首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
ABSTRACT Riparian forest communities in the southwestern United States were historically structured by a disturbance regime of annual flooding. In recent decades, however, frequency of flooding has decreased and frequency of wildfires has increased. Riparian forests provide important breeding habitat for a large variety of bird species, and the effects of this altered disturbance regime on birds and their breeding habitat is largely unknown. To evaluate effects of high-intensity spring and summer wildfire on the quality of breeding bird habitat in the Middle Rio Grande valley, we measured vegetation structure and composition, avian nest use, and nest success at 4 unburned plots and 4 wildfire plots over a 3-year period. We measured avian nest use and success at nest boxes located in unburned riparian forest plots and plots recently burned by wildfire. Recent wildfire plots (<7 yr after fire) had a much different vegetation structure than unburned plots; an older (>7 yr after fire) wildfire plot more closely resembled its paired unburned plot than did recently burned plots. Ash-throated flycatchers (Myiarchus cinerascens) and Bewick's wrens (Thryomanes bewickii; hereafter, flycatchers and wrens, respectively) used nest boxes in most of the plots. A model selection procedure applied to logistic regressions showed that frequency of nest box use by flycatchers was positively associated with wildfire, although flycatchers used boxes in unburned plots as well. Wrens showed a preferential use of nest boxes that were in unburned sites and in close proximity to vegetative cover. Growth rates, feeding rates, and fledging mass of flycatchers were similar in wildfire and unburned plots. Growth rates for wrens were slower in wildfire plots, while feeding rates and fledging mass were similar. Nest predation varied between years, was higher for flycatchers than for wrens, and was not directly influenced by wildfire. Model selection showed that predation increased with grass cover, an indicator of forest openness, and decreased with distance to habitat edge. Recovery of dense vegetation appears important in maintaining populations of Bewick's wrens, whereas ash-throated flycatchers were less sensitive to vegetative structure and composition of postfire succession. Postfire management that maintains nest sites in large forest strips would enhance nesting density and success of these cavity-nesting birds in riparian zones.  相似文献   

2.
This study analyzes the variations in the structure and composition of ant communities in burned Pinus nigra forests in central Catalonia (NE Spain). Pinus nigra forests do not recover after fire, changing to shrublands and oak coppices. For this reason, we suggest that ant communities of burned P. nigra forests will change after fire, because the post‐fire scenario, in particular with the increase of open areas, is different to the unburned one, and more favourable for some species than for others. In four locations previously occupied by P. nigra forests where different fires occurred 1, 5, 13 and 19 yr before the sampling, we sampled the structure and composition of ant communities with pitfall traps, tree traps and net sweeping in unburned plots and in plots affected by canopy and understory fire. The results obtained suggest that canopy and understory fire had little effect on the structure of ant communities. Thus, many variables concerning ant communities were not modified either by fire type (understory or canopy fire) or by time since fire. However, a number of particular species were affected, either positively or negatively, by canopy fire: three species characteristic of forest habitats decreased after fire, while eight species characteristic of open habitats increased in areas affected by canopy fire, especially in the first few years after fire. These differences in ant community composition between burned and unburned plots imply that the maximum richness is achieved when there is a mixture of unburned forests and areas burned with canopy fire. Moreover, as canopy cover in P. nigra forests burned with canopy fire is not completed in the period of time studied, the presence of the species that are characteristic of burned areas remains along the chronosequence studied, while the species that disappear after fire do not recover in the period of time considered. Overall, the results obtained indicate that there is a persistent replacement of ant species in burned P. nigra forests, as is also the case with vegetation.  相似文献   

3.
Question : How do interactions between rocky landscape features and fire regime influence vegetation dynamics? Location : Continental Eastern USA. Methods : We measured vegetation, disturbance and site characteristics in 40 pairs of rocky and non‐rocky plots: 20 in recently burned stands, and 20 in stands with no evidence of recent fire (‘unburned’ stands). Two‐way analysis of variance (ANOVA) was used to assess the main and interaction effects of fire and rock cover on plant community composition. Results : In burned stands, rock cover had a strong influence on vegetation. Non‐rocky ‘matrix’ forests were dominated by Quercus, and had abundant ground cover and advance regeneration of early and mid‐successional tree species. Burned rocky patches supported greater density of fire‐sensitive species such as Acer rubrum, Sassafras albidum and Nyssa sylvatica and had little advance regeneration or ground cover. Quercus had fewer fire scars and catfaces (open, basal wounds) on rocky patches, suggesting that rocky features mitigate fire severity. In unburned stands, differences between rocky and non‐rocky patches were less distinct, with both patch types having sparse ground cover, little tree regeneration, and high understorey densities of relatively shade tolerant A. rubrum, N. sylvatica and Betula lenta. Conclusion : Under a sustained fire regime, heterogeneity in rock cover created a mosaic where fire‐adapted species such as Quercus dominate the landscape, but where fire‐sensitive species persisted in isolated pockets of lower fire severity. Without fire, species and landscape richness may decline as early‐mid successional species are replaced by more shade tolerant competitors.  相似文献   

