首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT Forest fire is often considered a primary threat to California spotted owls (Strix occidentalis occidentalis) because fire has the potential to rapidly alter owl habitat. We examined effects of fire on 7 radiomarked California spotted owls from 4 territories by quantifying use of habitat for nesting, roosting, and foraging according to severity of burn in and near a 610-km2fire in the southern Sierra Nevada, California, USA, 4 years after fire. Three nests were located in mixed-conifer forests, 2 in areas of moderate-severity burn, and one in an area of low-severity burn, and one nest was located in an unburned area of mixed-conifer-hardwood forest. For roosting during the breeding season, spotted owls selected low-severity burned forest and avoided moderate- and high-severity burned areas; unburned forest was used in proportion with availability. Within 1 km of the center of their foraging areas, spotted owls selected all severities of burned forest and avoided unburned forest. Beyond 1.5 km, there were no discernable differences in use patterns among burn severities. Most owls foraged in high-severity burned forest more than in all other burn categories; high-severity burned forests had greater basal area of snags and higher shrub and herbaceous cover, parameters thought to be associated with increased abundance or accessibility of prey. We recommend that burned forests within 1.5 km of nests or roosts of California spotted owls not be salvage-logged until long-term effects of fire on spotted owls and their prey are understood more fully.  相似文献   

2.
Anthropogenic understory fires affect large areas of tropical forest, particularly during severe droughts. Yet, the mechanisms that control tropical forests' susceptibility to fire remain ambiguous. We tested the widely accepted hypothesis that Amazon forest fires increase susceptibility to further burning by conducting a 150 ha fire experiment in a closed-canopy forest near the southeastern Amazon forest–savanna boundary. Forest flammability and its possible determinants were measured in adjacent 50 ha forest plots that were burned annually for 3 consecutive years (B3), once (B1), and not at all (B0). Contrary to expectation, an annual burning regime led to a decline in forest flammability during the third burn. Microclimate conditions were more favorable compared with the first burn (i.e. vapor pressure deficit increased and litter moisture decreased), yet flame heights declined and burned area halved. A slight decline in fine fuels after the second burn appears to have limited fire spread and intensity. Supporting this conclusion, fire spread rates doubled and burned area increased fivefold in B3 subplots that received fine fuel additions. Slow replacement of surface fine fuels in this forest may be explained by (i) low leaf litter production (4.3 Mg ha−1 yr−1), half that of other Amazon forests; and (ii) low fire-induced tree and liana mortality (5.5±0.5% yr−1, SE, in B3), the lowest measured in closed-canopy Amazonian forests. In this transitional forest, where severe seasonal drought removed moisture constraints on fire propagation, a lack of fine fuels inhibited the intensity and spread of recurrent fire in a negative feedback. This reduction in flammability, however, may be short-lived if delayed tree mortality or treefall increases surface fuels in future years. This study highlights that understanding fuel input rate and timing relative to fire frequency is fundamental to predicting transitional forest flammability – which has important implications for carbon emissions and potential replacement by scrub vegetation.  相似文献   

3.
Fire is frequently used as tool for land management in the Amazon, but often escapes into surrounding forests, with potentially severe impacts for forest biodiversity. We investigated the effects of single wildfires on ant communities in four geographically distinct regions of the Brazilian Amazon (Roraima, Pará, Acre and Mato Grosso) where forests had burned between 8 months and 10 years before our sampling. We established 7–12 transects, 500 m each, in burned and unburned forests in each region to investigate the effects of fire on forest structure and leaf litter ant communities, which were sampled using Winkler sacks. Fire effects on forest structure were more drastic in the most recently burned forests in Acre and Mato Grosso, while the impacts of older burns in Roraima and Pará were more subtle. Ant species richness was not different between burnt and unburned areas, but community composition differed between burned and control forests in all regions except Mato Grosso. At the species level, indicator species analysis showed that a limited number of species were significant indicators of unburned control forests in all regions, except Acre. Forests structure variables and leaf litter volume were all important in shaping ant communities, but their relative importance varied between regions. Our results indicate that burned forest have different ant species communities from unburned forests, and those differences are still apparent 10 years after the disturbance, highlighting the importance of effective policies for fire management in Amazon.  相似文献   

