首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
1. Lake temperatures vary with season, latitude, elevation and as a result of thermal pollution. In addition, lake temperatures may increase with global warming. Radiotracer experiments were conducted to determine the effects of temperature on the bioaccumulation of lipophilic organic contaminants by zooplankton. Daphnia pulex were exposed to 14C-labelled DDE, a stable metabolite of the organochlorine pesticide DDT, in particle-free water for 24 h. An increase in temperature from 5 to 25 °C resulted in a 314% increase in bioconcentration factor (the ratio of contaminant concentration in the organism to contaminant concentration in the water).
2. To mimic the fluctuating temperatures experienced by zooplankton during diel vertical migration, we conducted experiments in which animals were exposed to 25 °C for 12 h in the light, then 15 °C for 12 h in the dark. Exposure to this fluctuating temperature regime for 48 h resulted in a 27–33% increase in bioconcentration factor relative to a constant 20 °C control.
3. Live animals accumulated more than twice the amount of DDE than freshly killed animals, indicating that the activity of the organism is important in bioconcentration. This finding sheds light on the possible mechanisms for the increase in bioconcentration at higher constant temperatures. Daphnia pump more water through their branchial chambers at higher temperatures. Thus, if the thoracic limbs are an important site of contaminant uptake, then animals are exposed to more contaminant molecules at higher temperatures. Other possible mechanisms include changes in the thickness of the diffusive boundary layer and changes in cell membrane permeability.  相似文献   

2.
Many freshwater zooplankton species perform a diel vertical migration (DVM) and spend the day within the lower, colder hypolimnion of stratified lakes. Trade-offs that arise from this migration have already attracted much attention and the cold temperature in the hypolimnion is thought to be the main cost of this behaviour. In this study we additionally looked at the extra costs daphnids have from being exposed to a fluctuating temperature regime (cold during the day and warm during the night) which is less well studied until today. In our experiment Daphnia hyalina Leydig and Daphnia magna Straus either spent 24 h in constant warm water (19 °C), 24 h in constant cold water (12 °C), or spent 12 h in warm and 12 h in cold water in an alternating way (fluctuating temperature regime). We expected the values of the life history parameters of Daphnia in the fluctuating temperature regime to be exactly halfway between the values of the life history parameters in the warm and cold treatments because the daphnids spent exactly half of the time in warm water, and half of the time in cold water. Concordant with earlier studies our results showed that age at first reproduction and egg development time were reduced at higher temperatures. In the fluctuating temperature regime the values of both parameters were exactly halfway between the values at permanently warm and cold temperature regimes. In contrast, somatic growth was higher at higher temperatures but was lower in the fluctuating temperature regime than expected from the mean somatic growth rate. This suggests that a fluctuating temperature regime experienced by migrating daphnids in stratified lakes involves additional costs for the daphnids.  相似文献   

3.
1. We report on a long-term study (1975–94) of water temperatures and plankton in a eutrophic lake (Heiligensee, Berlin, Germany). Using a phenomenological approach, we use historical data to infer how an increase in air temperature has influenced a natural zooplankton community.
2. Air temperatures in Berlin showed a significantly rising trend between 1975 and 1994. Mean winter air temperatures in the last 8 years always exceeded the long-term mean.
3. A rising trend was also found for April water temperature, which increased significantly beginning in 1988–89. An increase of 2.58°C in the last 21 years was recorded using a linear model. A significantly decreasing trend was found in June but no trend was noted for the other summer months.
4. Phytoplankton composition shifted from a dominance of diatoms and cryptophytes during winter and spring in the 1980s towards a dominance of cyanobacteria in 1990–94.
5. The dominant zooplankton species in spring shifted in recent years from the large-bodied Daphnia galeata to the smaller D. cucullata . Cyclops kolensis , previously the only invertebrate predator during winter, decreased in abundance while C. vicinus , usually present during spring and autumn, increased in abundance and was numerous during winter, a season passed in diapause in the earlier years.
6. Because direct and indirect temperature effects are species specific, we put forward the hypothesis that zooplankton species, rather than functional groups, are the nexus between environmental stress, such as rising air temperatures, and ecosystem changes.  相似文献   