4.
Wildfires are common natural perturbations in Mediterranean ecosystems. Their frequency and extent have changed in recent decades to become one of the main ecological problems for wildlife. The response of fauna to wildfires depends greatly on the life histories and biological traits of each species. Terrestrial gastropods have limited mobility, and their presence is restricted by the vegetal and abiotic characteristics of habitats. For this reason, they are expected to have a low ability to recolonize burned areas. We have explored their survivorship and recolonization patterns according to the cryptic-refuge and fire-edge models in a Mediterranean protected area affected by a large fire in August 2003. The low number of species recorded at burned sites demonstrates the negative effects of a wildfire on the richness of gastropod assemblages 4 years after the perturbation. However, the total number of living individuals did not vary between burned and unburned areas, suggesting an after-fire shift in dominant species from woodland to open-space species. Forest species with wide European distributions dominated in unburned sites, whereas open-space species and xerophytic Mediterranean species were present at burned sites. These differences were evident even at the burned sites closest to the unburned forest, suggesting low recolonization rates from the fire edge. By contrast, the abundance of xerophilous species as well as isolated records of mesophilous species in the burned areas suggests the survival of small populations and further recuperation after fire following the cryptic-refuge model.  相似文献   

5.
Ne'eman  Gidi  Dafni  Amots  Potss  Simon G. 《Plant Ecology》2000,146(1):97-104
The recovery of vegetation following fire has been studied intensively in Mediterranean-type ecosystems. Little attention, however, has been given to floral traits, and almost no data have been collected on the effects of fire on pollinator activity and fruit-set. This paper reports the effects of fire on flower visitation rates and the possibly related fruit-set. We compared visitation rates of the main pollinators on four plant core-species in burned and adjacent unburned areas. Measurements were performed at an unburned phrygana (scrub lands), and at a burned area (5–7 years post-fire). Bumble bees and solitary bees were the main taxa of visitors, while few honeybees were recorded. Solitary bees were almost absent from the burned area. Fruit-set was significantly higher in the unburned area for three out of the four plant species. The lower fruit-set in the burned area was possibly the result of low activity of solitary bees which are the main effective pollinators of the examined species. We hypothesize that the populations of the solitary bees were diminished or extirpated either directly by the fire, or indirectly by the scarcity of nectar in the early post-fire years due to dominance of young pine and Cistus spp. seedlings. The short foraging range of the solitary bees and their slow invasion rate into the burned area may explain our results.  相似文献   

6.
Forest succession following fire in a forest mosaic of northwestern Quebec has been studied in order to: (1) describe the successional pathways using communities of different ages and (2) evaluate convergence of successional pathways and possible effect of fire suppression on the establishment of steady-state communities. As a first step, ordination and classification techniques were used in order to remove changes in forest composition which are related to abiotic conditions. Then, ordinations based on tree diameter distributions were used to study shifts in species composition in relation to time since the last fire.Even under similar abiotic conditions, successional pathways are numerous. However, regardless of forest composition after fire, most stands show convergence toward dominance of Thuja occidentalis and Picea mariana on xeric sites and dominance of Abies balsamea and Thuja occidentalis on more mesic sites. Stable communities of >300 yr occur on xeric sites while on mesic sites directional succession still occurs after 224 yr. Nearly all species involved in succession are present in the first 50 yr following fire. Only Abies balsamea and Thuja occidentalis increase significantly in frequency during succession. Following initial establishment, successional processes can generally be explained by species longevity and shade tolerance. Early successional species may be abundant in the canopy for more than 200 yr while the rapid decrease of Picea glauca, a late successional species could be related to spruce budworm outbreaks. Considering the short fire rotation observed (about 150 yr), a steady-state forest is unlikely to occur under natural conditions, though it may be possible if fire is controlled.  相似文献   