4.
Forest fires remain a devastating phenomenon in the tropics that not only affect forest structure and biodiversity, but also contribute significantly to atmospheric CO2. Fire used to be extremely rare in tropical forests, leaving ample time for forests to regenerate to pre-fire conditions. In recent decades, however, tropical forest fires occur more frequently and at larger spatial scales than they used to. We studied forest structure, tree species diversity, tree species composition, and aboveground biomass during the first 7 years since fire in unburned, once burned and twice burned forest of eastern Borneo to determine the rate of recovery of these forests. We paid special attention to changes in the tree species composition during burned forest regeneration because we expect the long-term recovery of aboveground biomass and ecosystem functions in burned forests to largely depend on the successful regeneration of the pre-fire, heavy-wood, species composition. We found that forest structure (canopy openness, leaf area index, herb cover, and stem density) is strongly affected by fire but shows quick recovery. However, species composition shows no or limited recovery and aboveground biomass, which is greatly reduced by fire, continues to be low or decline up to 7 years after fire. Consequently, large amounts of the C released to the atmosphere by fire will not be recaptured by the burned forest ecosystem in the near future. We also observed that repeated fire, with an inter-fire interval of 15 years, does not necessarily lead to a huge deterioration in the regeneration potential of tropical forest. We conclude that burned forests are valuable and should be conserved and that long-term monitoring programs in secondary forests are necessary to determine their recovery rates, especially in relation to aboveground biomass accumulation.  相似文献   

5.
Aim In the Mediterranean Basin, the main forest communities vary in their ability to recover after fire. In this study we analyse the effects of fire on ant communities occurring in various vegetation types distributed along a geographical gradient in the western Mediterranean region. Location The study was carried out in burned and unburned habitats of 22 sites corresponding to eight vegetation types distributed along a gradient of dryness throughout Catalonia (north‐east Spain). Methods We placed five pairs of plots (one plot located in the burned area and the second one placed in the unburned margin) per site. We compared ant communities in these unburned and burned plot types 8 years after fire using pitfall traps. Traps were set out in mid‐May and mid‐July. We analysed the structure and composition of ant communities in the burned and unburned areas of these vegetation types using anova tests, correspondence analysis (CA) and linear regression. Results The resilience of ant communities varies with vegetation type. Ant communities in forests with high resilience also recover rapidly after fire, while those in forests that do not recover after fire show the lowest resilience. Species richness does not depend on burning or vegetation type. The resilience of these Mediterranean ant communities to fire is related to the environmental characteristics of the region where they live. Accordingly, differences between burned and unburned habitats are smaller for ant communities in areas with higher water deficit in summer than for those in moister ones. Main conclusions The structure and composition of ant communities after fire depends on the level of direct mortality caused by the fire. It affects ant species differently, as determined by the habitats used for nesting and foraging. The reestablishment of vegetation cover depends on forest composition before the fire. As vegetation cover determines resource and microhabitat availability and competitive relationships among species, forest composition before the fire also affects post‐fire recovery of ant communities to the medium‐term. Finally, ant communities living in drier areas recover more quickly after fire than those living in moister ones. This pattern might be because in areas with higher water deficit there are more species characteristic of open environments, which are habitats similar to those generated after fire.  相似文献   

6.
叶功能性状对林火的响应是林火生态领域的研究热点之一,研究火后油松叶功能性状变化能够揭示油松为适应火环境形成的生长策略,为促进油松火后恢复提供参考。以山西省沁源县火烧迹地内油松为研究对象,选择当年生叶片分析叶功能性状在不同火烈度(未过火、轻度火烧、中度火烧)火烧迹地间的变化规律,并研究不同火烧迹地内叶经济谱的变化特征。结果表明: 除氮磷比外,叶功能性状在不同火烈度的火烧迹地间存在显著差异,其中,叶面积的差异最为明显,是最敏感的性状。随火烧迹地内火烈度的增加,叶面积、叶厚度、叶干物质含量、叶氮含量和叶磷含量升高,比叶面积、叶有机碳含量降低。部分叶功能性状间存在显著的相关关系,但其相关性在不同火烈度的火烧迹地间存在差异。叶经济谱沿着“未过火-轻度火烧-中度火烧”的火烧迹地环境总体向“快速投资-收益型”的资源权衡策略移动,低烈度火烧迹地内油松的生长恢复会加快。  相似文献   

