首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Acute renal failure is a serious complication of human envenoming by Bothrops snakes. The ion pump Na+/K+-ATPase has an important role in renal tubule function, where it modulates sodium reabsorption and homeostasis of the extracellular compartment. Here, we investigated the morphological and functional renal alterations and changes in Na+/K+-ATPase expression and activity in rats injected with Bothrops alternatus snake venom.

Methods

Male Wistar rats were injected with venom (0.8 mg/kg, i.v.) and renal function was assessed 6, 24, 48 and 72 h and 7 days post-venom. The rats were then killed and renal Na+/K+-ATPase activity was assayed based on phosphate release from ATP; gene and protein expressions were assessed by real time PCR and immunofluorescence microscopy, respectively.

Results

Venom caused lobulation of the capillary tufts, dilation of Bowman's capsular space, F-actin disruption in Bowman's capsule and renal tubule brush border, and deposition of collagen around glomeruli and proximal tubules that persisted seven days after envenoming. Enhanced sodium and potassium excretion, reduced proximal sodium reabsorption, and proteinuria were observed 6 h post-venom, followed by a transient decrease in the glomerular filtration rate. Gene and protein expressions of the Na+/K+-ATPase α1 subunit were increased 6 h post-venom, whereas Na+/K+-ATPase activity increased 6 h and 24 h post-venom.

Conclusions

Bothrops alternatus venom caused marked morphological and functional renal alterations with enhanced Na+/K+-ATPase expression and activity in the early phase of renal damage.

General significance

Enhanced Na+/K+-ATPase activity in the early hours after envenoming may attenuate the renal dysfunction associated with venom-induced damage.  相似文献   

2.

Background

Ferritin exhibits complex behavior in the ultracentrifuge due to variability in iron core size among molecules. A comprehensive study was undertaken to develop procedures for obtaining more uniform cores and assessing their homogeneity.

Methods

Analytical ultracentrifugation was used to measure the mineral core size distributions obtained by adding iron under high- and low-flux conditions to horse spleen (apoHoSF) and human H-chain (apoHuHF) apoferritins.

Results

More uniform core sizes are obtained with the homopolymer human H-chain ferritin than with the heteropolymer horse spleen HoSF protein in which subpopulations of HoSF molecules with varying iron content are observed. A binomial probability distribution of H- and L-subunits among protein shells qualitatively accounts for the observed subpopulations. The addition of Fe2+ to apoHuHF produces iron core particle size diameters from 3.8 ± 0.3 to 6.2 ± 0.3 nm. Diameters from 3.4 ± 0.6 to 6.5 ± 0.6 nm are obtained with natural HoSF after sucrose gradient fractionation. The change in the sedimentation coefficient as iron accumulates in ferritin suggests that the protein shell contracts ∼ 10% to a more compact structure, a finding consistent with published electron micrographs. The physicochemical parameters for apoHoSF (15%/85% H/L subunits) are M = 484,120 g/mol, ν? = 0.735 mL/g, s20,w = 17.0 S and D20,w = 3.21 × 107 cm2/s; and for apoHuHF M = 506,266 g/mol, ν? = 0.724 mL/g, s20,w = 18.3 S and D20,w = 3.18 × 107 cm2/s.

Significance

The methods presented here should prove useful in the synthesis of size controlled nanoparticles of other minerals.  相似文献   

3.
4.

Background

Tryptophan-histidine (Trp-His) was found to suppress the activity of the Ca2 +/calmodulin (CaM)-dependent protein kinases II (CaMKII), which requires the Ca2 +-CaM complex for an initial activation. In this study, we attempted to clarify whether Trp-His inhibits Ca2 +-CaM complex formation, a CaMKII activator.

Methods

The ability of Trp-His and other peptides to inhibit Ca2 +-CaM complex formation was investigated by a Ca2 +-encapsulation fluorescence assay. The peptide-CaM interactions were illustrated by molecular dynamic simulation.