4.
1. We report on a long-term study (1975–94) of water temperatures and plankton in a eutrophic lake (Heiligensee, Berlin, Germany). Using a phenomenological approach, we use historical data to infer how an increase in air temperature has influenced a natural zooplankton community.
2. Air temperatures in Berlin showed a significantly rising trend between 1975 and 1994. Mean winter air temperatures in the last 8 years always exceeded the long-term mean.
3. A rising trend was also found for April water temperature, which increased significantly beginning in 1988–89. An increase of 2.58°C in the last 21 years was recorded using a linear model. A significantly decreasing trend was found in June but no trend was noted for the other summer months.
4. Phytoplankton composition shifted from a dominance of diatoms and cryptophytes during winter and spring in the 1980s towards a dominance of cyanobacteria in 1990–94.
5. The dominant zooplankton species in spring shifted in recent years from the large-bodied Daphnia galeata to the smaller D. cucullata . Cyclops kolensis , previously the only invertebrate predator during winter, decreased in abundance while C. vicinus , usually present during spring and autumn, increased in abundance and was numerous during winter, a season passed in diapause in the earlier years.
6. Because direct and indirect temperature effects are species specific, we put forward the hypothesis that zooplankton species, rather than functional groups, are the nexus between environmental stress, such as rising air temperatures, and ecosystem changes.  相似文献   

5.
1. Temperature- and time-dependent mortalities were studied and modelled in insects exposed in regimes with constant and alternating temperatures. In these experiments, freezing was not a cause of death.
2. Survival rates at a range of constant low temperatures (– 5 to + 1 °C) and for different exposure periods (1–14 days) were measured in the summer acclimated springtail Orchesella cincta .
3. Daily interruptions of the cold exposure with short intervals at high temperature reduced mortality or slowed the increase of mortality. This effect was stronger at higher temperature (19 vs 5 and 12 °C) and increased with the duration of the interruption (0·25–2 h).
4. The injury was reversible when the cold exposure was limited to 2 days.
5. Survival in desiccated animals (14% water loss) was reduced.
6. It is suggested that the mortality of summer acclimated springtails is caused by a complex metabolic disorder and membrane changes at low temperatures.  相似文献   

6.
1. We studied the effects of both acute and chronic exposure of Daphnia pulex to toxic Microcystis aeruginosa . We focused on the effects of Daphnia genotype and temperature (19 and 24 °C).
2. The study revealed variation among ten Daphnia pulex clones in survivorship under acute Microcystis exposure, measured as EC50. An increase in temperature caused a clear decrease in EC50, although the ranking of clones according to sensitivity remained the same at both temperatures.
3. In the chronic exposure of two of the clones, toxic Microcystis reduced survival and reproduction. The two clones differed in their responses, indicating different means of coping with toxic cyanobacteria. Toxic cyanobacteria reduced slightly more at 24 °C than 19 °C.
4. The clonal difference in sensitivity to toxic cyanobacteria at acute exposure was reversed at chronic exposure. This indicates that the results from short-term toxicity cannot be used to predict life history responses under sublethal exposure.  相似文献   

7.
1. We studied the effects of both acute and chronic exposure of Daphnia pulex to toxic Microcystis aeruginosa . We focused on the effects of Daphnia genotype and temperature (19 and 24 °C).
2. The study revealed variation among ten Daphnia pulex clones in survivorship under acute Microcystis exposure, measured as EC50. An increase in temperature caused a clear decrease in EC50, although the ranking of clones according to sensitivity remained the same at both temperatures.
3. In the chronic exposure of two of the clones, toxic Microcystis reduced survival and reproduction. The two clones differed in their responses, indicating different means of coping with toxic cyanobacteria. Toxic cyanobacteria reduced slightly more at 24 °C than 19 °C.
4. The clonal difference in sensitivity to toxic cyanobacteria at acute exposure was reversed at chronic exposure. This indicates that the results from short-term toxicity cannot be used to predict life history responses under sublethal exposure.  相似文献   

