首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Tryptophan-histidine (Trp-His) was found to suppress the activity of the Ca2 +/calmodulin (CaM)-dependent protein kinases II (CaMKII), which requires the Ca2 +-CaM complex for an initial activation. In this study, we attempted to clarify whether Trp-His inhibits Ca2 +-CaM complex formation, a CaMKII activator.

Methods

The ability of Trp-His and other peptides to inhibit Ca2 +-CaM complex formation was investigated by a Ca2 +-encapsulation fluorescence assay. The peptide-CaM interactions were illustrated by molecular dynamic simulation.

Results

We showed that Trp-His inhibited Ca2 +-CaM complex formation with a 1:1 binding stoichiometry of the peptide to CaM, considering that Trp-His reduced Hill coefficient of Ca2 +-CaM binding from 2.81 to 1.92. His-Trp also showed inhibitory activity, whereas Trp + His, 3-methyl His-Trp, and Phe-His did not show significant inhibitory activity, suggesting that the inhibitory activity was due to a peptide skeleton (irrespective of the sequence), a basic amino acid, a His residue, the N hydrogen atom of its imidazole ring, and Trp residue. In silico studies suggested the possibility that Trp-His and His-Trp interacted with the Ca2 +-binding site of CaM by forming hydrogen bonds with key Ca2 +-binding residues of CaM, with a binding free energy of − 49.1 and − 68.0 kJ/mol, respectively.

Conclusions

This is the first study demonstrating that the vasoactive dipeptide Trp-His possesses inhibitory activity against Ca2 +-CaM complex formation, which may elucidate how Trp-His inhibited CaMKII in a previous study.

General significance

The results provide a basic idea that could lead to the development of small peptides binding with high affinity to CaM and inhibiting Ca2 +-CaM complex formation in the future.  相似文献   

2.

Background

It has been reported that exposure to electromagnetic fields influences intracellular signal transduction. We studied the effects of exposure to a time-varying 1.5 T magnetic field on membrane properties, membrane cation transport and intracellular Ca2+ mobilization in relation to signals. We also studied the mechanism of the effect of exposure to the magnetic field on intracellular Ca2+ release from Ca2+ stores in adrenal chromaffin cells.

Methods

We measured the physiological functions of ER, actin protein, and mitochondria with respect to a neurotransmitter-induced increase in Ca2+ in chromaffin cells exposed to the time-varying 1.5 T magnetic field for 2 h.

Results

Exposure to the magnetic field significantly reduced the increase in [Ca2+]i. The exposure depolarized the mitochondria membrane and lowered oxygen uptake, but did not reduce the intracellular ATP content. Magnetic field-exposure caused a morphological change in intracellular F-actin. F-actin in exposed cells seemed to be less dense than in control cells, but the decrease was smaller than that in cytochalasin D-treated cells. The increase in G-actin (i.e., the decrease in F-actin) due to exposure was recovered by jasplakinolide, but inhibition of Ca2+ release by the exposure was unaffected.

Conclusions and general significance

These results suggest that the magnetic field-exposure influenced both the ER and mitochondria, but the inhibition of Ca2+ release from ER was not due to mitochondria inhibition. The effect of eddy currents induced in the culture medium may indirectly influence intracellular actin and suppress the transient increase in [Ca2+]i.  相似文献   

3.

Aims

To investigate the effects of n − 3 polyunsaturated fatty acids on cerebral circulation, ovariectomized (OVX) rats were administered with phospholipids in krill oil (KPL) or triglycerides in fish oil (FTG); effects on the Ca2 + regulating system in their basilar artery (BA) were then analyzed.

Main methods

The rats were divided into 4 groups: control, OVX, OVX given KPL (OVXP), and OVX given FTG (OVXT) orally, daily for 2 weeks. Time dependent relaxation (TDR) of contractile response to 5HT in BA was determined myographically, Na+/Ca2 + exchanger (NCX) 1 mRNA expression was determined by real time PCR, and nucleotides were analyzed by HPLC.

