首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
An open question in olfactory coding is the extent of interglomerular connectivity: do olfactory glomeruli and their neurons regulate the odorant responses of neurons innervating other glomeruli? In the olfactory system of the moth Manduca sexta, the response properties of different types of antennal olfactory receptor cells are known. Likewise, a subset of antennal lobe glomeruli has been functionally characterized and the olfactory tuning of their innervating neurons identified. This provides a unique opportunity to determine functional interactions between glomeruli of known input, specifically, (1) glomeruli processing plant odors and (2) glomeruli activated by antennal stimulation with pheromone components of conspecific females. Several studies describe reciprocal inhibitory effects between different types of pheromone-responsive projection neurons suggesting lateral inhibitory interactions between pheromone component-selective glomerular neural circuits. Furthermore, antennal lobe projection neurons that respond to host plant volatiles and innervate single, ordinary glomeruli are inhibited during antennal stimulation with the female’s sex pheromone. The studies demonstrate the existence of lateral inhibitory effects in response to behaviorally significant odorant stimuli and irrespective of glomerular location in the antennal lobe. Inhibitory interactions are present within and between olfactory subsystems (pheromonal and non-pheromonal subsystems), potentially to enhance contrast and strengthen odorant discrimination.  相似文献   

2.
3.
The neurophysiology and antennal lobe projections of olfactory receptor neurons housed within short trichoid sensilla of female Heliothis virescens F. (Noctuidae: Lepidoptera) were investigated using a combination of cut-sensillum recording and cobalt-lysine staining techniques. Behaviorally relevant odorants, including intra- and inter-sexual pheromonal compounds, plant and floral volatiles were selected for testing sensillar responses. A total of 184 sensilla were categorized into 25 possible sensillar types based on odor responses and sensitivity. Sensilla exhibited both narrow (responding to few odors) and broad (responding to many odors) response spectra. Sixty-six percent of the sensilla identified were stimulated by conspecific odors; in particular, major components of the male H. virescens hairpencil pheromone (hexadecanyl acetate and octadecanyl acetate) and a minor component of the female sex pheromone, (Z)-9-tetradecenal. Following characterization of the responses, olfactory receptor neurons within individual sensilla were stained with cobalt lysine (N=39) and traced to individual glomeruli in the antennal lobe. Olfactory receptor neurons with specific responses to (Z)-9-tetradecenal, a female H. virescens sex pheromone component, projected to the female-specific central large female glomerulus (cLFG) and other glomeruli. Terminal arborizations from sensillar types containing olfactory receptor neurons sensitive to male hairpencil components and plant volatiles were also localized to distinct glomerular locations. This information provides insight into the representation of behaviorally relevant odorants in the female moth olfactory system. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   

4.
Local interneurons (LNs) play important roles in shaping and modulating the activity of output neurons in primary olfactory centers. Here, we studied the morphological characteristics, odor responses, and neurotransmitter content of LNs in the antennal lobe (AL, the insect primary olfactory center) of the moth Manduca sexta. We found that most LNs are broadly tuned, with all LNs responding to at least one odorant. 70% of the odorants evoked a response, and 22% of the neurons responded to all the odorants tested. Some LNs showed excitatory (35%) or inhibitory (33%) responses only, while 33% of the neurons showed both excitatory and inhibitory responses, depending on the odorant. LNs that only showed inhibitory responses were the most responsive, with 78% of the odorants evoking a response. Neurons were morphologically diverse, with most LNs innervating almost all glomeruli and others innervating restricted portions of the AL. 61 and 39% of LNs were identified as GABA-immunoreactive (GABA-ir) and non-GABA-ir, respectively. We found no correlations between odor responses and GABA-ir, neither between morphology and GABA-ir. These results show that, as observed in other insects, LNs are diverse, which likely determines the complexity of the inhibitory network that regulates AL output.  相似文献   