Results

We showed that Trp-His inhibited Ca2 +-CaM complex formation with a 1:1 binding stoichiometry of the peptide to CaM, considering that Trp-His reduced Hill coefficient of Ca2 +-CaM binding from 2.81 to 1.92. His-Trp also showed inhibitory activity, whereas Trp + His, 3-methyl His-Trp, and Phe-His did not show significant inhibitory activity, suggesting that the inhibitory activity was due to a peptide skeleton (irrespective of the sequence), a basic amino acid, a His residue, the N hydrogen atom of its imidazole ring, and Trp residue. In silico studies suggested the possibility that Trp-His and His-Trp interacted with the Ca2 +-binding site of CaM by forming hydrogen bonds with key Ca2 +-binding residues of CaM, with a binding free energy of − 49.1 and − 68.0 kJ/mol, respectively.

Conclusions

This is the first study demonstrating that the vasoactive dipeptide Trp-His possesses inhibitory activity against Ca2 +-CaM complex formation, which may elucidate how Trp-His inhibited CaMKII in a previous study.

General significance

The results provide a basic idea that could lead to the development of small peptides binding with high affinity to CaM and inhibiting Ca2 +-CaM complex formation in the future.  相似文献   

5.

Background

Chitinase inhibitors have chemotherapeutic potential as fungicides, pesticides and antiasthmatics. The majority of chitinase inhibitors reported are natural products like argifin, argifin linear fragments, argadin, allosamidin and disulfide-cyclized peptides. Here, we report a novel peptidic inhibitor API (Aspartic Protease Inhibitor), isolated from Bacillus licheniformis that inhibits chitinase A (ChiA) from Serratia marcescens.

Methods

The binding affinity of API with ChiA and type of inhibition was determined by the inhibition kinetics assays. Fluorescence and CD spectroscopic analysis and chemical modification of API with different affinity reagents elucidated the mechanism of binding of API with ChiA.

Results and conclusions

The peptide has an amino acid sequence N-Ile1-Cys2-Glu3-Ala4-Glu5-His6-Lys7-Trp8-Gly9-Asp10-Tyr11-Leu12-Asp13-C. The ChiA–API kinetic interactions reveal noncompetitive, irreversible and tight binding nature of API with I50 = 600 nM and Ki = 510 nM in the presence of chromogenic substrate p-nitrophenyl-N,N′-diacetyl-β-chitobioside[p-NP-(GlcNAc)2]. The inhibition progress curves show a two-step slow tight binding inhibition mechanism with the rate constant k5 = 8.7 ± 1 × 10− 3 s− 1 and k6 = 7.3 ± 0.6 × 10− 5 s− 1. CD-spectra and tryptophanyl fluorescence analysis of ChiA incubated with increasing API concentrations confirms conformational changes in enzyme structure which may be due to irreversible denaturation of enzyme upon binding of API. Chemical modifications by WRK abolished the anti-chitinase activity of API and revealed the involvement of carboxyl groups in the enzyme inactivation. Abolished isoindole fluorescence of OPTA-labeled ChiA demonstrates the irreversible denaturation of ChiA upon incubation with API for prolonged time and distortion of active site of the enzyme.

General significance

The data provide useful information that could lead to the generation of drug-like, natural product-based chitinase inhibitors.  相似文献   

6.

Background

The concentration of extracellular nucleotides is regulated by enzymes that have their catalytic site facing the extracellular space, the so-called ecto-enzymes.

Methods

We used LLC-PK1 cells, a well-characterized porcine renal proximal tubule cell line, to biochemically characterize ecto-ATPase activity in the luminal surface. The [γ-32P]Pi released after reaction was measured in aliquots of the supernatant by liquid scintillation.