7.
Question: What are the main forces driving natural regeneration in burned mature Mediterranean forests in the medium‐long term and what are the likely successional trajectories of unmanaged vegetation? Location: Valencia Region, eastern Spain. Methods: A wildfire burned 33 000 ha of Pinus halepensis and P. pinaster forest in 1979, and subsequent smaller wildfires took place between 1984 and 1996. The study was designed to sample the range of environmental and disturbance (fire recurrence and land use) conditions. The territory was classified into 17 different geomorphological and fire‐recurrence units. Vegetation cover and floristic composition were measured on a total of 113 plots (1000 m2 each) randomly selected within these units. Results: The results show that 23 years after the fire the regenerated vegetation consists of successional shrublands, and that forest ecosystem resilience can be very low. The vegetation presents a strong correlation with most of the environmental variables, but fire (one or two fires), soil type and land use (in that order) are the main drivers of vegetation composition. Quercus coccifera shrublands persist on limestone soils while diverse types of other shrublands (dominated by seeder species) are found on marl soils. Conclusions: The results of this study indicate that disturbance factors strongly coupled to human activities, such as land use and fire, play a critical role in the current state of vegetation. Fire creates vegetation patches in different successional states while land use and soil type define the different types of shrubland in terms of their specific composition.  相似文献   

8.
Aim In the Mediterranean Basin, the main forest communities vary in their ability to recover after fire. In this study we analyse the effects of fire on ant communities occurring in various vegetation types distributed along a geographical gradient in the western Mediterranean region. Location The study was carried out in burned and unburned habitats of 22 sites corresponding to eight vegetation types distributed along a gradient of dryness throughout Catalonia (north‐east Spain). Methods We placed five pairs of plots (one plot located in the burned area and the second one placed in the unburned margin) per site. We compared ant communities in these unburned and burned plot types 8 years after fire using pitfall traps. Traps were set out in mid‐May and mid‐July. We analysed the structure and composition of ant communities in the burned and unburned areas of these vegetation types using anova tests, correspondence analysis (CA) and linear regression. Results The resilience of ant communities varies with vegetation type. Ant communities in forests with high resilience also recover rapidly after fire, while those in forests that do not recover after fire show the lowest resilience. Species richness does not depend on burning or vegetation type. The resilience of these Mediterranean ant communities to fire is related to the environmental characteristics of the region where they live. Accordingly, differences between burned and unburned habitats are smaller for ant communities in areas with higher water deficit in summer than for those in moister ones. Main conclusions The structure and composition of ant communities after fire depends on the level of direct mortality caused by the fire. It affects ant species differently, as determined by the habitats used for nesting and foraging. The reestablishment of vegetation cover depends on forest composition before the fire. As vegetation cover determines resource and microhabitat availability and competitive relationships among species, forest composition before the fire also affects post‐fire recovery of ant communities to the medium‐term. Finally, ant communities living in drier areas recover more quickly after fire than those living in moister ones. This pattern might be because in areas with higher water deficit there are more species characteristic of open environments, which are habitats similar to those generated after fire.  相似文献   

9.
Abstract In late 2001 a category 3 cyclone impacted forest plots that were established in Tonga in 1995, and additionally, one plot was accidentally burned by an escaped land‐clearing fire. Subsequent surveys provide observations of 10 years of forest dynamics in this poorly studied region, and the first reported observations of large interannual variation in juvenile (seedling and sapling) abundance in the western tropical Pacific. The severely disturbed (burned) plot was initially colonized by a non‐native early pioneer, Carica papaya L., but 3.5 years later a native pioneer, Macaranga harveyana (Muell. Arg.) Muell. Arg., was the most abundant tree species. The seedling layer included some long‐lived pioneers and shade‐tolerant species. Two mature forest plots affected only by the cyclone changed very little over a decade. Late‐successional shade‐tolerant species that dominated the overstory were also abundant as seedlings and saplings. This is in contrast with a 30‐ to 40‐year‐old, formerly cultivated, secondary forest plot that still shows no recruitment of late‐successional dominants, in spite of the proximity of remnant forest patches. This study suggests differing pathways of succession following shifting cultivation versus cyclone and fire disturbances in Tonga. Land use legacies appear to have a long‐lasting effect on community composition.  相似文献   