8.
1. This study involves an examination of two- and three-trophic-level food chains at two temperatures (18 and 25 °C) in order to determine how the addition of a carnivore to a predator–prey system can alter the dynamics of populations and how this effect may be temperature mediated. The system consisted of phytoplankton, Daphnia pulex and the flatworm Mesostoma ehrenbergii .
2. Although the plant–herbivore system is inherently unstable at 25 °C, the addition of the carnivore led to a further destabilization of the Daphnia –algal dynamics at the higher temperature. No destabilization effect of the carnivore was noted at 18 °C. At the lower temperature, all populations persisted and the carnivore induced changes only in the age structure of the Daphnia populations rather than in overall biomass.
3. The differential effects of the carnivore at two temperatures can be attributed to shifts in the life history, physiological rates and the reproductive strategy employed by Mesostoma .
4. Previous theoretical work has predicted that the addition of a third trophic level to an unstable predator–prey system should stabilize dynamics. Our results indicate that the effect of a carnivore on plant–herbivore dynamics can be significantly affected by ambient temperature.  相似文献   

9.
1. This study involves an examination of two- and three-trophic-level food chains at two temperatures (18 and 25 °C) in order to determine how the addition of a carnivore to a predator–prey system can alter the dynamics of populations and how this effect may be temperature mediated. The system consisted of phytoplankton, Daphnia pulex and the flatworm Mesostoma ehrenbergii .
2. Although the plant–herbivore system is inherently unstable at 25 °C, the addition of the carnivore led to a further destabilization of the Daphnia –algal dynamics at the higher temperature. No destabilization effect of the carnivore was noted at 18 °C. At the lower temperature, all populations persisted and the carnivore induced changes only in the age structure of the Daphnia populations rather than in overall biomass.
3. The differential effects of the carnivore at two temperatures can be attributed to shifts in the life history, physiological rates and the reproductive strategy employed by Mesostoma .
4. Previous theoretical work has predicted that the addition of a third trophic level to an unstable predator–prey system should stabilize dynamics. Our results indicate that the effect of a carnivore on plant–herbivore dynamics can be significantly affected by ambient temperature.  相似文献   

10.
Scenedesmus acutus Meyen was cultured at four temperatures (9.5°, 16.5°, 24°, and 29° C) in standard medium or in medium with filtered water from a Daphnia culture. Growth was significantly reduced at low temperatures. At 9.5° C it took more than a week before formation of eight-celled coenobia occurred in both the absence and presence of water from a Daphnia culture. At higher temperatures, formation of four- and eight-celled coenobia occurred more rapidly and was already observed in the presence of Daphnia water within 2 days. As cultures aged, also in the absence of Daphnia water, four-celled coenobia became dominant. At cold temperature, cell volume initially was significantly larger but declined after 3–4 weeks. Grazer-induced colony formation had occurred independent of the incubation temperature, but the number of cells per colony was increased with declining temperature. The morphological expression may be interpreted as a cyclomorphosis driven by nutrients, temperature, and chemical cues from grazers.  相似文献   