Results

This activity was linear with time up to 20 min of reaction and stimulated by divalent metals. The ecto-ATPase activity measured in the presence of 5 mM MgCl2 was (1) optimum at pH 8, (2) insensitive to different inhibitors of intracellular ATPases, (3) inhibited by 1 mM suramin, an inhibitor of ecto-ATPases, (4) sensitive to high concentrations of sodium azide (NaN3) and (5) also able to hydrolyze ADP in the extracellular medium. The ATP:ADP hydrolysis ratio calculated was 4:1. The ecto-ADPase activity was also inhibited by suramin and NaN3. The dose–response of ATP revealed a hyperbolic profile with maximal velocity of 25.2 ± 1.2 nmol Pi x mg− 1 x min− 1 and K0.5 of 0.07 ± 0.01 mM. When cells were submitted to ischemia, the E-NTPDase activity was reduced with time, achieving 71% inhibition at 60 min of ischemia.

Conclusion

Our results suggest that the ecto-ATPase activity of LLC-PK1 cells has the characteristics of a type 3 E-NTPDase which is inhibited by ischemia.

General Significance

This could represent an important pathophysiologic mechanism that explains the increase in ATP concentration in the extracellular milieu in the proximal tubule during ischemia.  相似文献   

7.
8.

Background

Recent studies suggested that resting heart rate (RHR) might be an independent predictor of cardiovascular mortality and morbidity. Nonetheless, the interrelation between RHR and cardiovascular diseases is not clear. In order to resolve this puzzle, the importance of genetic determinants of RHR has been recently suggested, but it needs to be further investigated.

Objective

The aim of this study was to estimate the contribution of common genetic variations on RHR using Genome Wide Association Study.

Methods

We performed a Genome Wide Association Study in an isolated population cohort of 1737 individuals, the Italian Network on Genetic Isolates — Friuli Venezia Giulia (INGI-FVG). Moreover, a haplotype analysis was performed. A regression tree analysis was run to highlight the effect of each haplotype combination on the phenotype.

Results

A significant level of association (p < 5 × 10− 8) was detected for Single Nucleotide Polymorphisms (SNPs) in two genes expressed in the heart: MAML1 and CANX. Founding that the three different variants of the haplotype, which encompass both genes, yielded a phenotypic correlation. Indeed, a haplotype in homozygosity is significantly associated with the lower quartile of RHR (RHR ≤ 58 bpm). Moreover no significant association was found between cardiovascular risk factors and the different haplotype combinations.

Conclusion

Mastermind-like 1 and Calnexin were found to be associated with RHR. We demonstrated a relation between a haplotype and the lower quartile of RHR in our populations. Our findings highlight that genetic determinants of RHR may be implicated in determining cardiovascular diseases and could allow a better risk stratification.  相似文献   

9.

Background

Chronic inflammation contributes to the development of pathological disorders including insulin resistance and atherosclerosis. Identification of anti-inflammatory natural products can prevent the inflammatory diseases.

Methods

Anti-inflammatory effects of blue-green algae (BGA), i.e., Nostoc commune var. sphaeroides Kützing (NO) and Spirulina platensis (SP), were compared in RAW 264.7 and mouse bone marrow-derived macrophages (BMM) as well as splenocytes from apolipoprotein E knockout (apoE−/−) mice fed BGA.

Results

When macrophages pretreated with 100 μg/ml NO lipid extract (NOE) or SP lipid extract (SPE) were activated by lipopolysaccharide (LPS), expression and secretion of pro-inflammatory cytokines, such as tumor necrosis factor α (TNFα), interleukin 1β (IL-1β), and IL-6, were significantly repressed. NOE and SPE also significantly repressed the expression of TNFα and IL-1β in BMM. LPS-induced secretion of IL-6 was lower in splenocytes from apoE−/− fed an atherogenic diet containing 5% NO or SP for 12 weeks. In RAW 264.7 macrophages, NOE and SPE markedly decreased nuclear translocation of NF-κB. The degree of repression of pro-inflammatory gene expression by algal extracts was much stronger than that of SN50, an inhibitor of NF-κB nuclear translocation. Trichostatin A, a pan histone deacetylase inhibitor, increased basal expression of IL-1β and attenuated the repression of the gene expression by SPE. SPE significantly down-regulated mRNA abundance of 11 HDAC isoforms, consequently increasing acetylated histone 3 levels.