Key findings

The level of TDR in OVX that was significantly lower in the control was inhibited by l-NAME and indomethacin; TEA inhibited TDR totally in the control but only partly in OVXP and OVXT. Relaxation induced by the addition of 5 mM KCl to the BA pre-contracted with 5-HT was inhibited by TEA in the controls, OVXP and OVXT, but not in OVX. Overexpression of NCX1 mRNA in the BA from OVX was significantly inhibited by FTG. The ratio of ADP/ATP in cerebral arteries from OVX was significantly inhibited by KPL and FTG. Levels of triglyceride and arachidonic acid in the plasma of OVX increased, but were significantly inhibited by KPL and FTG.

Significance

Ovarian dysfunction affects Ca2 + activated-, ATP-sensitive-K+ channels and NCX1, which play crucial roles in the autoregulation of cerebral blood flow. Also, KPL may become as good a supplement as FTG for postmenopausal women.  相似文献   

4.

Background

Sleep is a physiological event that directly influences health by affecting the immune system, in which calcium (Ca2 +) plays a critical signaling role. We performed live cell measurements of cytosolic Ca2 + mobilization to understand the changes in Ca2 + signaling that occur in splenic immune cells after various periods of sleep deprivation (SD).

Methods

Adult male mice were subjected to sleep deprivation by platform technique for different periods (from 12 to 72 h) and Ca2 + intracellular fluctuations were evaluated in splenocytes by confocal microscopy. We also performed spleen cell evaluation by flow cytometry and analyzed intracellular Ca2 + mobilization in endoplasmic reticulum and mitochondria. Additionally, Ca2 + channel gene expression was evaluated

Results

Splenocytes showed a progressive loss of intracellular Ca2 + maintenance from endoplasmic reticulum (ER) stores. Transient Ca2 + buffering by the mitochondria was further compromised. These findings were confirmed by changes in mitochondrial integrity and in the performance of the store operated calcium entry (SOCE) and stromal interaction molecule 1 (STIM1) Ca2 + channels.

Conclusions and general significance

These novel data suggest that SD impairs Ca2 + signaling, most likely as a result of ER stress, leading to an insufficient Ca2 + supply for signaling events. Our results support the previously described immunosuppressive effects of sleep loss and provide additional information on the cellular and molecular mechanisms involved in sleep function.  相似文献   

5.

Background

Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na+/K+-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na+/K+-ATPase expression and activity in rats injected with Bothrops alternatus snake venom.

Methods

Male Wistar rats were injected with venom (0.8 mg/kg, i.v.) and renal function was assessed 6, 24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na+/K+-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively.

Results

Venom caused lobulation of the capillary tufts, dilation of Bowman's capsular space, F-actin disruption in Bowman's capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na+/K+-ATPase α1 subunit were increased 6 h post-venom, whereas Na+/K+-ATPase activity increased 6 h and 24 h post-venom.

Conclusions

Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na+/K+-ATPase expression and activity in the early phase of renal damage.

General significance

Enhanced Na+/K+-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage.  相似文献   

6.

Aims

The purpose of this study was to investigate the antinociceptive effect of epicatechin as well as the possible mechanisms of action in diabetic rats.

Main methods

Rats were injected with streptozotocin to produce hyperglycemia. The formalin test was used to assess the nociceptive activity.

Key findings

Acute pre-treatment with epicatechin (0.03–30 mg/kg, i.p.) prevented formalin-induced nociception in diabetic rats. Furthermore, daily or every other day treatment for 2 weeks with epicatechin (0.03–30 mg/kg, i.p.) also prevented formalin-induced nociception in diabetic rats. Acute epicatechin-induced antinociception was prevented by l-NAME (Nω-nitro-l-arginine methyl ester hydrochloride, 1–10 mg/kg, non-selective nitric oxide synthesis inhibitor), 7-nitroindazole (0.1–1 mg/kg, selective neuronal nitric oxide synthesis inhibitor), ODQ (1H-(1,2,4)-oxadiazolo(4,2-a)quinoxalin-1-one, 0.2–2 mg/kg, guanylyl cyclase inhibitor) or glibenclamide (1–10 mg/kg, ATP-sensitive K+ channel blocker). Moreover, epicatechin (3 mg/kg)-induced antinociception was fully prevented by methiothepin (0.1–1 mg/kg, serotonergic receptor antagonist), WAY-100635 (0.03–0.3 mg/kg, selective 5-HT1A receptor antagonist) or SB-224289 (0.03–0.3 mg/kg, selective 5-HT1B receptor antagonist). In contrast, BRL-15572 (0.03–0.3 mg/kg, selective 5-HT1D receptor antagonist) only slightly prevented the antinociceptive effect of epicatechin. Naloxone (0.1–1 mg/kg, opioid antagonist) did not modify epicatechin's effect.