7.
利用LANDSAT TM影像,通过分类、提取森林景观类型及NDVI值,在较大尺度上探讨了火烧区火烧强度与森林景观格局、功能恢复的关系。结果表明,火烧区森林总体恢复情况较好。恢复状况与火烧强度具有明显的相关性。火烧强度越高,恢复状况越差。重度火烧区的针叶林景观所占比重低且生长状况较差;沼泽面积高于未火烧对照区,这一现象应引起足够重视,特别是在全球变化气温升高的背景下,应防止寒温带针叶林的退化以及林地沼泽化。在三种主要森林类型(针叶林、阔叶林、针阔叶混交林)中,针阔叶混交林是生长状况最好的,标志着火烧迹地正由演替的初期阶段向中期阶段过渡。  相似文献   

8.
In 1990 and 1991, Samoa was struck by two cyclones, Ofa and Val. In the Tafua Rain Forest Preserve on the island of Savai'i, one part of the forest also burned after the first cyclone. Here we report on patterns of regeneration and changes in tree species composition in the Tafua lowland rain forest after five years of recovery from cyclone and fire disturbance. In the unburned area, tree canopy cover increased from 27 percent after the last cyclone to 58 percent, and in the burned area from below 12 to 49 percent. Nine of the ten most common tree species decreased in relative abundance in the entire forest after the last cyclone. One fast growing pioneer species, Macaranga harveyana now makes up 42 percent of the total number of trees (>5 cm DBH) in the unburned area and 86 percent in the burned area. Large interspecific differences occur in size distribution and there are at least four distinguishable regeneration patterns, which may be related to shade tolerance. Mean number of species per plot was generally higher in the unburned area than in the burned area, while the Shannon evenness index was higher in the unburned than in the burned area only for trees above 1 cm DBH. Species with fruits known to be fed upon by birds and/or bats generally made up a larger proportion of all trees in the burned than in the unburned area. In contrast to other studies of post‐cyclone regeneration, in which recovery is often rapid due to resprouting of trees, recovery in the Tafua forest was a slow process with regeneration more dependent on vertebrate seed dispersal than on resprouting.  相似文献   

9.
The only fully coupled land-atmosphere global climate model predicts a widespread dieback of Amazonian forest cover through reduced precipitation. Although these predictions are controversial, the structural and compositional resilience of Amazonian forests may also have been overestimated, as current vegetation models fail to consider the potential role of fire in the degradation of forest ecosystems. We examine forest structure and composition in the Arapiuns River basin in the central Brazilian Amazon, evaluating post-fire forest recovery and the consequences of recurrent fires for the patterns of dominance of tree species. We surveyed tree plots in unburned and once-burned forests examined 1, 3 and 9 years after an unprecedented fire event, in twice-burned forests examined 3 and 9 years after fire and in thrice-burned forests examined 5 years after the most recent fire event. The number of trees recorded in unburned primary forest control plots was stable over time. However, in both once- and twice-burned forest plots, there was a marked recruitment into the 10-20cm diameter at breast height tree size classes between 3 and 9 years post-fire. Considering tree assemblage composition 9 years after the first fire contact, we observed (i) a clear pattern of community turnover among small trees and the most abundant shrubs and saplings, and (ii) that species that were common in any of the four burn treatments (unburned, once-, twice- and thrice-burned) were often rare or entirely absent in other burn treatments. We conclude that episodic wildfires can lead to drastic changes in forest structure and composition, with cascading shifts in forest composition following each additional fire event. Finally, we use these results to evaluate the validity of the savannization paradigm.  相似文献   

10.
Holzmueller EJ  Jose S  Jenkins MA 《Oecologia》2008,155(2):347-356
Exotic diseases have fundamentally altered the structure and function of forest ecosystems. Controlling exotic diseases across large expanses of forest has proven difficult, but fire may reduce the levels of diseases that are sensitive to environmental conditions. We examined Cornus florida populations in burned and unburned QuercusCarya stands to determine if burning prior to anthracnose infection has reduced the impacts of an exotic fungal disease, dogwood anthracnose, caused by Discula destructiva. We hypothesized that fire has altered stand structure and created open conditions less conducive to dogwood anthracnose. We compared C. florida density, C. florida health, and species composition and density among four sampling categories: unburned stands, and stands that had burned once, twice, and 3 times over a 20-year period (late 1960s to late 1980s). Double burn stands contained the greatest density of C. florida stems (770 stems ha−1) followed by triple burn stands (233 stems ha−1), single burn stands (225 stems ha−1) and unburned stands (70 stems ha−1; P < 0.01). We observed less crown dieback in small C. florida trees (<5 cm diameter at breast height) in burned stands than in unburned stands (P < 0.05). Indicator species analysis showed that burning favored species historically associated with QuercusCarya forests and excluded species associated with secondary succession following nearly a century of fire suppression. Our results suggest that fire may mitigate the decline of C. florida populations under attack by an exotic pathogen by altering forest structure and composition. Further, our results suggest that the burns we sampled have had an overall restorative effect on forest communities and were within the fire return interval of the historic fire regime. Consequently, prescribed fire may offer a management tool to reduce the impacts of fungal disease in forest ecosystems that developed under historic burning regimes.  相似文献   