Conclusion

NOE and SPE repress pro-inflammatory cytokine expression and secretion in macrophages and splenocytes via inhibition of NF-κB pathway. Histone acetylation state is likely involved in the inhibition.

General significance

This study underscores natural products can exert anti-inflammatory effects by epigenetic modifications such as histone acetylation.  相似文献   

10.

Background

Although dietary treatments can successfully reduce blood lipids in hypercholesterolemic subjects, individual variation in that response has on occasion been linked to allelic differences. SNP rs12449157 has shown association with HDL-C concentrations in GWAS and falls in the glucose-fructose oxidoreductase domain containing 2 (GFOD2) locus. Of interest, previous data suggest that this SNP may be under environmentally driven selection. Thus, the aim of this study was to assess if rs12449157 may mediate the response of lipid traits to a dietary supplementation (DS) with soy protein and soluble fiber in a Mexican population with hypercholesterolemia.

Methods

Forty-one subjects with hypercholesterolemia were given a low saturated fat diet (LSFD) for 1 month, followed by a LSFD + DS that included 25 g of soy protein and 15 g of soluble fiber (S/SF) daily for 2 months. Anthropometric, clinical, biochemical and dietary variables were determined. We analyzed the gene–diet interaction between the GFOD2 genotype, with the minor allele frequency of 0.24, and the DS on total cholesterol (TC) and LDL-C concentrations.

Results

Hypercholesterolemic subjects with GFOD2 rs12449157 G allele had higher serum TC and LDL-C at the baseline and showed a greater response to the LSCD + S/SF (− 83.9 and − 57.5 mg/dl, respectively) than those with GFOD2 AA genotype (− 40.1 and − 21.8 mg/dl, respectively) (P = 0.006 for TC, 0.025 for LDL-C, respectively).

Conclusion

The observed differences in allele-driven, diet-induced changes in blood lipids may be the result of a recent environmentally driven selection on the rs12449157 minor allele. Variation in the GFOD2 gene contributes to the genetic basis for a differential response to a cholesterol- or lipid-lowering diet.  相似文献   

11.

Background and Aims

This study aimed at functional characterization of the tight junction protein occludin using the occludin-deficient mouse model.

Methods

Epithelial transport and barrier functions were characterized in Ussing chambers. Impedance analysis revealed the ionic permeability of the epithelium (Re, epithelial resistance). Conductance scanning differentiated transcellular (Gc) and tight junctional conductance (Gtj). The pH-stat technique quantified gastric acid secretion.

Results

In occludin+/+ mice, Re was 23±5 Ω cm2 in jejunum, 66±5 Ω cm2 in distal colon and 33±6 Ω cm2 in gastric corpus and was not altered in heterozygotic occludin+/− or homozygotic occludin−/− mice. Additionally, [3H]mannitol fluxes were unaltered. In the control colon, Gc and Gtj were 7.6±1.0 and 0.3±0.1 mS/cm2 and not different in occludin deficiency. Epithelial resistance after mechanical perturbation or EGTA exposition (low calcium switch) was not more affected in occludin−/− mice than in control. Barrier function was measured in the urinary bladder, a tight epithelium, and in the stomach. Control Rt was 5.8±0.8 kΩ cm2 in urinary bladder and 33±6 Ω cm2 in stomach and not altered in occludin−/− mice. In gastric corpus mucosa, the glandular structure exhibited a complete loss of parietal cells and mucus cell hyperplasia, as a result of which acid secretion was virtually abolished in occludin−/− mice.