Significance

Data suggest the involvement of the nitric oxide–cyclic GMP–K+ channel pathway as well as activation of 5-HT1A and 5HT1B, and at a lesser extent, 5-HT1D, but not opioid, receptors in the antinociceptive effect of epicatechin in diabetic rats. Our data suggest that acute or chronic treatment with epicatechin may prove to be effective to treat nociceptive hypersensitivity in diabetic patients.  相似文献   

7.

Background

The effect of indomethacin (INDO) on Ca2 + mobilization, cytotoxicity, apoptosis and caspase activation and the potential protective effect of quercetin (QUE), resveratrol (RES) and rutin (RUT) were determined in Caco-2 cells.

Methods

Caco-2 cells were incubated with INDO in the presence or absence of QUE, RES or RUT. The concentrations of Ca2 + in the cytosol (Fluo-3 AM) and mitochondria (Rhod-2 AM) were determined as well as the cytotoxicity (MTT reduction and LDH leakage), apoptosis (TUNEL) and caspase-3 and 9 activities.

Results

INDO promoted Ca2 + efflux from the endoplasmic reticulum (ER), resulting in an early, but transient, increment of cytosolic Ca2 + at 3.5 min, followed by a subsequent increment of intra-mitochondrial Ca2 + at 24 min. INDO also induced cytotoxicity, apoptosis, and increased caspase activities and cytochrome c release. All these alterations were prevented by the inhibitors of the IP3R and RyR receptors, 2-Aminoethoxydiphenyl borate (2-APB) and dantrolene. QUE was the most efficient polyphenol in preventing Ca2 + mobilization induced by INDO and all of its consequences including cytotoxicity and apoptosis.

Conclusions

In Caco-2 cells, INDO stimulates ER Ca2 + mobilization, probably through the activation of IP3R and RyR receptors, and the subsequent entry of Ca2 + into the mitochondria. Polyphenols protected the cells against the Ca2 + mobilization induced by INDO and its consequences on cytotoxicity and apoptosis.

General significance

These results confirm the possibility of using polyphenols and particularly QUE for the protection of the gastroduodenal mucosa in subjects consuming NSAIDs.  相似文献   

8.
9.
10.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

11.

Aim

Promoter-targeted small activating RNAs (saRNAs) have been shown to be able to induce target gene expression, a mechanism known as RNA activation (RNAa). The present study tested whether saRNA can induce the overexpression of TRPV5 in human cells derived from the kidney and subsequently manipulate cell calcium uptake.

Main methods

Three saRNAs complementary to the TRPV5 promoter were synthesized and transfected into cells. TRPV5 expression at the RNA and protein levels was analyzed by quantitative real-time PCR and Western blotting respectively. For functional study, transcellular Ca2 + transportation was tested by fura-2 analysis. Dihydrotestosterone (DHT), a suppressor of cellular calcium transportation, was administered to challenge the activating effect of selected saRNA.

Key findings

One of these synthesized saRNAs, ds-2939, significantly induced the expression of TRPV5 at both mRNA and protein levels. Fura-2 analysis revealed that the intracellular Ca2 + concentration was elevated by ds-2939. DHT treatment reduced transmembrane Ca2 + transport, which was partially antagonized by ds-2939.

Significance

Our results suggest that a saRNA targeting TRPV5 promoter can be utilized to manipulate the transmembrane Ca2 + transport by upregulating the expression of TRPV5 and may serve as an alternative for the treatment of Ca2 + balance-related diseases.  相似文献   

12.

Background

In recent years, as our understanding of the various roles played by Ca2 + signaling in development and differentiation has expanded, the challenge of imaging Ca2 + dynamics within living cells, tissues, and whole animal systems has been extended to include specific signaling activity in organelles and non-membrane bound sub-cellular domains.