10.
Fire is frequently used as tool for land management in the Amazon, but often escapes into surrounding forests, with potentially severe impacts for forest biodiversity. We investigated the effects of single wildfires on ant communities in four geographically distinct regions of the Brazilian Amazon (Roraima, Pará, Acre and Mato Grosso) where forests had burned between 8 months and 10 years before our sampling. We established 7–12 transects, 500 m each, in burned and unburned forests in each region to investigate the effects of fire on forest structure and leaf litter ant communities, which were sampled using Winkler sacks. Fire effects on forest structure were more drastic in the most recently burned forests in Acre and Mato Grosso, while the impacts of older burns in Roraima and Pará were more subtle. Ant species richness was not different between burnt and unburned areas, but community composition differed between burned and control forests in all regions except Mato Grosso. At the species level, indicator species analysis showed that a limited number of species were significant indicators of unburned control forests in all regions, except Acre. Forests structure variables and leaf litter volume were all important in shaping ant communities, but their relative importance varied between regions. Our results indicate that burned forest have different ant species communities from unburned forests, and those differences are still apparent 10 years after the disturbance, highlighting the importance of effective policies for fire management in Amazon.  相似文献   

11.
Abstract: Fire‐affected forests are becoming an increasingly important component of tropical landscapes. The impact of wildfires on rainforest communities is, however, poorly understood. In this study the density, species richness and community composition of seedlings, saplings, trees and butterflies were assessed in unburned and burned forest following the 1997/98 El Niño Southern Oscillation burn event in East Kalimantan, Indonesia. More than half a year after the fires, sapling and tree densities in the burned forest were only 2.5% and 38.8%, respectively, of those in adjacent unburned forest. Rarefied species richness and Shannon's H’ were higher in unburned forest than burned forest for all groups but only significantly so for seedlings. There were no significant differences in evenness between unburned and burned forest. Matrix regression and Akaike's information criterion (AIC) revealed that the best explanatory models of similarity included both burning and the distance between sample plots indicating that both deterministic processes (related to burning) and dispersal driven stochastic processes structure post‐disturbance rainforest assemblages. Burning though explained substantially more variation in seedling assemblage structure whereas distance was a more important explanatory variable for trees and butterflies. The results indicate that butterfly assemblages in burned forest were primarily derived from adjacent unburned rainforest, exceptions being species of grass‐feeders such as Orsotriaena medus that are normally found in open, disturbed areas, whereas burned forest seedling assemblages were dominated by typical pioneer genera, such as various Macaranga species that were absent or rare in unburned forest. Tree assemblages in the burned forest were represented by a subset of fire‐resistant species, such as Eusideroxylon zwageri and remnant dominant species from the unburned forest.  相似文献   

12.
Abstract. The history of a rapidly changing mosaic of prairie and oak savanna in northern Indiana was reconstructed using several methods emphasizing different time scales ranging from annual to millennial. Vegetation change was monitored for 8 yr using plots and for 30 yr using aerial photographs. A 20th century fire history was reconstructed from the stand structure of multiple-stemmed trees and fire scars. General Land Office Survey data were used to reconstruct the forest of A.D. 1834. Fossil pollen and charcoal records were used to reconstruct the last 4000 yr of vegetation and fire history. Since its deposition along the shore of Lake Michigan about 4000 yr ago, the area has followed a classical primary dune successional sequence, gradually changing from pine forest to prairie/oak savanna between A.D. 264 and 1007. This successional trend, predicted in the models of Henry Cowles, occurred even though the climate cooled and prairies elsewhere in the region retreated. Severe fires in the 19th century reduced most tree species but led to a temporary increase in Populus tremuloides. During the last few decades, the prairie has been invaded by oaks and other woody species, primarily because of fire suppression since A.D. 1972. The rapid and complex changes now occurring are a response to the compounded effects of plant succession, intense burning and logging in the 19th century, recent fire suppression, and possibly increased airborne deposition of nitrates. The compilation of several historical research techniques emphasizing different time scales allows this study of the interactions between multiple disturbance variables.  相似文献   

13.
Blackwater floodplain forests of the Rio Negro are susceptible to understory fires. Bird composition was distinct between burned and unburned floodplain forest but not between young (12–18 yr) and old burns (>25 yr), indicating low resilience after fire. Forest regeneration is slow, with open grassy areas persisting >80 yr.  相似文献   