Conclusion

Epithelial barrier characterization in occludin-deficiency points against an essential barrier function of occludin within the tight junction strands or to a substitutional redundancy of single tight junction molecules like occludin. A dramatic change in gastric morphology and secretory function indicates that occludin is involved in gastric epithelial differentiation.  相似文献   

12.

Background

Phospholipid scramblases are a group of four homologous proteins conserved from C. elegans to human. In human, two members of the scramblase family, hPLSCR1 and hPLSCR3 are known to bring about Ca2+ dependent translocation of phosphatidylserine and cardiolipin respectively during apoptotic processes. However, affinities of Ca2+/Mg2+ binding to human scramblases and conformational changes taking place in them remains unknown.

Methods

In the present study, we analyzed the Ca2+ and Mg2+ binding to the calcium binding motifs of hPLSCR1–4 and hPLSCR1 by spectroscopic methods and isothermal titration calorimetry.

Results

The results in this study show that (i) affinities of the peptides are in the order hPLSCR1  > hPLSCR3 > hPLSCR2 > hPLSCR4 for Ca2+ and in the order hPLSCR1 > hPLSCR2 > hPLSCR3 > hPLSCR4 for Mg2+, (ii) binding of ions brings about conformational change in the secondary structure of the peptides. The affinity of Ca2+ and Mg2+ binding to protein hPLSCR1 was similar to that of the peptide I. A sequence comparison shows the existence of scramblase-like motifs among other protein families.

Conclusions

Based on the above results, we hypothesize that the Ca2+ binding motif of hPLSCR1 is a novel type of Ca2+ binding motif.

General significance

Our findings will be relevant in understanding the calcium dependent scrambling activity of hPLSCRs and their biological function.  相似文献   

13.

Background

Dienelactone hydrolases catalyze the hydrolysis of dienelactone to maleylacetate, which play a key role for the microbial degradation of chloroaromatics via chlorocatechols. Here, a thermostable dienelactone hydrolase from thermoacidophilic archaeon Sulfolobus solfataricus P1 was the first purified and characterized and then expressed in Escherichia coli.

Methods

The enzyme was purified by using several column chromatographys and characterized by determining the enzyme activity using p-nitrophenyl caprylate and dienelactones. In addition, the amino acids related to the catalytic mechanism were examined by site-directed mutagenesis using the identified gene.

Results

The enzyme, approximately 29 kDa monomeric, showed the maximal activity at 74 °C and pH 5.0, respectively. The enzyme displayed remarkable thermostability: it retained approximately 50% of its activity after 50 h of incubation at 90 °C, and showed high stability against denaturing agents, including various detergents, urea, and organic solvents. The enzyme displayed substrate specificities toward trans-dienelactone, not cis-isomer, and also carboxylesterase activity toward p-nitrophenyl esters ranging from butyrate (C4) to laurate (C12). The kcat/Km ratios for trans-dienelactone and p-nitrophenyl caprylate (C8), the best substrate, were 92.5 and 54.7 s−1 μM−1, respectively.

Conclusions

The enzyme is a typical dienelactone hydrolase belonging to α/β hydrolase family and containing a catalytic triad composed of Cys151, Asp198, and His229 in the active site.

General significance

The enzyme is the first characterized archaeal dienelactone hydrolase.  相似文献   

14.

Background

It is increasingly evident that CD8+ T cells are involved in atherosclerosis but the specific subtypes have yet to be defined. CD8+CD25+ T cells exert suppressive effects on immune signaling and modulate experimental autoimmune disorders but their role in atherosclerosis remains to be determined. The phenotype and functional role of CD8+CD25+ T cells in experimental atherosclerosis were investigated in this study.