5.
Antennal lobe interneurons of male Spodoptera littoralis (Boisd.) were investigated by using intracellular recording and staining techniques. Physiological and morphological characteristics of local interneurons and projection neurons responding to sex pheromone and plant-associated volatiles are described. The interneurons identified were divided into three groups, depending on their physiological response characteristics. Both types of interneurons, local interneurons and projection neurons, were described in all three groups. 1. Interneurons responding exclusively to sex pheromone stimuli, displayed different degrees of specificity. These neurons responded to either one, two, three or all four of the single sex pheromone or sex pheromone-like compounds tested. Most of these neurons also responded to a mixture of the two pheromone components present in the female S. littoralis blend. Two local interneurons and one projection neuron were identified as blend specialists, not responding to the single female produced sex pheromone components, but only to their mixture. Five pheromone specific projection neurons arborized in one or more subcompartments of the macroglomercular complex (MGC) and some of them had axonal branches in the calyces of the mushroom body and in different parts of the lateral protocerebrum. 2. Interneurons responding only to plant-associated volatiles varied highly in specificity. Neurons responding to only one of the stimuli, neurons responding to a variety of different odours and one neuron responding to all stimuli tested, were found. Three specialized local interneurons had arborizations only in ordinary glomeruli. One specialized and three less specialized local interneurons had arborizations within the MGC and the ordinary glomeruli. The projection neurons responding only to plant-associated volatiles had mostly uni- or multiglomerular arborizations within the ordinary glomeruli. 3. Interneurons responding to both sex pheromones and plant-associated stimuli varied in specificity. Individual interneurons that responded to few plant-associated odours mostly responded to several pheromone stimuli as well. Projection neurons responding to most of the plant-associated volatiles also responded to all pheromone stimuli. Two local interneurons responding to both stimulus groups, arborized within the MGC and the ordinary glomeruli. Projection neurons mostly arborized in only one ordinary glomerulus or in one compartment of the MGC. The variation in specificity and sensitivity of antennal lobe interneurons and structure-function correlations are discussed.  相似文献   

6.
An isolated brain preparation was used to characterize neurons innervating the accessory lobe (AL) of the spiny lobster (Panulirus argus). Four distinct classes of neurons responded to electrical stimulation of the olfactory (antennular) nerve. These cells responded to electrical stimulation with a long and variable latency; they also responded to odor stimulation in a nose-brain preparation. Neurons connecting the AL with the olfactory lobe branched in the central AL layer and selectively innervated olfactory lobe glomeruli. These cells had response latencies which were significantly shorter than those of other AL neurons. Intrinsic AL interneurons were heterogeneous as a population, and most arborized in irregular but circumscribed regions of either the lateral or medial layers. The final class of neurons branched ipsilaterally in the deutocerebral neuropil and bilaterally innervated only a few AL glomeruli. The physiology and morphology of these four classes of neurons confirm an olfactory function for the AL and identify the input and output regions of the lobe. Based on these findings, we propose that the AL processes odor information in the context of higher order multimodal input.Abbreviations AL accessory lobe - DCN deutocerebral neuropil - OGT olfactory-globular tract - OGTN olfactory-globular tract neuropil - OL olfactory lobe  相似文献   

7.
Using intra- and extracellular recording methods, we studied the activity of pheromone-responsive projection neurons in the antennal lobe of the moth Manduca sexta. Intracellularly recorded responses of neurons to antennal stimulation with the pheromone blend characteristically included both inhibitory and excitatory stages of various strengths. To observe the activity of larger groups of neurons, we recorded responses extracellularly in the macroglomerular complex of the antennal lobe. The macroglomerular complex is part of a specialized olfactory subsystem and the site of first-order central processing of sex-pheromonal information. Odors such as the pheromone blend and host-plant (tobacco) volatiles gave rise to evoked potentials that were reproducible upon repeated antennal stimulation. Evoked potentials showed overriding high-frequency oscillations when the antenna was stimulated with the pheromone blend or with either one of the two key pheromone components. The frequency of the oscillations was in the range of 30–50 Hz. Amplitude and frequency of the oscillations varied during the response to pheromonal stimulation. Recording intracellular and extracellular activity simultaneously revealed phase-locking of action potentials to potential oscillations. The results suggest that the activity of neurons of the macroglomerular complex was temporally synchronized, potentially to strengthen the pheromone signal and to improve olfactory perception. Accepted: 19 December 1997  相似文献   