11.
《Flora》2014,209(5-6):260-270
Fire disturbance alters the structural complexity of forests, above-ground biomass stocks and patterns of growth, recruitment and mortality that determine temporal dynamics of communities. These changes may also alter forest species composition, richness, and diversity. We compared changes in plant recruitment, mortality, and turnover time over three years between burned and unburned sites of two seasonally flooded natural forest patches in a predominantly savanna landscape (regionally called ‘impucas’) in order to determine how fire alters forest dynamics and species composition. Within each impuca, 50 permanent plots (20 m × 10 m) were established and all individuals ≥5 cm diameter at breast height (DBH) identified and measured in two censuses, the first in 2007 and the second in 2010. Unplanned fires burned 30 plots in impuca 1 and 35 in impuca 2 after the first census, which enabled thereafter the comparison between burned and unburned sites. The highest mortality (8.0 and 24.3% year−1 for impuca 1 and 2) and turnover time (69 and 121.5 years) were observed in the burned sites, compared to 3.7 and 5.2% year−1 (mortality), and 28.4 and 40.9 years (turnover), respectively, for the unburned sites. Although these seasonally flooded impuca forests are embedded in a fire-adapted savanna landscape, the impucas vegetation appears to be sensitive to fire, with burned areas having higher mortality and turnover than unburned areas. This indicates that these forest islands are potentially at risk if regional fire frequency increases.  相似文献   

12.
Disturbance legacies structure communities and ecological memory, but due to increasing changes in disturbance regimes, it is becoming more difficult to characterize disturbance legacies or determine how long they persist. We sought to quantify the characteristics and persistence of material legacies (e.g., biotic residuals of disturbance) that arise from variation in fire severity in an eastern ponderosa pine forest in North America. We compared forest stand structure and understory woody plant and bird community composition and species richness across unburned, low‐, moderate‐, and high‐severity burn patches in a 27‐year‐old mixed‐severity wildfire that had received minimal post‐fire management. We identified distinct tree densities (high: 14.3 ± 7.4 trees per ha, moderate: 22.3 ± 12.6, low: 135.3 ± 57.1, unburned: 907.9 ± 246.2) and coarse woody debris cover (high: 8.5 ± 1.6% cover per 30 m transect, moderate: 4.3 ± 0.7, low: 2.3 ± 0.6, unburned: 1.0 ± 0.4) among burn severities. Understory woody plant communities differed between high‐severity patches, moderate‐ and low‐severity patches, and unburned patches (all p < 0.05). Bird communities differed between high‐ and moderate‐severity patches, low‐severity patches, and unburned patches (all p < 0.05). Bird species richness varied across burn severities: low‐severity patches had the highest (5.29 ± 1.44) and high‐severity patches had the lowest (2.87 ± 0.72). Understory woody plant richness was highest in unburned (5.93 ± 1.10) and high‐severity (5.07 ± 1.17) patches, and it was lower in moderate‐ (3.43 ± 1.17) and low‐severity (3.43 ± 1.06) patches. We show material fire legacies persisted decades after the mixed‐severity wildfire in eastern ponderosa forest, fostering distinct structures, communities, and species in burned versus unburned patches and across fire severities. At a patch scale, eastern and western ponderosa system responses to mixed‐severity fires were consistent.  相似文献   