Methods and results

CD8+CD25+ T cells were observed in atherosclerotic plaques of apoE(−/−) mice fed hypercholesterolemic diet. Characterization by flow cytometric analysis and functional evaluation using a CFSE-based proliferation assays revealed a suppressive phenotype and function of splenic CD8+CD25+ T cells from apoE(−/−) mice. Depletion of CD8+CD25+ from total CD8+ T cells rendered higher cytolytic activity of the remaining CD8+CD25 T cells. Adoptive transfer of CD8+CD25+ T cells into apoE(−/−) mice suppressed the proliferation of splenic CD4+ T cells and significantly reduced atherosclerosis in recipient mice.

Conclusions

Our study has identified an athero-protective role for CD8+CD25+ T cells in experimental atherosclerosis.  相似文献   

15.

Aims

To investigate the effects of n − 3 polyunsaturated fatty acids on cerebral circulation, ovariectomized (OVX) rats were administered with phospholipids in krill oil (KPL) or triglycerides in fish oil (FTG); effects on the Ca2 + regulating system in their basilar artery (BA) were then analyzed.

Main methods

The rats were divided into 4 groups: control, OVX, OVX given KPL (OVXP), and OVX given FTG (OVXT) orally, daily for 2 weeks. Time dependent relaxation (TDR) of contractile response to 5HT in BA was determined myographically, Na+/Ca2 + exchanger (NCX) 1 mRNA expression was determined by real time PCR, and nucleotides were analyzed by HPLC.

Key findings

The level of TDR in OVX that was significantly lower in the control was inhibited by l-NAME and indomethacin; TEA inhibited TDR totally in the control but only partly in OVXP and OVXT. Relaxation induced by the addition of 5 mM KCl to the BA pre-contracted with 5-HT was inhibited by TEA in the controls, OVXP and OVXT, but not in OVX. Overexpression of NCX1 mRNA in the BA from OVX was significantly inhibited by FTG. The ratio of ADP/ATP in cerebral arteries from OVX was significantly inhibited by KPL and FTG. Levels of triglyceride and arachidonic acid in the plasma of OVX increased, but were significantly inhibited by KPL and FTG.

Significance

Ovarian dysfunction affects Ca2 + activated-, ATP-sensitive-K+ channels and NCX1, which play crucial roles in the autoregulation of cerebral blood flow. Also, KPL may become as good a supplement as FTG for postmenopausal women.  相似文献   

16.

Background

Viroids are the smallest pathogens known to date. They infect plants and cause considerable economic losses. The members of the Avsunviroidae family are known for their capability to form hammerhead ribozymes (HHR) that catalyze self-cleavage during their rolling circle replication.

Methods

In vitro inhibition assays, based on the self-cleavage kinetics of the hammerhead ribozyme from a Chrysanthemum chlorotic mottle viroid (CChMVd-HHR) were performed in the presence of various putative inhibitors.

Results

Aminated compounds appear to be inhibitors of the self-cleavage activity of the CChMVd HHR. Surprisingly the spermine, a known activator of the autocatalytic activity of another hammerhead ribozyme in the presence or absence of divalent cations, is a potent inhibitor of the CChMVd-HHR with Ki of 17 ± 5 μM. Ruthenium hexamine and TMPyP4 are also efficient inhibitors with Ki of 32 ± 5 μM and IC50 of 177 ± 5 nM, respectively.

Conclusions

This study shows that polyamines are inhibitors of the CChMVd-HHR self-cleavage activity, with an efficiency that increases with the number of their amino groups.

General significance

This fundamental investigation is of interest in understanding the catalytic activity of HHR as it is now known that HHR are present in the three domains of life including in the human genome. In addition these results emphasize again the remarkable plasticity and adaptability of ribozymes, a property which might have played a role in the early developments of life and must be also of significance nowadays for the multiple functions played by non-coding RNAs.  相似文献   

17.

Background

Bundles of unipolar actin filaments (F-actin), cross-linked via the actin-binding protein fascin, are important in filopodia of motile cells and stereocilia of inner ear sensory cells. However, such bundles are also useful as shuttles in myosin-driven nanotechnological applications. Therefore, and for elucidating aspects of biological function, we investigate if the bundle tendency to follow straight paths (quantified by path persistence length) when propelled by myosin motors is directly determined by material properties quantified by persistence length of thermally fluctuating bundles.