Scope of review

In this review we outline how recent advances in genetics and molecular biology have contributed to improving and developing current bioluminescence-based Ca2 + imaging techniques. Reporters can now be targeted to specific cell types, or indeed organelles or domains within a particular cell.

Major conclusions

These advances have contributed to our current understanding of the specificity and heterogeneity of developmental Ca2 + signaling. The improvement in the spatial resolution that results from specifically targeting a Ca2 + reporter has helped to reveal how a ubiquitous signaling messenger like Ca2 + can regulate coincidental but different signaling events within an individual cell; a Ca2 + signaling paradox that until now has been hard to explain.

General significance

Techniques used to target specific reporters via genetic means will have applications beyond those of the Ca2 + signaling field, and these will, therefore, make a significant contribution in extending our understanding of the signaling networks that regulate animal development. This article is part of a Special Issue entitled Biochemical, biophysical and genetic approaches to intracellular calcium signalling.  相似文献   

13.

Aims

Aristolochic acid (AA) nephrotoxicity is related to accumulation of methylglyoxal (MGO) and Nε-(carboxymethyl)lysine (CML) in the mouse kidney. We studied the activity of renal semicarbazide-sensitive amine oxidase (SSAO), a key enzyme involved in MGO generation, in AA-treated mice, and investigated nephroprotective effects produced by metformin, a MGO scavenger.

Methods

Mice were orally administered water or metformin for 15 days (12 or 24 mg kg− 1 day− 1), and injected AA (5 mg kg− 1 day− 1) intraperitoneally for 8 days starting on day 8. Renal function was studied, and histopathological examination, determination of renal SSAO activity, and measurement of MGO levels were performed.

Key findings

Compared to control mice, AA-injected mice showed significant renal damage and approximately 2.7-fold greater renal SSAO activity (p < 0.05). Further, compared to control treatment, administration of 12 mg/kg metformin inhibited formation of renal lesions, and significantly decreased renal MGO levels (37.33 ± 9.78 vs. 5.89 ± 2.64 μg/mg of protein, respectively, p < 0.01). In the AA-treated mice, metformin also inhibited the accumulation of CML in renal tubules, but did not affect SSAO activity.

Significance

This study is the first to show elevated renal SSAO activity in AA-treated mice, which could be involved in MGO accumulation. Moreover, MGO scavenging by metformin reduces AA nephrotoxicity. These findings suggest that reducing MGO accumulation produces nephroprotection, revealing new therapeutic strategies for the management. SSAO is a key enzyme involved in MGO generation, and consequently, inhibition of renal SSAO activity is worth investigating in AA nephrotoxicity and other renal pathologies further.  相似文献   

14.

Aims

We have previously demonstrated that propyl gallate has a Ca2 + sensitizing effect on the force generation in membrane-permeabilized (skinned) cardiac muscle fibers. However, in vivo beneficial effects of propyl gallate as a novel Ca2 + sensitizer remain uncertain. In the present study, we aim to explore in vivo effects of propyl gallate.

Main methods

We compared effects of propyl gallate on ex vivo intact cardiac muscle fibers and in vivo hearts in healthy mice with those of pimobendan, a clinically used Ca2 + sensitizer. The therapeutic effect of propyl gallate was investigated using a mouse model of dilated cardiomyopathy (DCM) with reduced myofilament Ca2 + sensitivity due to a deletion mutation ΔK210 in cardiac troponin T.

Key findings

Propyl gallate, as well as pimobendan, showed a positive inotropic effect. Propyl gallate slightly increased the blood pressure without changing the heart rate in healthy mice, whereas pimobendan decreased the blood pressure probably through vasodilation via inhibition of phosphodiesterase and increased the heart rate. Propyl gallate prevented cardiac remodeling and systolic dysfunction and significantly improved the life-expectancy of knock-in mouse model of DCM with reduced myofilament Ca2 + sensitivity due to a mutation in cardiac troponin T. On the other hand, gallate, a similarly strong antioxidant polyphenol lacking Ca2 + sensitizing action, had no beneficial effects on the DCM mice.