11.
SUMMARY 1. We investigated the effect of temperature on chemical signalling in a predator–prey model system (planktivorous fish and Daphnia galeata ). Life-history changes in Daphnia in response to chemical cues (kairomones) derived from fish have become a paradigm for chemically induced anti-predator defences.
2. As temperature can affect both predator and prey, we carried out two experiments to disentangle these effects. In order to test for temperature effects on the predator, we kept prey at a single temperature and exposed them to kairomones from fish exposed to two different temperatures. Daphnia exhibited a higher intrinsic rate of population increase ( r ) when exposed to fish kairomones produced at high rather than low temperature. Assuming a positive correlation between r (because of an earlier maturation and/or increased clutch sizes) and kairomone concentration, our results suggest that kairomone production increases with rising temperature.
3. In the second experiment, to study the influence of temperature on the prey, Daphnia were kept at two different temperatures and exposed to fish kairomones produced at one constant temperature. We found no interaction between the effects of fish kairomone and temperature on Daphnia life history, suggesting that temperature does not directly alter life-history responses to fish kairomones.
4. Our results suggest that temperature influences Daphnia life history through its effects on fish kairomone concentration, but that temperature does not affect the strength of the response of Daphnia to the presence of fish.  相似文献   

12.
1. Selected body temperatures of female lizards, Sceloporus jarrovi , were measured on a photothermal gradient during late pregnancy and again when postpartum, and pregnant females were subjected to one of three fluctuating temperature regimes that simulated body temperatures of (1) pregnant females, (2) postpartum females or (3) allowed normal thermoregulation.
2. Overall, females selected lower body temperatures when pregnant (mean = 32·0°C) than when postpartum (mean = 33·5°C).
3. Females regulated body temperature more precisely when pregnant than when postpartum as judged by their smaller variances in body temperature throughout the day.
4. When pregnant, females selected a lower mean maximum body temperature (mean: pregnant = 32·8°C; postpartum = 34·5°C) than when postpartum, but selected mean minimum body temperatures did not differ.
5. None of the experimental temperature treatments was detrimental to pregnant females. Female body length increased during pregnancy but the rate of increase did not differ among treatments. Moreover, length-adjusted body mass of postpartum females did not differ among treatments.
6. Pregnant females that experienced postpartum body temperatures produced neonates that were smaller in body mass and length than pregnant females that experienced pregnant body temperatures and females that were allowed to thermoregulate.
7. For neonates resulting from the postpartum body temperature treatment, the disparity in the body length, but not mass, was still observed at 9 days of age, although survival and growth of neonates was high and did not differ among treatments.
8. The results demonstrate that pregnant females could maintain higher postpartum body temperatures without compromising their physical condition, but select relatively low body temperatures, presumably to avoid decrements in offspring fitness.  相似文献   

13.
Rates of ammonia release from sediments by chironomid larvae   总被引:1,自引:0,他引:1  
SUMMARY. 1. Microcosms of Lake Balaton mud and sterilized sand and aerated water were used to evaluate ammonia increments in the overlying water as influenced by chironomid density and temperature. In the two approaches, the effects of sediment disturbance and metabolic excretion of chironomids were measured.
2. The activity of larvae increased the ammonia content of the overlying water at temperatures above 10°C. A rise of temperature to 20°C resulted in a 5–20-fold increase in ammonia release in both systems with chironomids.
3. At 10°C combined effects of sediment disturbance and of excretion produced lower release rates than did excretion rates alone (mud-water v. sand-water treatments). At higher temperatures (15 and 20°C) release rates of ammonia by sediment disturbance plus excretion were higher than excretion rates alone. Ammonia excretion contributed significantly to the total release at each temperature.
4. Metabolic mineralization of nitrogen compounds appears to be an important mechanism contributing to nitrogen regeneration from aerobic lake sediments. High N:P ratio (14:1) of chironomid excretion materials supports this interpretation.  相似文献   

14.
Levels of abscisic acid (ABA) and several indicators of leaf-water status were measured in excised and intact primary leaves of bean ( Phaseolus vulgaris cv. Kinghorn) exposed to different temperature and moisture regimes. After 2 h at 5°, 25° or 45°C under moist conditions, the water status of detached leaves showed only minor changes, and there was no increase in ABA. Under conditions favoring water loss, ABA rose over 10-fold at 25°C, and trends towards higher ABA levels were observed at 5° and 45°C. When intact leaves on whole plants were exposed to the same temperatures for 10 h, there was still no evidence of a temperature-dependent rise in ABA that was not associated with a disturbance in the water balance of the plant. These data suggest that the rapid accumulation of ABA during temperature stress is a function of induced moisture deficits and does not result from high or low temperatures per se.  相似文献   

