首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The functional roles of the contrasting morphologies of sun and shade shoots of the evergreen shrub Heteromeles arbutifolia were investigated in chaparral and understory habitats by applying a three-dimensional plant architecture simulation model, YPLANT. The simulations were shown to accurately predict the measured frequency distribution of photosynthetic photon flux density (PFD) on both the leaves and a horizontal surface in the open, and gave reasonably good agreement for the more complex light environment in the shade. The sun shoot architecture was orthotropic and characterized by steeply inclined (mean = 71o) leaves in a spiral phyllotaxy with short internodes. This architecture resulted in relatively low light absorption efficiencies (E A) for both diffuse and direct PFD, especially during the summer when solar elevation angles were high. Shade shoots were more plagiotropic with longer internodes and a pseudo-distichous phyllotaxis caused by bending of the petioles that positioned the leaves in a nearly horizontal plane (mean = 5o). This shade-shoot architecture resulted in higher E A values for both direct and diffuse PFD as compared to those of the sun shoots. Differences in E A between sun and shade shoots and between summer and winter were related to differences in projection efficiencies as determined by leaf and solar angles, and by differences in self shading resulting from leaf overlap. The leaves exhibited photosynthetic acclimation to the sun and the shade, with the sun leaves having higher photosynthetic capacities per unit area, higher leaf mass per unit area and lower respiration rates per unit area than shade leaves. Despite having 7 times greater available PFD, sun shoots absorbed only 3 times more and had daily carbon gains only double of those of shade shoots. Simulations showed that sun and shade plants performed similarly in the open light environment, but that shade shoots substantially outperformed sun shoots in the shade light environment. The shoot architecture observed in sun plants appears to achieve an efficient compromise between maximizing carbon gain while minimizing the time that the leaf surfaces are exposed to PFDs in excess of those required for light saturation of photosynthesis and therefore potentially photoinhibitory. Received: 8 June 1997 / Accepted: 2 November 1997  相似文献   

2.
Twenty-two common British angiosperms were examined for their ability to acclimate photosynthetically to sun and shade conditions. Plants were grown under low irradiance, far-red enriched light (50 μmol m?2 s?1), selected to mimic as closely as possible natural canopy shade, and moderately high light of insufficient irradiance to induce photoinhibitory or photoprotective responses (300 μmol m?2 s?1). Light-and CO2-saturated photosynthetic rates of oxygen evolution (Pmax) and chlorophyll content were measured. Large variation was found in both parameters, and two ‘strategies’ for long-term acclimation were identified: firstly a change in chlorophyll per unit leaf area which was found to correlate positively with photosynthetic capacity, and secondly changes in chlorophyll alb ratio and Pmax, indicative of alterations at the chloroplast level, which were not associated with a change in chlorophyll content per unit leaf area. Combinations of these two strategies may occur, giving rise to the observed diversity in photosynthetic acclimation. The extent and nature of photosynthetic acclimation were compared with an index of shade association, calculated from the association each species has with woodland. It was found that the greatest flexibility for change at the chloroplast level was found in those species possessing an intermediate shade association, whilst acclimation in ‘sun’ species proceeded by a change in chlorophyll content; obligate shade species showed little capacity for acclimation at either the chloroplast or leaf level. A framework for explaining the variation between plant species in leaf-level photosynthetic capacity, in relation to the natural light environment, is presented. This is the first time the potential for light acclimation of photosynthesis in different plant species has been satisfactorily linked to habitat distribution.  相似文献   

3.
In tropical rainforests, the increased light associated with the formation of treefall gaps can have a critical impact on the growth and survivorship of understory plants. Here we examine both leaf-level and whole-plant responses to simulated light gap formation by two common shade-tolerant shrubs, Hybanthus prunifolius and Ouratea lucens. The species were chosen because they differed in leaf lifespans, a trait that has been correlated with a number of leaf- and plant-level processes. Ouratea leaves typically live about 5 years, while Hybanthus leaves live less than 1 year. Potted plants were placed in the understory shade for 2 years before transfer to a light gap. After 2 days in high light, leaves of both species showed substantial photoinhibition, including reduced CO2 fixation, F v/F m and light use efficiency, although photoinhibition was most severe in Hybanthus. After 17 days in high light, leaves of both species were no longer photoinhibited. In response to increased light, Ouratea made very few new leaves, but retained most of its old leaves which increased photosynthetic capacity by 50%. Within a few weeks of transfer to high light, Hybanthus had dropped nearly all of its shade leaves and made new leaves that had a 2.5-fold greater light-saturated photosynthetic rate. At 80 days after transfer, the number of new leaves was 4.9-fold the initial leaf number. After 80 days in high light, Hybanthus had approximately tenfold greater productivity than Ouratea when leaf area, photosynthetic capacity, and leaf dark respiration rate were all taken into account. Although both species are considered shade tolerant, we found that their growth responses were quite different following transfer from low to high light. The short-lived Hybanthus leaves were quickly dropped, and a new canopy of sun leaves was produced. In contrast, Ouratea showed little growth response at the whole-plant level, but a greater ability to tolerate light stress and acclimate at the leaf level. These differences are consistent with predictions based on leaf lifespan and are discussed within the context of other traits associated with shade-tolerant syndromes. Received: 25 March 1999 / Accepted: 16 August 1999  相似文献   