Significance

These results suggest that propyl gallate might be useful for the treatment of inherited DCM caused by a reduction in the myofilament Ca2 + sensitivity.  相似文献   

15.

Aims

We previously reported that fluvoxamine, a selective serotonin reuptake inhibitor with high affinity for the σ1-receptor (σ1R), ameliorates cardiac hypertrophy and dysfunction via σ1R stimulation. Although σ1R on non-cardiomyocytes interacts with the IP3 receptor (IP3R) to promote mitochondrial Ca2 + transport, little is known about its physiological and pathological relevance in cardiomyocytes.

Main methods

Here we performed Ca2 + imaging and measured ATP production to define the role of σ1Rs in regulating sarcoplasmic reticulum (SR)-mitochondrial Ca2 + transport in neonatal rat ventricular cardiomyocytes treated with angiotensin II to promote hypertrophy.

Key finding

These cardiomyocytes exhibited imbalances in expression levels of σ1R and IP3R and impairments in both phenylephrine-induced mitochondrial Ca2 + mobilization from the SR and ATP production. Interestingly, σ1R stimulation with fluvoxamine rescued impaired mitochondrial Ca2 + mobilization and ATP production, an effect abolished by treatment of cells with the σ1R antagonist, NE-100. Under physiological conditions, fluvoxamine stimulation of σ1Rs suppressed intracellular Ca2 + mobilization through IP3Rs and ryanodine receptors (RyRs). In vivo, chronic administration of fluvoxamine to TAC mice also rescued impaired ATP production.

Significance

These results suggest that σ1R stimulation with fluvoxamine promotes SR-mitochondrial Ca2 + transport and mitochondrial ATP production, whereas σ1R stimulation suppresses intracellular Ca2 + overload through IP3Rs and RyRs. These mechanisms likely underlie in part the anti-hypertrophic and cardioprotective action of the σ1R agonists including fluvoxamine.  相似文献   

16.
17.

Introduction

MicroRNAs (miRs) play important roles in the development and progression of human cancers. MiR-146a down-regulates epidermal growth factor receptor and the nuclear factor-κB regulatory kinase interleukin-1 receptor-associated kinase 1 genes that play important roles in lung carcinogenesis. This study was conducted to evaluate the association between rs2910164C>G, a functional polymorphism in the pre-miR-146a, and lung cancer risk.

Material and methods

The rs2910164C>G genotypes were determined in 1094 patients with lung cancer and 1100 healthy controls who were frequency matched for age and gender.

Results

The rs2910164 CG or GG genotype was associated with a significantly decreased risk for lung cancer compared to that of the CC genotype (adjusted odds ratio = 0.80, 95% confidence interval = 0.66–0.96, P = 0.02). When subjects were stratified according to smoking exposure (never, light and heavy smokers), the effect of the rs2910164C>G genotype on lung cancer risk was significant only in never smokers (adjusted odds ratio = 0.66, 95% confidence interval = 0.45–0.96, P = 0.03, under a dominant model for the C allele) and decreased as smoking exposure level increased (Ptrend < 0.001). In line with this result, the level of miR-146a expression in the tumor tissues was significantly higher in the GG genotype than in the CC or CG genotype only in never-smokers (P = 0.02).

Conclusions

These findings suggest that the rs2910164C>G in pre-miR-146a may contribute to genetic susceptibility to lung cancer, and that miR-146a might be involved in lung cancer development.  相似文献   

18.

Background

It has been suggested that mitochondrial function plays a central role in cardiovascular diseases associated with particulate matter inhalation. The aim of this study was to evaluate this hypothesis, with focus on cardiac O2 and energetic metabolism, and its impact over cardiac contractility.

Methods

Swiss mice were intranasally instilled with either residual oil fly ash (ROFA) (1.0 mg/kg body weight) or saline solution. After 1, 3 or 5 h of exposure, O2 consumption was evaluated in heart tissue samples. Mitochondrial respiration, respiratory chain complexes activity, membrane potential and ATP content and production rate were assessed in isolated mitochondria. Cardiac contractile reserve was evaluated according to the Langendorff technique.

