首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
RFLP and RAPD mapping in flax (Linum usitatissimum)   总被引:1,自引:0,他引:1  
A map of flax (Linum usitatissimum) using restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNAs (RAPDs), and comprising 15 linkage groups containing 94 markers, has been developed covering about 1000 cM. The mapping populations were the F2 populations from two crosses between diverse cultivars. From one cross, CI1303 and Stormont Cirrus, 20 RFLP and 520 RAPD markers were analyzed. Thirteen RFLP and 80 RAPD markers were on the 15 linkage groups, in addition to one sequence-tagged site (STS). Seven polymorphic RAPD markers were found to have unusual segregation patterns. RAPDs were expressed as dominant markers, but for these markers a prevalence of the progeny lacked a band rather than the expected one-fourth ratio. However, these exceptions may be related to the instability of the genome of Stormont Cirrus in which stable and heritable genomic changes can be induced by environmental factors. The current map could be used for the identification of markers linked to loci controlling the ability to generate heritable changes in response to environmental growth conditions, and to develop anchor loci with STSs for a more general application. Received: 20 March 1999 / Accepted: 16 December 1999  相似文献   

2.
Sorghum [Sorghum bicolor (L.) Moench] is an important crop in the semi-arid tropics that also receives growing attention in genetic research. A comprehensive reference map of the sorghum genome would be an essential research tool. Here, a combined sorghum linkage map from two recombinant inbred populations was constructed using AFLP, SSR, RFLP and RAPD markers. The map was aligned with other published sorghum maps which are briefly reviewed. The two recombinant inbred populations (RIPs) analyzed in this study consisted of 225 (RIP 1) and 226 (RIP 2) F3:5 lines, developed from the crosses IS 9830 2 E 36-1 (RIP 1) and N 13 2 E 36-1 (RIP 2), respectively. The genetic map of RIP 1 had a total length of 1,265 cM (Haldane), with 187 markers (125 AFLPs, 45 SSRs, 14 RFLPs, 3 RAPDs) distributed over ten linkage groups. The map of RIP 2 spanned 1,410 cM and contained 228 markers (158 AFLPs, 54 SSRs, 16 RFLPs) in 12 linkage groups. The combined map of the two RIPs contained 339 markers (249 AFLPs, 63 SSRs, 24 RFLPs, 3 RAPDs) on 11 linkage groups and had a length of 1,424 cM. It was in good agreement with other sorghum linkage maps, from which it deviated by a few apparent inversions, deletions, and additional distal regions.  相似文献   

3.
Fifty-four RAPD (random amplified polymorphic DNA) markers and 6 SSRs (simple sequence repeats) were included in a molecular marker map with 120 RFLPs (restriction fragment length polymorphisms) and 7 isozyme genes previously constructed using the offspring of a cross between the almond (Prunus amygdalus) cultivars 'Ferragnès' and 'Tuono'. Only highly reproducible RAPDs segregating 1:1 were used. To identify these markers, a total of 325 primers were screened, from which 41 produced RAPDs useful for mapping. Polymorphism was detected in six of the eight Prunus SSRs (simple sequence repeats) studied, thus enabling these to be mapped. All markers were placed on the 8 linkage groups previously identified. The number of new markers included in the map of 'Ferragnès' was 33 for a total of 126, and 30 in the map of 'Tuono' for a total of 99. The sizes of the maps of 'Ferragnès' (415 cM) and 'Tuono' (416 cM) were similar, representing a 5% increase over the maps constructed solely with isozymes and RFLPs. The estimated total size of the almond map was of 457 cM. Some markers were placed in zones with low density of markers and others in the extreme of linkage groups. The use of RAPD markers to complete genetic maps constructed with transferable markers is discussed.  相似文献   