8.
A subset of olfactory projection neurons in the brain of male Manduca sexta is described, and their role in sex pheromone information processing is examined. These neurons have extensive arborizations in the macroglomerular complex (MGC), a distinctive and sexually dimorphic area of neuropil in the antennal lobe (AL), to which the axons of two known classes of antennal pheromone receptors project. Each projection neuron sends an axon from the AL into the protocerebrum. Forty-one projection neurons were characterized according to their responses to electrical stimulation of the antennal nerve as well as olfactory stimulation of antennal receptors. All neurons exhibited strong selectivity for female sex pheromones. Other behaviorally relevant odors, such as plant volatiles, had no obvious effect on the activity of these neurons. Two broad physiological categories were found: cells that were excited by stimulation of the ipsilateral antenna with pheromones (29 out of 41), and cells that received a mixed input (inhibition and excitation) from pheromone pathways (12 out of 41). Of the cells in the first category, 13 out of 29 were equally excited in response to stimulation of the antenna with either the principal natural pheromone (bombykal) or a mimic of a second unidentified pheromone ('C-15') and were similarly excited by the natural pheromone blend. The remaining 16 out of 29 cells responded selectively, and in some cases, in a dose-dependent manner, to stimulation of the antenna with bombykal or C-15, but not both. Some of these neurons had dendritic arborizations restricted to only a portion of the MGC neuropil, whereas most had arborizations throughout the MGC. Of the cells in the second category, 9 out of 12 were excited by bombykal, inhibited by C-15, and showed a mixed response to the natural pheromone blend. For the other 3 out of 12 cells, the response polarity was reversed for the two chemically-identified odors. Two additional neurons, which were not tested with olfactory stimuli, were tonically inhibited in response to electrical stimulation of the ipsilateral antennal nerve. These observations suggest that some of the male-specific projection neurons may signal general pheromone-triggered arousal, whereas a smaller number can actively integrate inputs from the two know receptor classes (Bal- and C-15-selective) and may operate as 'mixture detectors' at this level of the olfactory subsystem that processes information about sex pheromones.  相似文献   

9.
Odors elicit spatio-temporal patterns of activity in the olfactory bulb of vertebrates and the antennal lobe of insects. There have been several reports of changes in these patterns following olfactory learning. These studies pose a conundrum: how can an animal learn to efficiently respond to a particular odor with an adequate response, if its primary representation already changes during this process? In this study, we offer a possible solution for this problem. We measured odor-evoked calcium responses in a subpopulation of uniglomerular AL output neurons in honeybees. We show that their responses to odors are remarkably resistant to plasticity following a variety of appetitive olfactory learning paradigms. There was no significant difference in the changes of odor-evoked activity between single and multiple trial forward or backward conditioning, differential conditioning, or unrewarded successive odor stimulation. In a behavioral learning experiment we show that these neurons are necessary for conditioned odor responses. We conclude that these uniglomerular projection neurons are necessary for reliable odor coding and are not modified by learning in this paradigm. The role that other projection neurons play in olfactory learning remains to be investigated.  相似文献   