13.
不同强度火干扰下盘古林场天然落叶松林的空间结构   总被引:4,自引:0,他引:4  
倪宝龙  刘兆刚 《生态学报》2013,33(16):4975-4984
基于2011年7月大兴安岭外业调查数据以林隙为主要研究对象,选取景观生态学中斑块类型指数分析样地内林隙状况,并结合林木分布状态,分析不同强度林火干扰对天然落叶松林空间结构的影响。结果表明:在受中度林火干扰的林分内,只保留了少量的落叶松中径木、大径木,先锋树种在林分内呈现聚集分布;在未受林火干扰的林分和受林火轻微干扰的林分内,天然落叶松均呈现显著聚集分布;由于受到不同强度的林火干扰,林下区域与林隙区域出现不同程度的相互转化,林分空间结构发生了改变。林分按照所受林火干扰强度的递减,在同一时间不同空间上表现出了森林循环过程中所经历的林隙阶段状态、建立阶段状态、成熟阶段状态。  相似文献   

14.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

15.
Fire is frequently used as a land management tool for cattle ranching and annual crops in the Amazon. However, these maintenance fires often escape into surrounding forests, with potentially severe impacts for forest biodiversity. We examined the effect of experimental fires on leaf-litter arthropod abundance in a seasonally-dry forest in the Brazilian Amazon. The study plots (50 ha each) included a thrice-burned forest and an unburned control forest. Pitfall-trap samples were collected at 160 randomly selected points in both plots, with sampling stratified across four intra-annual replicates across the dry and wet seasons, corresponding to 6, 8, 10 and 12 months after the most recent fire. Arthropods were identified to the level of order (separating Formicidae). In order to better understand the processes that determine arthropod abundance in thrice-burned forests, we measured canopy openness, understory density and litter depth. All arthropod taxa were significantly affected by fire and season. In addition, the interactions between burn treatment and season were highly significant for all taxa but Isoptera. The burned plot was characterized by a more open canopy, lower understory density and shallower litter depth. Hierarchical partitioning revealed that canopy openness was the most important factor explaining arthropod order abundances in the thrice-burned plot, whereas all three environmental variables were significant in the unburned control plot. These results reveal the marked impact of recurrent wildfires and seasonality on litter arthropods in this transitional forest, and demonstrate the overwhelming importance of canopy-openness in driving post-fire arthropod abundance.  相似文献   

16.
Chuck-will's-widow (Antrostomus carolinensis) and eastern whip-poor-will (Antrostomus vociferus) are nightjars in eastern North America that have declined 69% and 67%, respectively, in abundance since 1966, resulting in conservation concerns for these species. We investigated relationships between nightjar abundance and landscape composition, forest structure, and application of tree thinning and prescribed fire because of regional interest in woodland restoration and nightjar conservation. We conducted nocturnal nightjar surveys at 385 points in southern Missouri, USA, in 2014 and 2015 and related counts to pine (Pinus spp.) and hardwood basal area, canopy closure, percent forest cover, and percent of area thinned or burned within 500 m of survey points. We modeled abundance of chuck-will's-widow and eastern whip-poor-will using time-removal models that included a detection process and an abundance process within a hierarchical Bayesian framework. We detected 534 eastern whip-poor-will and 186 chuck-will's-widow during surveys. Our data supported global models that included all 6 vegetation and management variables for both species. Chuck-will's-widow abundance was negatively related to hardwood basal area and peaked at intermediate values of percent area burned and percent forest cover. Eastern whip-poor-will abundance was negatively related to hardwood basal area and canopy cover, positively related to percent forest cover and percent of area burned, and peaked at low to moderate levels of percent of area thinned. Relationships to forest structure and management activities generally supported the conclusion that woodland restoration benefits nightjars and that chuck-will's-widow select landscapes with less forest cover than eastern whip-poor-will.  相似文献   

17.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

18.
Large parts of the everwet tropics have been burned, leaving many unburned–burned forest edges. Here we studied a Bornean forest edge to determine: (1) how unburned and burned forest differ in vegetation structure, diversity, composition and plant functional traits 7 yr after fire, and (2) if these variables showed significant edge effects. Environmental and inventory data from 120 plots (0.01 ha each), covering both sides of a ~1.3 km forest boundary were sampled. Differences in vegetation structure, diversity, composition and plant functional traits were analyzed in relation to disturbance type (Mann–Whitney tests) and edge distance (partial correlation analysis that controlled for confounding effects of elevation, slope and fire intensity). Seven years after fire, burned forest differed significantly from unburned forest in most measured variables while few significant edge effects were detected, i.e., there existed a sharp delimitation between the two forest types. The regeneration of the burned forest depended almost entirely on in situ recruitment with little input of late successional species from the neighboring old growth forest. On the other hand, old growth forest showed few signs of edge degradation. A possible explanation for these results might be related to the absence of a mast fruiting event during these first 7 yr of forest recovery, resulting in low levels of late successional species seed input into the burned forest, combined with the quick development of a closed canopy in the burned forest by early successional species that shielded the unburned forest from adverse edge effects.  相似文献   