4.
Genetic similarity among 45 Brassica Oleracea genotypes was compared using two molecular markers, random amplified polymorphic DNA (RAPD) and restriction fragment length polymorphisms (RFLPs). The genotypes included 37 broccolis (var. italica), five cauliflowers (var. botrytis) and three cabbages (var. capitata) which represented a wide range of commercially-available germplasm, and included open-pollinated cultivars, commercial hybrids, and inbred parents of hybrid cultivars. Fifty-six polymorphic RFLP bands and 181 polymorphic RAPD bands were generated using 15 random cDNA probes and 62 10-mer primers, respectively. The objectives were to compare RFLP and RAPD markers with regard to their (1) sampling variance, (2) rank correlations of genetic distance among sub-samples, and (3) inheritance. A bootstrap procedure was used to generate 200 random samples of size n (n=2,3,5,... 55) independently from the RAPD and RFLP data sets. The coefficient of variance (CV) was estimated for each sample. Pooled regressions of the coefficient of variance on bootstrap sample size indicated that the rate of decrease in CV with increasing sample size was the same for RFLPs and RAPDs. The rank correlation between the Nei-Li genetic similarity values for all pairs of genotypes (990) based on RFLP and RAPD data was 0.745. Differences were observed between the RFLP and RAPD dendrograms of the 45 genotypes. Overlap in the distributions of rank correlations between independent sub-samples from the RAPD data set, compared to correlations between RFLP and RAPD sub-samples, suggest that observed differences in estimation of genetic similarity between RAPDs and RFLPs is largely due to sampling error rather than due to DNA-based differences in how RAPDs and RFLPs reveal polymorphisms. A crossing algorithm was used to generate hypothetical banding patterns of hybrids based on the genotypes of the parents. The results of this study indicate that RAPDs provide a level of resolution equivalent to RFLPs for detemination of the genetic relationships among genotypes.  相似文献   

5.
 We have constructed a genetic linkage map within the cultivated gene pool of cowpea (2n=2x=22) from an F8 recombinant inbred population (94 individuals) derived from a cross between the inbreds IT84S-2049 and 524B. These breeding lines, developed in Nigeria and California, show contrasting reactions against several pests and diseases and differ in several morphological traits. Parental lines were screened with 332 random RAPD decamers, 74 RFLP probes (bean, cowpea and mung bean genomic DNA clones), and 17 AFLP primer combinations. RAPD primers were twice as efficient as AFLP primers and RFLP probes in detecting polymorphisms in this cross. The map consists of 181 loci, comprising 133 RAPDs, 19 RFLPs, 25 AFLPs, three morphological/classical markers, and a biochemical marker (dehydrin). These markers identified 12 linkage groups spanning 972 cM with an average distance of 6.4 cM between markers. Linkage groups ranged from 3 to 257 cM in length and included from 2 to 41 markers, respectively. A gene for earliness was mapped on linkage group 2. Seed weight showed a significant association with a RAPD marker on linkage group 5. This map should facilitate the identification of markers that “tag” genes for pest and disease resistance and other traits in the cultivated gene pool of cowpea. Received: 16 September 1996 / Accepted: 25 April 1997  相似文献   

6.
The first genetic map of the wild South Ameri- can barley species Hordeum chilense is presented. The map, based on an F2 population of 114 plants, contains 123 markers, including 82 RAPDs, 13 SSRs, 16 RFLPs, four SCARs, two seed storage proteins and two STS markers. The map spans 694 cM with an average distance of 5.7 cM between markers. Six additional SSRs and seven additional SCARs which were not polymorphic were assigned to chromosomes using wheat/H. chilense addition lines. Polymorphisms were revealed by 50% of the RAPD amplifications, 13% of wheat and barley SSR primers, and 78% of the Gramineae RFLP anchor probes. The utility of SSR and RFLP probes from other Gramineae species shows the usefulness of a comparative approach as a source of markers and for aligning the genetic map of H. chilense with other species. This also indicates that the overall structure of the H. chilense linkage groups is probably similar to that of the B and D genomes of wheat and the H genome of barley. Applications of the map for tritordeum and wheat breeding are discussed. Received: 20 August 2000 / Accepted: 22 September 2000  相似文献   