15.
1.  Daphnia carinata King, a freshwater cladoceran, occurs in Lake Waihola, a tidal lake with seasonal fluctuations in temperature (4–21 °C), and salinity (30–2000 mg L–1 Cl). We hypothesise that these fluctuations influence the seasonal changes in D. carinata abundance.
2. To test this hypothesis, adults and juveniles were exposed to combinations of temperature and salinity. We measured mortality of adults and juveniles, growth of juveniles over 20 days, and their age at first reproduction.
3. The salinity tolerance of adult D. carinata was temperature-dependent. Juveniles were more sensitive to salinity, but more tolerant of temperature increases.
4. Growth rates were higher at elevated temperatures, but reduced by elevated salinities. The onset of reproduction was earlier at elevated temperatures.
5. We conclude that seasonal changes in temperature and salinity contribute to seasonal population changes of D. carinata .  相似文献   

16.
SUMMARY. 1. Soyedina carolinensis Claassen, a leaf shredding stonefly, was reared in a series of three laboratory experiments from early instar to adult on different species of deciduous leaves and at various constant and fluctuating temperature regimes.
2. Experiment 1, which involved rearing larvae on fourteen different leaf diets at ambient stream temperatures, showed that diet significantly affected larval growth and adult size but did not affect overall developmental time.
3. Experiment 2, which involved rearing larvae on five different leaf diets at each of three fluctuating temperature regimes (viz ambient White Clay Creek (WCC), ambient WCC+3°C, and ambient WCC+6°C), showed that: (i) adding 6°C to the normal temperature regime of WCC was lethal to 99% of the larvae regardless of diet; and (ii) warming WCC by 3°C did not affect developmental time but did significantly reduce adult size relative to adults reared at WCC temperatures on certain diets.
4. Experiment 3, which involved rearing larvae on five different leaf diets at each of five constant temperatures (viz 5, 10, 15, 20, 25°C), showed that: (i) temperature significantly affected the mortality, growth, and development time of larvae whereas diet only affected larval growth and mortality; (ii) temperatures at or near 10°C yielded maximum larval growth and survival for most diets; (iii) at 5°C, larval mortality was high and growth was low resulting in a few small adults for most diets; (iv) larval mortality was at or near 100% at 15°C regardless of diet; and (v) no larvae survived at 20 and 25°C.  相似文献   

17.
S. E. Mitchell  J. Halves  W. Lampert 《Oikos》2004,106(3):469-478
We investigated the diversity and thermal response of a fitness related trait, juvenile growth rate, in seasonal population samples of Daphnia magna from two temperate ponds. Both populations were intermittent, i.e. they disappeared from the water body and recolonized seasonally by hatching from resting eggs in the sediment.
Temporally isolated clones of Daphnia magna showed the typical asymmetric response for growth rate with temperature and a sharp decline after the maximum response at 26°C (TMR). There was no evidence for genetically adapted seasonal groups. Despite significant genetic variation among clones and for phenotypic plasticity (G×E interactions without genetic correlations), seasonal groups of clones showed no shift in TMR and mean temperature reaction norms were similar among groups and both populations. Heritabilities remained similar among temperatures despite a large increase in genetic variance at stressfully high temperatures of 29°C and 32°C, due to simultaneous increase in environmental variance. Further, heritabilities remained high among sample periods and were not eroded during several months of asexual reproduction.
Regular diapause, an intrinsic feature of intermittent Daphnia populations, may replace the need for physiological temperature adaptation and promote maintenance of diversity through phenotypic similarity by reducing the time over which competitive interactions occur. Such populations are unlikely to be directly affected by elevated temperatures. They have a large potential for phenotypic plasticity as their TMR is higher than the temperature normally encountered.  相似文献   