10.
ABSTRACT. Electroantennogram (EAG) responses of male and female carrot flies, Psila rosae F. (Diptera: Psilidae), were recorded to thirty-six volatile plant constituents. The most distinct EAG responses were obtained to: (1) the general green leaf volatiles 1-hexanol, trans-2-hexen-1-ol and cis-3-hexen-1-ol, their isomers cis-2-hexen-1-ol and trans-3-hexen-1-ol, the alcohol 1-heptanol, the ester cis-3-hexenyl acetate and the leaf aldehydes hexanal and trans-2-hexenal, and (2) from four compounds associated with the umbelliferous host plants of this insect, namely trans-methyl-iso-eugenol, β-caryophyllene, linalool and trans-2-nonenal. Higher responses were elicited by the leaf aldehydes than by the corresponding alcohols. Although the absolute amplitude of the female response was over twice that of the male, there were no differences between the relative responses to the compounds tested in both sexes, with the exception of a much higher response to the leaf aldehydes in the male. The shape of the EAG evoked by the various compounds was consistently different, with the slowest recovery being recorded for trans-methyl-iso-eugenol. While the antennal olfactory receptors of the carrot fly are sensitive to the closely related general green leaf volatiles, they are most specifically tuned to the aldehyde component of this green odour complex. In addition, the ability of this insect to discriminate between different plants may be augmented by the perception of a group of more host specific volatiles. The conformity of the responses of males and females to the compounds tested may indicate that host plant volatiles plays an additional role as an aggregation cue for both sexes.  相似文献   

11.
1 Olfactory responses of the Colorado potato beetle (CPB), Leptinotarsa decemlineata (Say) (Coleoptera: Chrysomelidae), a generalist predator, Podisus maculiventris (Say) (Hemiptera, Heteroptera: Pentatomidae) (Pm), and a specialist predator, Perillus bioculatus (F.) (Hemiptera, Heteroptera: Pentatomidae) (Pb) were investigated. Volatiles tested included 20 compounds emitted by undamaged potato plants (Solanum tuberosum), plants that had been artificially damaged, or plants damaged by feeding by CPB larvae. 2 Coupled gas chromatography/electroantennogram detector (GC/EAD) recordings revealed five compounds for which reliable responses were recorded from CPB antennae: (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (±)-linalool, nonanal, methyl salicylate, and indole. Both Pm and Pb responded selectively to the same compounds as the CPB with exceptions: (1) (Z)-3-hexenyl butyrate elicited reliable responses for both Pm and Pb, and (2) (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol were inactive for Pm and Pb under these conditions. Dose–response curves showed that CPB was at least 100 times more sensitive to (E)-2-hexen-1-ol than were the predators. Both predators were more sensitive to each of the other compounds than were CPB. Both CPB and Pm were attracted to a five component blend comprising (E)-2-hexen-1-ol, (Z)-3-hexen-1-ol, (±)-linalool, nonanal and methyl salicylate. However, attraction of CPB to the blend occurred only with lower doses of (E)-2-hexen-1-ol and (Z)-3-hexen-1-ol. 3 These results show that the herbivore (CPB) has olfactory receptors which are more sensitive to constitutive host plant volatiles, e.g. green leaf volatiles, while both generalist (Pm) and specialist (Pb) predators are more sensitive to systemic volatiles produced in response to prey feeding. Keywords Colorado potato beetle, constitutive compounds, host plant, induced compounds, olfaction, Perillus bioculatus, Podisus maculiventris, predator, prey, tritrophic.  相似文献   