7.
The first linkage map of the olive (Olea europaea L.) genome has been constructed using random amplified polymorphic DNA (RAPD) and amplified fragment length polymorphisms (AFLP) as dominant markers and a few restriction fragment length polymorphisms (RFLP) and simple-sequence repeats (SSR) as codominant markers. Ninety-five individuals of a cross progeny derived from two highly heterozygous olive cultivars, Leccino and Dolce Agogia, were used by applying the pseudo test-cross strategy. From 61 RAPD primers 279 markers were obtained - 158 were scored for Leccino and 121 for Dolce Agogia. Twenty-one AFLP primer combinations gave 304 useful markers - 160 heterozygous in Leccino and 144 heterozygous in Dolce Agogia. In the Leccino map 249 markers (110 RAPD, 127 AFLP, 8 RFLP and 3 SSR) were linked. This resulted in 22 major linkage groups and 17 minor groups with fewer than four markers. In the Dolce Agogia map, 236 markers (93 RAPD, 133 AFLP, 6 RFLP and 4 SSR) were linked; 27 major linkage groups and three minor groups were obtained. Codominant RFLPs and SSRs, as well as few RAPDs in heteroduplex configuration, were used to establish homologies between linkage groups of both parents. The total distance covered was 2,765 cM and 2,445 cM in the Leccino and Dolce Agogia maps, respectively. The mean map distance between adjacent markers was 13.2 cM in Leccino and 11.9 cM in Dolce Agogia, respectively. Both AFLP and RAPD markers were homogeneously distributed in all of the linkage groups reported. The stearoyl-ACP desaturase gene was mapped on linkage group 4 of cv. Leccino.  相似文献   

8.
Comparison of the genetic maps of Brassica napus and Brassica oleracea   总被引:14,自引:0,他引:14  
 The genus Brassica consists of several hundreds of diploid and amphidiploid species. Most of the diploid species have eight, nine or ten pairs of chromosomes, known respectively as the B, C, and A genomes. Genetic maps were constructed for both B. napus and B. oleracea using mostly RFLP and RAPD markers. For the B. napus linkage map, 274 RFLPs, 66 RAPDs, and two STS loci were arranged in 19 major linkage groups and ten smaller unassigned segments, covering a genetic distance of 2125 cM. A genetic map of B. oleracea was constructed using the same set of RFLP probes and RAPD primers. The B. oleracea map consisted of 270 RFLPs, 31 RAPDs, one STS, three SCARs, one phenotypic and four isozyme marker loci, arranged into nine major linkage groups and four smaller unassigned segments, covering a genetic distance of 1606 cM. Comparison of the B. napus and B. oleracea linkage maps showed that eight out of nine B. oleracea linkage groups were conserved in the B. napus map. There were also regions in the B. oleracea map showing homoeologies with more than one linkage group in the B. napus map. These results provided molecular evidence for B. oleracea, or a closely related 2n=18 Brassica species, as the C-genome progenitor, and also reflected on the homoeology between the A and C genomes in B. napus. Received: 14 June 1996 / Accepted: 11 October 1996  相似文献   

9.
We have evaluated three DNA-based marker types for linkage map construction in Populus: RFLPs detected by Southern blot hybridization, STSs detected by a combination of PCR and RFLP analysis, and RAPDs. The mapping pedigree consists of three generations, with the F1 produced by interspecific hybridization between a P. trichocarpa female and a P. deltoides male. The F2 generation was made by inbreeding to the maximum degree permitted by the dioecious mating system of Populus. The applicability of STSs and RAPDs outside the mapping pedigree has been investigated, showing that these PCR-based marker systems are well-suited to breeding designs involving interspecific hybridization. A Populus genome map (343 markers) has been constructed from a combination of all three types. The length of the Populus genome is estimated to be 2400–2800 cM.Abbreviations RFLP restriction fragment length polymorphism - STS sequence-tagged site - PCR polymerase chain reaction - RAPD random amplified polymorphic DNA  相似文献   

10.
The first linkage map established by Lanaud et al. (1995) was used as a starting point to produce a high-density molecular linkage map. A mapping population of 181 progenies resulting from a cross between two heterozygous genotypes, a Forastero and a Trinitario (hybrid between Forastero and Criollo), was used for the linkage analysis. A new DNA isolation protocol was established, which allows enough good quality DNA to construct a genetic map with PCR-based markers. The map comprises 424 markers with an average spacing between markers of 2.1 cM. The marker types used were five isozymes, six loci from known function genes, 65 genomic RFLPs, 104 cDNA RFLPs, three telomeric probes, 30 RAPDs, 191 AFLPs and 20 microsatellites. The use of new marker types, AFLP and microsatellites, did not disturb the original order of the RFLP loci used on the previous map. The genetic markers were distributed over ten linkage groups and cover 885.4 cM. The maximum distance observed between adjacent markers was 16.2 cM, and 9.4% of all loci showed skewed segregation. Received: 2 January 2000 / Accepted: 12 February 2000  相似文献   