18.
1. Cold water acted differently to delay and lengthen the pupation period for the larvae of two species of the zooplankton predator Chaoborus (Diptera: Chaoboridae). During Chaoborus pupation, the zooplankton community is released from predation, while the dark-coloured Chaoborus pupae are more susceptible to their own predators.
2. Fourth instar larvae of Chaoborus americanus and C. trivittatus , collected from an oligotrophic lake, were reared individually at 5 °C in the dark. Chaoborus americanus was also reared at 9 and 12 °C under spring photoperiod conditions (L : D, 16 : 8 h). Individuals were observed through pupation to emergence (ecdysis) or death.
3.  Chaoborus americanus pupated at 5, 9 and 12 °C with substantial emergence only at 12 °C. In comparison, C. trivittatus emerged at 5 °C. Light was not a necessary cue for pupation and ecdysis, contrary to previous reports. Cold water delayed the onset and lengthened and increased the variability of the duration of pupation.
4. In Shirley Lake, C. americanus pupated in late June–early July while C. trivittatus pupated first in April and again in June–July.
5.  Chaoborus americanus pupae needed a temperature cue to complete ecdysis. The ecdysis temperature threshold helps to explain the difference in pupation timing, and the geographical distribution, of C. americanus and its relatively inflexible life history contrasted with C. trivittatus . Delayed predator pupation in years with low spring temperature can affect the community dynamics of the prey.  相似文献   

19.
1. In previous work we established that increasing temperature led to a destabilization of the population dynamics of the invertebrate carnivore Mesostoma ehrenbergii and its prey Daphnia pulex , which ultimately resulted in the local extinction of Daphnia at higher temperatures. Two mechanisms are proposed to explain the population-level phenomena: (1) quantitative changes in carnivore vital rates with increasing temperature led to stronger functional and numerical response and (2) qualitative changes in the dynamic allocation of energy to reproduction by the predator with increasing temperature introduces inverse density dependence in the predator's response.
2. The growth of individual M. ehrenbergii was monitored under various food conditions to determine the effect of two temperatures (18 and 24 °C) and five food levels on rates of growth, prey consumption and reproduction and on reproductive allocation patterns.
3. The first mechanism was supported by both higher consumption rates (stronger functional response) and faster growth rates with earlier age at maturity and shorter generation time (stronger numerical response).
4. Evidence for mechanism two was also provided by an alteration of the reproductive allocation pattern with temperature. Viviparous (subitaneous) eggs were more likely to be produced by this carnivore at low food levels at 24 °C, while at 18 °C, high food levels were required before individuals made this switch. This shift actually introduces inverse density dependence in the predator's numerical response which is highly destabilizing.
5. Based on the results of this study, the differential effect of M. ehrenbergii on the dynamics and structure of its D. pulex prey populations can be attributed to changes in both physiological rates and reproductive allocation patterns with temperature.  相似文献   

20.
We studied trophic interactions in experimental rockpools with three different food web structures: phytoplankton and small-bodied zooplankton; phytoplankton, small-bodied zooplankton and Daphnia ; and phytoplankton, small-bodied zooplankton, Daphnia and Notonecta . Nutrients, primary productivity, chlorophyll a and zooplankton species composition and biomass were measured over eight weeks.
2. Daphnia had a negative impact on other zooplankton and reduced the phytoplankton biomass and primary productivity. In the absence of Daphnia , small-bodied zooplankton species were abundant, in particular cyclopoid copepods. Concentrations of dissolved nutrients were lower and the standing crop of primary producers was higher when Daphnia was absent.
3. The presence of the invertebrate predator Notonecta produced a top-down effect which was similar to that reported for planktivorous fish, i.e. a selective reduction of daphnids followed by an increase of small-bodied zooplankton species and phytoplankton biomass.
4. The study showed that consumer regulation of Daphnia by Notonecta and of algae by Daphnia are important, but also demonstrated that trophic level biomasses were controlled by a combination of predation and resource limitation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号