12.
Most animals rely on olfaction to find sexual partners, food or a habitat. The olfactory system faces the challenge of extracting meaningful information from a noisy odorous environment. In most moth species, males respond to sex pheromone emitted by females in an environment with abundant plant volatiles. Plant odours could either facilitate the localization of females (females calling on host plants), mask the female pheromone or they could be neutral without any effect on the pheromone. Here we studied how mixtures of a behaviourally-attractive floral odour, heptanal, and the sex pheromone are encoded at different levels of the olfactory pathway in males of the noctuid moth Agrotis ipsilon. In addition, we asked how interactions between the two odorants change as a function of the males' mating status. We investigated mixture detection in both the pheromone-specific and in the general odorant pathway. We used a) recordings from individual sensilla to study responses of olfactory receptor neurons, b) in vivo calcium imaging with a bath-applied dye to characterize the global input response in the primary olfactory centre, the antennal lobe and c) intracellular recordings of antennal lobe output neurons, projection neurons, in virgin and newly-mated males. Our results show that heptanal reduces pheromone sensitivity at the peripheral and central olfactory level independently of the mating status. Contrarily, heptanal-responding olfactory receptor neurons are not influenced by pheromone in a mixture, although some post-mating modulation occurs at the input of the sexually isomorphic ordinary glomeruli, where general odours are processed within the antennal lobe. The results are discussed in the context of mate localization.  相似文献   

13.
Electroantennogram responses of Colorado beetles were recorded to 53 plant volatiles including isomers. The system of antennal olfactory receptors is selective, even at high doses several compounds cause fairly small responses. Diminishing the concentration to a moderate stimulus strength reduces the number of perceptible chemicals. Distinct electroantennogram responses are obtained to a group of closely related components, namely the general green leaf volatiles trans-2-hexen-1-ol, cis-3-hexen-1-ol, hexanol-1, trans-2-hexenal, hexanal and cis-3-hexenyl-acetate, and to isomers such as trans-3-hexen-1-ol and cis-2-hexen-1-ol. The threshold concentration of the most effective compound, trans-2-hexen-1-ol is 1.2×108 molecules per ml of air. The antennal olfactory receptors of the Colorado beetle are sensitively tuned to the perception of these general green leaf volatiles. As olfactory receptors of a number of phytophagous insects have been reported to respond to these components, this volatile complex probably plays a part in the host selection behaviour of various phytophagous insects.
Résumé Les électroantennogrammes de Leptinotarsa decemlineata en présence de 53 substances volatiles (y compris des isomères) ont été enregistrés. Le système des récepteurs olfactifs antennaires est sélectif, même à des doses élevées plusieurs composés ne provoquent que d'assez faibles réponses. La diminution de la concentration jusqu'à une puissance stimulante modérée réduit le nombre de substances perçues. Des électroantennogrammes différents ont été obtenus pour un groupe de composés très voisins, à savoir les substances volatiles de feuilles vertes: trans-2-hexen-1-ol, cis-3-hexen-1-ol, hexanol-1, trans-2-hexenal et cis-3-hexenyl-acetate, et aux isomères tels que trans-3-hexen-1-ol et cis-2-hexen-l-ol. La concentration seuil du composé le plus efficace, trans-2-hexen-1-ol, est de 1,2×108 molécules par ml d'air. Les récepteurs olfactifs antennaires du Doryphore sont sensoriellement ajustés à la perception de ces substances volatiles générales des feuilles vertes. Comme les récepteurs olfactifs de nombreux insectes phytophages ont été signalés comme répondant à ces composés, ce complexe volatile joue probablement un rôle dans le comportement de sélection de l'hôte par différents insectes phytophages.
  相似文献   

14.
Han B Y  Han B H 《农业工程》2007,27(11):4485-4490
Electrophysiological and behavioral responses of the wingless tea aphid, Toxoptera aurantii (Boyer), to 14 synthetic volatiles identified from tea shoots, their partial (GLV mixture) and full (ACB mixture) blends, and fresh young tea leaves, buds, tender stems, adult tea leaves and tea aphid-damaged young leaves (ADYL) were studied by using an electroantennography (EAG) and a four-arm olfactometer. ACB elicited the largest EAG responses. Major volatile components, Z-3-hexen-1-ol, E-2-hexenal, n-hexanol, methyl salicylate and benzylalcohol, from the tea shoots were strongly EAG active. All the 4 tested tea shoot tissues also elicited significant EAG responses, with the young tea leaves being the strongest, followed by buds, tender stems and adult tea leaves. Surprisingly, ADYL elicited a weakly negative EAG response. In the olfactory assays, the fresh and tender tea leaves, as well as the individual major volatile components, e.g. Z-3-hexenyl acetate, methyl salicylate, E-2-hexen-1-ol and Z-3-hexen-1-ol, from the tender shoots (EAG-active) were all attractive. This result might indicate that the wingless tea aphids may use tea shoot volatiles as kairomone to find their optimal feeding sites, e.g. fresh tender tea shoots.  相似文献   