14.
临安次生灌丛植物多样性对林火烈度空间异质性的响应   总被引:1,自引:0,他引:1  
以同一过火3a后临安市太阳镇天然次生灌丛为对象,采用样地调查法按不同林火烈度设置火干扰样地进行植物群落调查,以检验林分内部的林火烈度异质性是否与局部的植物多样性变化相关。结果表明:研究区共有高等植物83种,分属于38科67属,群落区系组成以亚热带科属为主,表现出常绿阔叶林已退化过渡到位于演替早期阶段的落叶次生灌丛群落的性质;低林火烈度对灌木层的树种组成有影响,但不明显;中烈度林火对灌木层的物种组成影响较大;低、中林火烈度下草本层的物种组成变化都很明显;灌木层的物种数和多样性指数都表现出低烈度火未火烧中烈度火的趋势;草本层的物种数、多样性指数和均匀度指数表现出中烈度火低烈度火未火烧的趋势;草本层的物种组成和多样性受林火烈度的影响较灌木层更大。研究表明次生灌丛群落过火区内部林火烈度异质性在初期会引起植物多样性的响应差异;低烈度火干扰可以增加次生灌丛生物多样性、促进群落更新;中烈度火干扰下木本植物物种多样性丧失较大,而草本植物多样性显著增加,不利于群落的正向演替。  相似文献   

15.
Several boreal wood-living insect species breed exclusively in recently burned forest. However, the reason for this dependence on fire is largely unknown. Here wood-living insects and other arthropods were sampled from burned and unburned logs of birch and spruce in a burned forest, together with unburned logs at a clearing and in an uncut forest, during two years of succession after tree death. Burned spruce logs hosted fewer beetles than unburned logs. Notably, bark-beetles and their associated fauna, responded negatively to fire-scorching of the logs while arthropods that feed on ascomycete fungi responded positively. Fire-scorched logs more often had visible ascomycete fungi, and lost their bark faster than unburned logs. However, despite this obvious effect of fire-scorching of the logs, the species composition in burned and unburned logs at the burned site was more similar than in unburned logs at the three different sites. A larger diversity of beetles, when measured with rarefaction, was found for fire-scorched logs. When sites were compared, birch logs had the most diverse fauna at the burned site and spruce logs in the uncut forest. Pyrophilous insect species were almost exclusively confined to the burned forest, but occurred in both burned and unburned logs. These species may be divided into two groups: (1) mycophagous species that need burned substrate per se because ascomycete fungi are favoured by burning, and (2) phloem-feeders and predators that are favoured by some habitat characteristic of recently burned forest rather than of burned wood.  相似文献   

16.
The fire-related variations in culturable microfungal communities in the soil of the Mount Carmel forest, Israel, were examined by comparing the communities from burned and adjacent unburned soil plots under pine and oak trees – collected 6, 18, and 26 months after the fire. A total of 82 species representing 44 genera were isolated using the soil dilution plate method. The results showed that the fire had strongly influenced the composition and structure of microfungal communities. The fire remarkably changed physical and chemical properties of the environment, decreasing water holding capacity, organic matter and total nitrogen content in the burned soil. These changes supported abundant development of fast-growing mycoparasitic species (Clonostachys rosea and Trichoderma spp.) and caused significant decrease in species richness. The variations in community composition were much more expressed in the burned soils under oak vegetation as compared with the pine trees. In the oak burned soils, the contribution of the “mesic” component, Penicillium spp., was markedly lower, whereas the contribution of the “xeric”, stress-selected component, melanin-containing species, was higher than in the unburned communities. Such variations can be also considered as a community response to the fire-related decrease in water and nutrient content in the burned soils.  相似文献   

17.
Abstract Multiple disturbance regimes are increasingly common as novel anthropogenic disturbances are added to existing natural disturbances. However, it is generally unknown whether simultaneous or sequential effects of different forms of disturbance are predictable from the independent effects of each disturbance. This study examines the short‐term effects of sequential disturbance by mineral sand‐mining followed by fire in a forest community in south‐eastern Australia. Four combinations of disturbance were sampled: unburned mined, burned mined, unburned forest (unmined) and burned forest (unmined, with between‐fire interval matching the disturbance interval between mining and fire of the burned mined treatment). All combinations were sampled approximately 12 months following fire on the burned sites. The impact of fire after mining depended on disturbance interval. Sites burned 0.5–2.4 years since mining had fewer native vascular plant species than unburned mined sites of the same mined age, whereas sites with 10–16 years or 20–26 years between mining and fire had greater native species richness than unburned mined sites of the same age. Burning 20–26 years after mining brought native species richness within the range of burned forest. For both unmined and mined sites native seedling densities increased with burning, and with longer disturbance intervals. Weed species richness and weed seedling densities were greater on mined sites than in forest, and burning mined sites elevated weed seedling densities further, particularly for short intervals. Both disturbance interval and fire intensity are likely to have contributed to these results, as intensity on mined areas increased with interval, and at 20–26 years post‐mining was equivalent to unmined forest. These results suggest that fire could be used to promote rehabilitation of these mined areas after at least 10 years, but should be excluded from earlier stages of post‐mining regeneration. However, other sources of spatial and temporal variability should be considered in addition to interval and intensity, as variation among mined areas was correlated with post‐fire weather conditions and available weed sources. Finally, the combined effects of mining and fire could not be predicted from knowledge of the disturbances operating separately, indicating that effects of multiple disturbance may be synergistic rather than additive.  相似文献   