Methods

Fluorescent bundles, labeled with rhodamine-phalloidin, were studied at fascin:actin molar ratios: 0:1 (F-actin), 1:7, 1:4 and 1:2. Persistence lengths (Lp) were obtained by fitting the cosine correlation function (CCF) to a single exponential function: < cos(θ(0) − θ(s)) > = exp(−s / (2Lp)) where θ(s) is tangent angle; s: path or contour lengths. < > denotes averaging over filaments.

Results

Bundle-Lp (bundles < 15 μm long) increased from ~ 10 to 150 μm with increased fascin:actin ratio. The increase was similar for path-Lp (path < 15 μm), with highly linear correlation. For longer bundle paths, the CCF-decay deviated from a single exponential, consistent with superimposition of the random path with a circular path as suggested by theoretical analysis.

Conclusions

Fascin–actin bundles have similar path-Lp and bundle-Lp, both increasing with fascin:actin ratio. Path-Lp is determined by the flexural rigidity of the bundle.

General significance

The findings give general insight into mechanics of cytoskeletal polymers that interact with molecular motors, aid rational development of nanotechnological applications and have implications for structure and in vivo functions of fascin–actin bundles.  相似文献   

18.
19.

Aims

Cervical cancer is the third most frequent cancer in women worldwide, mostly treated with cisplatin-based chemoradiotherapy. Since it is known that folate metabolism might interfere with cisplatin effectiveness, we intended to study the influence of the Gamma Glutamyl Hydrolase -401C > T polymorphism in treatment response in cervical cancer.

Methods

We retrospectively reviewed the clinical data of 167 patients with bulky cervical cancer submitted to cisplatin-based chemoradiotherapy. The genotypes of GGH -401C > T SNP were determined by real-time PCR and statistical analysis was performed by χ2 test and survival analysis.

Results

The genotypes of GGH-401C > T were significantly associated with the response to platinum-based chemoradiotherapy. Treatment response was higher in patients carrying the CC genotype, who presented a significant increased chance of treatment response (survival time in months/genotype: 91 for CC Vs 72 for CT/TT; p = 0.035, log rank test). A Cox regression analysis accordingly showed that the presence of the T allele was significantly linked to a worse treatment response (HR = 3.036; CI 95% 1.032-8.934, p = 0.044).

Conclusions

The results of our study suggested the potential interest of GGH -401C > T as a predictive factor of the outcome of cervical carcinoma treated with cisplatin-based chemoradiotherapy.  相似文献   

20.

Aims

SIRT1 and AMP-activated protein kinase (AMPK) share common activators, actions and target molecules. Previous studies have suggested that a putative SIRT1-AMPK regulatory network could act as the prime initial sensor for calorie restriction-induced adaptations in skeletal muscle—the major site of insulin-stimulated glucose disposal. Our study aimed to investigate whether a feedback loop exists between AMPK and SIRT1 in skeletal muscle and how this may be involved glucose tolerance.

Main methods

To investigate this, we used skeletal muscle-specific AMPKα1/2 knockout mice (AMPKα1/2−/−) fed ad libitum (AL) or a 30% calorie restricted (CR) diet and L6 rat myoblasts incubated with SIRT1 inhibitor (EX527).

Key findings

CR-AMPKα1/2−/− displayed impaired glucose tolerance (*p < 0.05), in association with down-regulated SIRT1 and PGC-1α expression (< 300% vs. CR-WT, ±±p < 0.01). Moreover, AMPK activity was decreased following SIRT1 inhibition in L6 cells (~ 0.5-fold vs. control, *p < 0.05).

Significance

This study demonstrates that skeletal muscle-specific AMPK deficiency impairs the beneficial effects of CR on glucose tolerance and that these effects may be dependent on reduced SIRT1 levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号