from HL-60 cells at 8 h after release from G(1)/S block, a significant increase in the level of incorporation of radiolabeled phosphate into phosphatidylinositol 3-phosphate (PtdIns(3)P) was observed with no change in the level of radiolabeled PtdIns(4)P, PtdIns(4,5)P(2) and PtdIns(3,4,5)P(3). On Western blots, PI3K-C2beta revealed a single immunoreactive band of 180 kDa, whereas in the nuclei and nuclear envelopes isolated at 8 h after release, the gel shift of 18 kDa was observed. When nuclear envelopes were treated for 20 min with mu-calpain in vitro, the similar gel shift and increase in PI3K-C2beta activity was observed which was completely inhibited by pretreatment with calpain inhibitor calpeptin. The presence of PI3K inhibitor LY 294002 completely abolished the calpain-mediated increase in the activity of PI3K-C2beta but did not prevent the gel shift. When HL-60 cells were released from G(1)/S block in the presence of either calpeptin or LY 294002, the activation of nuclear PI3K-C2beta was completely inhibited. These results demonstrate the calpain-mediated activation of the nuclear PI3K-C2beta during G(2)/M phase of the cell cycle in HL-60 cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号