18.
The effects of starvation on larval growth, survival, and metamorphosis of Manila clam Ruditapes philippinarum at the temperature of 19.6–21.6 °C, the salinity of 34‰ and pH of 8.0 were investigated from May 18 to July 18, 2006. In this study, the early, middle and late umbo-veliger larvae with the shell lengths of 100, 140, and 190 μm were subject to temporary food deprivation for up to 4.5, 20, and 25d at 0.5, 4, 5d intervals, followed by refeeding for the remaining of a 24, 20, 25d period, respectively. The results suggested that the larvae should have shown considerable tolerance to starvation due to their endogenous and exterior nutrition material, for larvae and time to the point-of-no-return (PNR: the threshold point during starvation after which larvae could no longer metamorphose even if food is provided) were calculated to be 4.25, 17.54, and 22.17d. As the starvation period prolonged, the mean shell length of larvae starved got close to constants at 1.5, 4, and 15d after starvation, which were different for larvae at different stages when starvation began, survival of larvae decreased, and was lower in treatments starved earlier in development than those starved later, for the early, middle and late umbo-veliger larvae, after 4.5, 20 and 25d of starvation period, few larvaes were alive. After starvation period, the alive larvaes were able to metamorphose and had a capability of compensatory growth when refeeding was given. Starvation not only affected metamorphosis rate, but also caused the delay in the time to metamorphosis and the decrease in the metamorphosed sizes. For example, for the continuously-fed larvae, duration to metamorphosis was 20.7d, for larvae with a size of 100-μm starved for up to 4d, larvae with a size of 140-μm starved for up to 16d, larvae with a size of 190-μm starved for up to 20d, duration to metamorphosis were 29.7, 31.7, and 37.7d, the delay in duration to metamorphosis were 9, 11, and 17d, respectively. Furthermore, importance of nutrition material for maintaining larval survival during starvation and the compensatory growth on larvae at the same feeding time were discussed.  相似文献   

19.
Fire is considered as an extreme disturbance in Mediterranean grasslands or shrublands as it often brings about many sudden changes in the vegetation structure, composition, and diversity patterns. In addition, it creates opportunities for exotic plant species to establish successfully in foreign habitat, and to outperform dominating native species. Monitoring and simulating post-fire successional changes, therefore, are essential tasks to efficiently restore native grasslands or shrublands. In this paper, we develop a theoretical framework for simulating fire-induced successional changes, mainly for Mediterranean vegetation, based on a three-level hierarchy of successional causes. Within this proposed framework, fire effects are considered by associating it with the number of burned sites open-up and specific changes at the burned sites relative to unburned sites. Three distinct site-specific neighborhoods are constructed; changes within each neighborhood allow sequential replacement of plant species by another plant species with greater maximum size, age and lower maximum growth rates and dispersal abilities. The proposed framework can be used to develop a spatially explicit individual-based model which will be useful for monitoring and predicting successional changes and hence for restoring native grasslands or shrublands.  相似文献   

20.
The effects of a prescribed winter burn on two species of pitcher plant, Sarracenia alata and S. psittacina, were investigated by comparing changes in variables measured before and after the fire in randomly selected plots in a Louisiana savanna. Burned plots showed an increase in foliage and unburned plots showed a decrease in foliage, as measured in total number of leaves (>25 cm) for S. alata and in total cover for S. psittacina. For S. alata, the gain in foliage in the burned plots was less than the loss in foliage in the unburned plots, but for S. psittacina the gain in burned plots was greater than the loss in unburned plots. Seedling recruitment of S. alata after the fire was exponentially related to the number of floral scapes produced in the year before the fire and was greater in burned plots than in unburned plots. Number of floral scapes of both pitcher plant species decreased in the year after the fire, but the decrease occurred equally in burned and unburned plots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号