19.
Aim To test the hypothesis that ‘islands’ of fire‐sensitive rain forest are restricted to topographic fire refugia and investigate the role of topography–fire interactions in fire‐mediated alternative stable state models. Location A vegetation mosaic of moorland, sclerophyll scrub, wet sclerophyll eucalypt forest and rain forest in the rugged, fire‐prone landscapes of south‐west Tasmania, Australia. Methods We used geospatial statistics to: (1) identify the topographic determinants of rain forest distribution on nutrient‐poor substrates, and (2) identify the vegetation and topographic variables that are important in controlling the spatial pattern of a series of very large fires (> 40,000 ha) that were mapped using Landsat Thematic Mapper (TM) satellite imagery. Results Rain forest was more likely to be found in valleys and on steep south‐facing slopes. Fires typically burned within highly flammable treeless moorland and stopped on boundaries with less flammable surrounding vegetation types such as wet sclerophyll forest and rain forest. Controlling for the effect of vegetation, fires were most likely to burn on flats, ridges and steep north‐facing slopes and least likely to burn in valleys and on steep south‐facing slopes. These results suggest an antagonism between fire and rain forest, in which rain forest preferentially occupies parts of the landscape where fire is least likely to burn. Main conclusions The distribution of rain forest on nutrient‐poor substrates was clearly related to parts of the landscape that are protected from fire (i.e. topographic fire refugia). The relative flammability of vegetation types at the landscape scale offers support to the proposed hierarchy of fire frequencies (moorland > scrub > wet sclerophyll > rain forest) that underpins the ecological models proposed for the region. The interaction between fire occurrence and a range of topographic variables suggests that topography plays an important role in mediating the fire–vegetation feedbacks thought to maintain vegetation mosaics in south‐west Tasmania. We suggest that these fire–topography interactions should be included in models of fire‐mediated alternative stable vegetation states in other fire‐prone landscapes.  相似文献   

20.
Fire is an important control on the carbon (C) balance of the boreal forest region. Here, we present findings from two complementary studies that examine how fire modifies soil organic matter properties, and how these modifications influence rates of decomposition and C exchange in black spruce (Picea mariana) ecosystems of interior Alaska. First, we used laboratory incubations to explore soil temperature, moisture, and vegetation effects on CO2 and DOC production rates in burned and unburned soils from three study regions in interior Alaska. Second, at one of the study regions used in the incubation experiments, we conducted intensive field measurements of net ecosystem exchange (NEE) and ecosystem respiration (ER) across an unreplicated factorial design of burning (2 year post-fire versus unburned sites) and drainage class (upland forest versus peatland sites). Our laboratory study showed that burning reduced the sensitivity of decomposition to increased temperature, most likely by inducing moisture or substrate quality limitations on decomposition rates. Burning also reduced the decomposability of Sphagnum-derived organic matter, increased the hydrophobicity of feather moss-derived organic matter, and increased the ratio of dissolved organic carbon (DOC) to total dissolved nitrogen (TDN) in both the upland and peatland sites. At the ecosystem scale, our field measurements indicate that the surface organic soil was generally wetter in burned than in unburned sites, whereas soil temperature was not different between the burned and unburned sites. Analysis of variance results showed that ER varied with soil drainage class but not by burn status, averaging 0.9 ± 0.1 and 1.4 ± 0.1 g C m−2 d−1 in the upland and peatland sites, respectively. However, a more complex general linear model showed that ER was controlled by an interaction between soil temperature, moisture, and burn status, and in general was less variable over time in the burned than in the unburned sites. Together, findings from these studies across different spatial scales suggest that although fire can create some soil climate conditions more conducive to rapid decomposition, rates of C release from soils may be constrained following fire by changes in moisture and/or substrate quality that impede rates of decomposition. Author contributions: JAO: performed research, analyzed data, contributed new methods, wrote the paper; MRT: designed laboratory study, performed research, analyzed data; JWH: designed field study, performed research; KLM: performed research; LEP: performed research, contributed new method; GS: performed research; JCN: performed research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号