11.
 The bulb onion, Allium cepa L., is a diploid (2n=2x=16) plant with a huge nuclear genome. Previous genetic and cytogenetic analyses have not supported a polyploid origin for onion. We developed a low-density genetic map of morphological markers, randomly amplified polymorphic DNAs (RAPD), and restriction fragment length polymorphisms (RFLP) as a tool for onion improvement and to study the genome organization of onion. A mapping population of 58 F3 families was produced from a single F1 plant from the cross of two partially inbred lines (Brigham Yellow Globe 15-23 and Alisa Craig 43). Segregations were established for restoration of male fertility in sterile cytoplasm, complementary light-red bulb color, 14 RAPDs, 110 RFLPs revealed by 90 anonymous cDNA clones, and 2 RFLPs revealed by a cDNA clone of alliinase, the enzyme responsible for the characteristic Allium flavors. Duplicated RFLP loci were detected by 21% of the clones, of which 53% were unlinked (>30 cM), 5% loosely linked (10–30 cM), and 42% tightly linked (<10 cM). This duplication frequency is less than that reported for paleopolyploids but higher than for diploid species. We observed 40% dominant RFLPs, the highest yet reported among plants. Among duplicated RFLP loci, 19% segregated as two loci each with two codominant alleles, 52% segregated as one locus with codominant alleles and one locus with only a dominant fragment, and 29% segregated as two loci with only dominant fragments. We sequenced cDNAs detecting duplicated RFLPs; 63% showed homology to known gene families (e.g., chlorophyll binding proteins, ubiquitin, or RuBISCO), and 37% were unique clones showing significant homology to known genes of low-copy number or no homology to database sequences. Duplicated RFLPs showing linkage could be due to retroviral-like sequences in adjacent coding regions or intrachromosomal, as opposed to whole genome, duplications. Previous cytological analyses and this genetic map support intrachromosomal duplication as a mechanism contributing to the huge onion genome. Received: 3 July 1997 / Accepted: 8 August 1997  相似文献   

12.
E Noli  S Salvi  R Tuberosa 《Génome》1997,40(5):607-616
Genetic relationships have seldom been analyzed with different types of molecular markers in order to compare the information provided by each marker class. We investigated genetic relationships among nine barley cultivars using separate cluster analyses based on restriction fragment length polymorphisms (RFLPs) and random amplified polymorphic DNAs (RAPDs). Genomic DNA restricted with three enzymes and hybridized with 68 probes revealed 415 RFLPs (74.2% of all bands). Among the 128 primers used for RAPD analysis, 100 provided a reproducible profile, 89 of which revealed 202 polymorphic and 561 monomorphic bands (26.5 and 73.5%, respectively). A nonrandom distribution of 62 RAPDs with a tendency to cluster near centromeric regions was produced when these RAPDs were mapped using 76 doubled-haploid lines derived from a cross between two of the nine cultivars. The correlation between the RFLP and RAPD similarity matrices computed for the 36 pairwise comparisons among the nine cultivars was equal to 0.83. The dendrograms obtained by cluster analyses of the RFLP and RAPD data differed. These results indicate that in barley the information provided by RFLPs and RAPDs is not equivalent, most likely as a consequence of the fact that the two marker classes explore, at least in part, different portions of the genome.  相似文献   