15.
Herbivore-induced plant volatiles (HIPVs) emitted from lima bean leaves infested with the two-spotted spider mites Tetranychus urticae strongly attract the predatory mites Neoseiulus californicus. Among these HIPVs, methyl salicylate and linalool can attract the predators. Three green-leaf volatiles (GLVs) of (Z)-3-hexen-1-ol, (Z)-3-hexenyl acetate and (E)-2-hexenal, found in the odor blends from T. urticae-infested leaves and physically damaged leaves, can also attract the predators. To search for a strong predator attractant, the olfactory responses of N. californicus to each synthetic compound or their combinations were investigated in a Y-tube olfactometer. When presented a choice between a mixture of the five compounds (i.e. the two HIPVs and the three GLVs) and T. urticae-infested leaves, N. californicus did not discriminate between these odor sources. The same trend was observed when either a mixture of the two HIPVs or methyl salicylate vs. T. urticae-infested leaves were compared. In contrast, the predators preferred T. urticae-infested leaves to linalool, each of the three GLVs, or a mixture of the three GLVs. These results indicated that methyl salicylate is a strong predator attractant, and its potential attractiveness almost equaled that of the blend of HIPVs from T. urticae-infested leaves.  相似文献   

16.
Rouyar A  Party V  Prešern J  Blejec A  Renou M 《PloS one》2011,6(10):e26443
In nature the aerial trace of pheromone used by male moths to find a female appears as a train of discontinuous pulses separated by gaps among a complex odorant background constituted of plant volatiles. We investigated the effect of such background odor on behavior and coding of temporal parameters of pheromone pulse trains in the pheromone olfactory receptor neurons of Spodoptera littoralis. Effects of linalool background were tested by measuring walking behavior towards a source of pheromone. While velocity and orientation index did drop when linalool was turned on, both parameters recovered back to pre-background values after 40 s with linalool still present. Photo-ionization detector was used to characterize pulse delivery by our stimulator. The photo-ionization detector signal reached 71% of maximum amplitude at 50 ms pulses and followed the stimulus period at repetition rates up to 10 pulses/s. However, at high pulse rates the concentration of the odorant did not return to base level during inter-pulse intervals. Linalool decreased the intensity and shortened the response of receptor neurons to pulses. High contrast (>10 dB) in firing rate between pulses and inter-pulse intervals was observed for 1 and 4 pulses/s, both with and without background. Significantly more neurons followed the 4 pulses/s pattern when delivered over linalool; at the same time the information content was preserved almost to the control values. Rapid recovery of behavior shows that change of perceived intensity is more important than absolute stimulus intensity. While decreasing the response intensity, background odor preserved the temporal parameters of the specific signal.  相似文献   

17.
Male Manduca sexta moths are attracted to a mixture of two components of the female’s sex pheromone at the natural concentration ratio. Deviation from this ratio results in reduced attraction. Projection neurons innervating prominent male-specific glomeruli in the male’s antennal lobe produce maximal synchronized spiking activity in response to synthetic mixtures of the two components centering around the natural ratio, suggesting that behaviorally effective mixture ratios are encoded by synchronous neuronal activity. We investigated the physiological activity and morphology of downstream protocerebral neurons that responded to antennal stimulation with single pheromone components and their mixtures at various concentration ratios. Among the tested neurons, only a few gave stronger responses to the mixture at the natural ratio whereas most did not distinguish among the mixtures that were tested. We also found that the population response distinguished among the two pheromone components and their mixtures, prior to the peak population response. This observation is consistent with our previous finding that synchronous firing of antennal-lobe projection neurons reaches its maximum before the firing rate reaches its peak. Moreover, the response patterns of protocerebral neurons are diverse, suggesting that the representation of olfactory stimuli at the level of protocerebrum is complex.  相似文献   