Results

Three hours after ROFA exposure, tissue O2 consumption was significantly decreased by 35% (from 1180 ± 70 to 760 ± 60 ng-at O/min g tissue), as well as mitochondrial rest (state 4) and active (state 3) respiration, by 30 and 24%, respectively (control state 4: 88 ± 5 ng-at O/min mg protein; state 3: 240 ± 20 ng-at O/min mg protein). These findings were associated with decreased complex II activity, mitochondrial depolarization and deficient ATP production. Even though basal contractility was not modified (control: 75 ± 5 mm Hg), isolated perfused hearts failed to properly respond to isoproterenol in ROFA-exposed mice. Tissue O2 consumption rates positively correlated with cardiac contractile state in controls (r2 = 0.8271), but not in treated mice (r2 = 0.1396).

General Significance

The present results show an impaired mitochondrial function associated with deficient cardiac contractility, which could represent an early cardiovascular alteration after the exposure to environmental particulate matter.  相似文献   

19.

Background

Dietary and recycled iron are in the Fe2 + oxidation state. However, the metal is transported in serum by transferrin as Fe3 +. The multi-copper ferroxidase ceruloplasmin is suspected to be the missing link between acquired Fe2 + and transported Fe3 +.

Methods

This study uses the techniques of chemical relaxation and spectrophotometric detection.

Results

Under anaerobic conditions, ceruloplasmin captures and oxidizes two Fe2 +. The first uptake occurs in domain 6 (< 1 ms) at the divalent iron-binding site. It is accompanied by Fe2 + oxidation by Cu2 +D6. Fe3 + is then transferred from the binding site to the holding site. Cu+D6 is then re-oxidized by a Cu2 + of the trinuclear cluster in about 200 ms. The second Fe2 + uptake and oxidation involve domain 4 and are under the kinetic control of a 200 s change in the protein conformation. With transferrin and in the formed ceruloplasmin–transferrin adduct, two Fe3 + are transferred from their holding sites to two C-lobes of two transferrins. The first transfer (~ 100 s) is followed by conformation changes (500 s) leading to the release of monoferric transferrin. The second transfer occurs in two steps in the 1000–10,000 second range.

Conclusion

Fe3 + is transferred after Fe2 + uptake and oxidation by ceruloplasmin to the C-lobe of transferrin in a protein–protein adduct. This adduct is in a permanent state of equilibrium with all the metal-free or bounded ceruloplasmin and transferrin species present in the medium.

General significance

Ceruloplasmin is a go-between dietary or recycled Fe2 + and transferrin transported Fe3 +.  相似文献   

20.

Aims

This experiment investigated the effects of sub-chronic aluminum chloride (AlCl3) exposure on rat ovaries.

Main methods

Eighty female Wistar (5 weeks old) rats, weighed 110–120 g, were randomly divided into four treatment groups: control group (CG), low-dose group (LG, 64 mg/kg BW AlCl3), mid-dose group (MG, 128 mg/kg BW AlCl3) and high-dose group (HG, 256 mg/kg BW AlCl3). The AlCl3 was administered in drinking water for 120 days. The ovarian ultrastructure was observed. The activities of acid phosphatase (ACP), alkaline phosphatase (ALP), succinate dehydrogenase (SDH), Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase, the contents of Fe, Cu and Zn, and the protein expression of follicle-stimulating hormone receptor (FSHR) and luteinizing hormone receptor (LHR) in the ovary were determined.

Key findings

The results showed that the structure of the ovary was disrupted, the activities of ALP, ACP, SDH, Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase, the contents of Zn, Fe and the protein expression of FSHR and LHR were lowered, and the content of Cu was increased in AlCl3-treated rats than those in control.

Significance

The results indicate that sub-chronic AlCl3 exposure caused the damage of the ovarian structure, the disturbed metabolism of Fe, Zn and Cu and the decreased activities of Na+–K+-ATPase, Mg2 +-ATPase and Ca2 +-ATPase in the ovary, which could result in suppressed energy supply in the ovary. A combination of suppression of energy supply and reduction of expression of FSHR and LHR could inhibit ovulation and corpus luteum development, leading to infertility in female rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号