13.
 A genetic linkage map of Lens sp. was constructed with 177 markers (89 RAPD, 79 AFLP, six RFLP and three morphological markers) using 86 recombinant inbred lines (F6:8) obtained from a partially interspecific cross. The map covered 1073 cM of the lentil genome with an average distance of 6.0 cM between adjacent markers. Previously mapped RFLP markers were used as anchor probes. The morphological markers, pod indehiscence, seed-coat pattern and flower-color loci were mapped. Out of the total linked loci, 8.4% showed segregation distortion. More than one-fourth of the distorted loci were clustered in one linkage group. AFLP markers showed more segregation distortion than the RAPD markers. The AFLP and RAPD markers were intermingled and clustering of AFLPs was seldom observed. This is the most extensive genetic linkage map of lentil to-date. The marker density of this map could be used for the identification of markers linked to quantitative trait loci in this population. Received: 6 November 1997 / Accepted: 10 February 1998  相似文献   

14.
 Three RFLP maps, as well as several RAPD maps have been developed in common bean (Phaseolus vulgaris L.). In order to align these maps, a core linkage map was established in the recombinant inbred population BAT93×Jalo EEP558 (BJ). This map has a total length of 1226 cM and comprises 563 markers, including some 120 RFLP and 430 RAPD markers, in addition to a few isozyme and phenotypic marker loci. Among the RFLPs mapped were markers from the University of California, Davis (established in the F2 of the BJ cross), University of Paris-Orsay, and University of Florida maps. These shared markers allowed us to establish a correspondence between the linkage groups of these three RFLP linkage maps. In total, the general map location (i.e., the linkage group membership and approximate location within linkage groups) has been determined for some 1070 markers. Approaches to align this core map with other current or future maps are discussed. Received: 10 March 1998 / Accepted: 22 April 1998  相似文献   

15.
M Lakshmi  M Parani  N Ram  A Parida 《Génome》2000,43(1):110-115
Genomic DNA from 84 individuals of Excoecaria agallocha from seven mangrove populations were analysed for random amplified polymorphic DNAs (RAPDs) using 16 random 10-mer primers. Polymorphism within populations varied from 20% to 31%. At the interpopulation level, 111/149 (74%) of RAPDs were polymorphic. Restriction fragment length polymorphism (RFLP) analysis of 21 individuals (3 individuals randomly selected from the 7 populations) using 30 probe-enzyme combinations revealed a high level of interpopulation polymorphism (62.2%) indicating interpopulation genetic divergence. The polymorphic RAPDs and RFLPs were pooled, and clustering was carried out based on mean similarity for individual populations. The dendrogram showed groupings of populations from the West and East Coasts of India into separate clusters, at 60% similarity level. Further, RAPD and RFLP analysis of male and female plants showed approximately the same level of variation in both sexes, and no sex-linked markers were found. These results demonstrate that considerable intrapopulation and interpopulation genetic variations exist in E. agallocha, and that lack of genetic variation is not the reason for the morphological uniformity observed across the range of the species.  相似文献   

16.
 An integrated genetic map of the dioecious species Asparagus officinalis L. has been constructed on the basis of RFLP, RAPD, AFLP and isoenzyme markers. The segregation analysis of the polymorphic markers was carried out on the progeny of five different crosses between male and female doubled-haploid clones generated by anther culture. A total of 274 markers have been organized to ten linkage groups spanning 721.4 cM. Since the haploid chromosome number of asparagus is ten, the established linkage groups probably represent the different chromosomes; however, the only group associated with a specific chromosome is the one which includes sex, whose determinant genes have been located on chromosome 5. A total of 33 molecular markers (13 RFLPs, 18 AFLPs, 2 RAPDs and 1 isoenzyme) have been located on this chromosome. The closest marker to the sex determinant is the AFLP SV marker at 3.2 cM. Received: 26 March 1998 / Accepted: 30 April 1998  相似文献   