18.
Abstract The role of plant volatiles in host plant location of the leafminer Liriomyza sativae Blanchard was studied. Four types of antennal sensilla were identified on the funiculus by scanning electron microscopy: trichoid, basiconic, clavate and grooved sensilla. An olfactory pit, containing groups of sensilla, was present on the ventral side of the funiculus. No sexual difference was detected in sensilla diversity and distribution. In behavioural assays, both males and females were attracted by the odour of the bean Phaseolus vulgaris L. They had distinct EAG responses to the bean odour. No significant sexual difference was found in behaviour or EAG responses.
Electroantennograms were recorded from female L. sativae to 14 plant volatile compounds. The most distinct EAG responses were obtained for: (1) the general green leaf volatiles 1-hexanol (E)-2-hexen-1-ol, (E)-3-hexen-1-ol and its isomers, (Z)-3-hexen-1-ol, the acetate (E)-3-hexenylacetate and the aldehyde hexanal; and (2) limonene, a compound associated with tomato, which is a key host plant of this insect. Other volatile compounds associated with host plants, such as α-pinene, myrcene, β-caryophyllene, and eugenol did not elicit responses. The ability of this insect to locate a host plant appears to be augmented by the perception of a combination of host-specific and general green leaf volatiles. A modification of the EAG recording method of Dipteran species was provided.  相似文献   

19.
Single-cell electrophysiological recordings were obtained from olfactory receptor neurons in antennal trichoid sensilla of male corn earworm, Helicoverpa zea. Spontaneous activity of the neuron specific for the major component ( Z)-11-hexadecenal, the conspecific female-emitted sex pheromone, was not affected by exposure to host plant volatiles. However, stimulations with binary mixtures of a threshold dosage of the pheromone component and increasing dosages of either linalool or ( Z)-3-hexenol significantly synergized the pheromone-specific neuron's firing rates compared with responses to the major pheromone component alone. Cross-adaptation studies confirmed that the enhanced impulses originated from the pheromone-component-tuned neuron. Because plant volatiles do not stimulate the pheromone-specific neuron when presented alone, the pheromone plus host odor blend would be interpreted as containing more pheromone than it actually does when processed by the pheromone-processing portion of the antennal lobe.  相似文献   

20.
Bursting as well as tonic firing patterns have been described in various sensory systems. In the olfactory system, spontaneous bursts have been observed in neurons distributed across several synaptic levels, from the periphery, to the olfactory bulb (OB) and to the olfactory cortex. Several in vitro studies indicate that spontaneous firing patterns may be viewed as "fingerprints" of different types of neurons that exhibit distinct functions in the OB. It is still not known, however, if and how neuronal burstiness is correlated with the coding of natural olfactory stimuli. We thus conducted an in vivo study to probe this question in the OB equivalent structure of insects, the antennal lobe (AL) of the tobacco hornworm Manduca sexta. We found that in the moth's AL, both projection (output) neurons (PNs) and local interneurons (LNs) are spontaneously active, but PNs tend to produce spike bursts while LNs fire more regularly. In addition, we found that the burstiness of PNs is correlated with the strength of their responses to odor stimulation--the more bursting the stronger their responses to odors. Moreover, the burstiness of PNs was also positively correlated with the spontaneous firing rate of these neurons, and pharmacological reduction of bursting resulted in a decrease of the neurons' responsiveness. These results suggest that neuronal burstiness reflects a physiological state of these neurons that is directly linked to their response characteristics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号