17.
Combined RAPD and RFLP molecular linkage map of asparagus.   总被引:5,自引:0,他引:5  
C Jiang  M E Lewis  K C Sink 《Génome》1997,40(1):69-76
Two linkage maps of asparagus (Asparagus officinalis L.) were constructed using a double pseudotestcross mapping strategy with restriction fragment length polymorphisms (RFLPs), random amplified polymorphic DNAs (RAPDs), and allozymes as markers in a population generated from crossing MW25 x A19, two heterozygous parents. All data were inverted and combined with the natural data to detect linkages in repulsion phase. Two sets of data, one for each parent, were formed according to the inheritance patterns of the markers. The maternal MW25 map has a total of 163 marker loci placed in 13 linkage groups covering 1281 cM, with an average and a maximum distance between adjacent loci of 7.9 and 29 cM, respectively. The paternal A19 map has 183 marker loci covering 1324 cM in 9 linkage groups, with an average and a maximum distance between two adjacent loci of 7.7 and 29 cM, respectively. Six multiallelic RFLPs segregating in the pattern a/c x b/c and eight heterozygous loci (four RAPDs, and four RFLPs segregating in the pattern a/b x a/b (HZ loci)) were common to both maps. These 14 loci were used as bridges to align homologous groups between the two maps. In this case, RFLPs were more frequent and informative than RAPDs. Nine linkage groups in the MW25 map were homologous to six groups in the A19 map. In two cases, two or more bridge loci were common to a group; thus, the orientation of homologous linkage groups was also determined. In four other cases, only one locus was common to the two homologous groups and the orientation was unknown. Mdh, four RFLPs, and 14 RAPDs were assigned to chromosome L5, which also has the sex locus M.  相似文献   

18.
 Pearl millet [Pennisetum glaucum (L.) R.Br.] is a warm-season grass used for food, feed, fodder and forage, primarily in countries of Africa and India but grown around the world. The two most-destructive diseases to pearl millet in the United States are rust (caused by Puccinia substriata var. indica) and pyricularia leaf spot (caused by Pyricularia grisea). Genes for disease resistance to both pathogens have been transferred into agronomically acceptable forage and grain cultivars. A study was undertaken to identify molecular markers for three rust loci and one pyricularia resistance locus. Three segregating populations were screened for RAPDs using random decamer primers and for RFLPs using a core set of probes detecting single-copy markers on the pearl millet map. The rust resistance gene Rr 1 from the pearl millet subspecies P. glaucum ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr 1 gene on linkage-group 3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and ICMP 83506 were placed on linkage-group 4 by determining genetic linkage to the RFLP marker Xpsm716 (4.9 and 0.0 cM, respectively). Resistance in ICMP 83506 was also linked to the RFLP marker Xpsm306 (10.0 cM), while resistance in Tift 89D2 was linked to RAPD markers OP-K19350 (8.8 cM) and OP-O8350 (19.6 cM). Fragments from OP-K19 and OP-O8 in the ICMP 83506 population, and Xpsm306 in the Tift 89D2 population, were monomorphic. Only one RAPD marker (OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. Attempts to detect polymorphisms with rice RFLP probes linked to rice blast resistance (Pyricularia oryzae; syn=P. grisea) were unsuccessful. Received: 19 May 1997 / Accepted: 21 October 1997  相似文献   

19.
A linkage map for coffee (Coffea canephora P.) totalling 1402 cM has been developed on the basis of a population of doubled haploids. Both RFLP markers and PCR-based markers (RAPD) were used to construct 15 linkage groups. Coffee genomic and cDNA clones provided the source of the probes. In total, 47 RFLP and 100 RAPD loci have been placed on the linkage map. A rather low DNA polymorphism rate (18% for RFLP markers and 29% for RAPD primers) was detected. Only 81% of RAPD markers and 85% of RFLP markers fit an expected 11 ratio (P<0.01). The availability of a molecular linkage map has many implications for the future development of the genetics and breeding of this commercially important crop species.  相似文献   

20.
A population of 257 BC1 plants was developed from a cross between an elite processing line of tomato (Lycopersicon esculentum cvM82-1-7) and the closely related wild species L. pimpinellifolium (LA1589). The population was used to construct a genetic linkage map suitable for quantitative trait locus (QTL) analysis to be conducted in different backcross generations. The map comprises 115 RFLP, 3 RAPD and 2 morphological markers that span 1279 cM of the tomato genome with an average distance between markers of 10.7 cM. This map is comparable in length to that of the highdensity RFLP map derived from a L. esculentum x L. pennellii F2 population. The order of the markers in the two maps is also in good agreement, however there are considerable differences in the distribution of recombination along the chromosomes. The segregation of six GATA-containing loci and 47 RAPD markers was also analyzed in subsets of the population. All of the microsatellite loci and 35 (75%) of the RAPDs mapped to clusters associated with centromeric regions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号