4.
Vats  S.K.  Pandey  S.  Nagar  P.K. 《Photosynthetica》2002,40(4):625-628
Net photosynthetic rate (P N) of Valeriana jatamansi plants, grown under nylon net shade or under different tree canopies, was saturated with photons at 1 000 mol m–2 s–1 photosynthetic photon-flux-density (PPFD), whereas open-grown plants were able to photosynthesise even at higher PPFD, e.g. of 2 000 mol m–2 s–1. Plants grown under net shade had higher total chlorophyll (Chl) content per unit area of leaf surface. However, Chl a/b ratio was maximal in open-grown plants, but remained unchanged in plants grown in nylon net shade and under different tree canopies. Sun-grown plants had thicker leaves (higher leaf mass per leaf area unit), higher wax content, and higher P N than shade grown plants. Thus V. jatamansi is able to acclimate to high PPFD and therefore this Himalayan species may be cultivated in open habitat to meet the ever-increasing industrial demand.  相似文献   

5.
The photosynthetic response of juveniles of Decussocarpus rospigliosii, an emergent primary forest species and shade tolerant in its juvenile stages and Alchornea triplinervia, a gap-colonizing species of tropical cloud forest in Venezuela was studied. Daily courses of microenvironmental variables and gas exchange under contrasting light conditions (gap and understory) were carried out in their natural environment and transplanted to different light regimes (shade and sun) in the field. The photosynthetic response and some anatomical characteristics of plants from different treatments were analyzed in the laboratory. Photosynthetic rates were low for both species, and were negative during some diurnal periods, related to the low photosynthetically active radiation levels obtained at both gap (6% of total radiation) and understory (2%). A. triplinervia shows higher rates (1.5–3.0 molm-2 -1) than D. rospigliosii (0.7–1.1 molm-2s-1). Both species showed increased photosynthetic rates when grown in gaps. A. triplinervia did not adjust its maximum photosynthetic rates to the prevailing light conditions. In contrast, D. rospigliosii responded to increased light levels. Both species showed low light compensation points when grown under total shade. There was a partial stomatal closure generally during midday in D. rospigliosii. A. triplinervia presented lower leaf conductances, transpiration rates and lesser stomatal control. Some leaf anatomical characteristics, in both species, were affected by variations in the light regime (i.e. increased leaf thickness, leaf specific weight and stomatal density). These results suggest that both species have the ability to respond to variations in their natural light environments, therefore maintaining a favorable carbon balance during the day.  相似文献   

6.
  • Phototropic leaf movement of plants is an effective mechanism for adapting to light conditions. Light is the major driver of plant photosynthesis. Leaf N is also an important limiting factor on leaf photosynthetic potential. Cotton (Gossypium hirsutum L.) exhibits diaheliotropic leaf movement. Here, we compared the long‐term photosynthetic acclimation of fixed leaves (restrained) and free leaves (allowed free movement) in cotton.
  • The fixed leaves and free leaves were used for determination of PAR, leaf chlorophyll concentration, leaf N content and leaf gas exchange. The measurements were conducted under clear sky conditions at 0, 7, 15 and 30 days after treatment (DAT).
  • The results showed that leaf N allocation and partitioning among different components of the photosynthetic apparatus were significantly affected by diaheliotropic leaf movement. Diaheliotropic leaf movement significantly increased light interception per unit leaf area, which in turn affected leaf mass per area (LMA), leaf N content (NA) and leaf N allocation to photosynthesis (NP). In addition, cotton leaves optimised leaf N allocation to the photosynthetic apparatus by adjusting leaf mass per area and NA in response to optimal light interception.
  • In the presence of diaheliotropic leaf movement, cotton leaves optimised their structural tissue and photosynthetic characteristics, such as LMA, NA and leaf N allocation to photosynthesis, so that leaf photosynthetic capacity was maximised to improve the photosynthetic use efficiency of light and N under high light conditions.
  相似文献   

7.
Summary Seedlings of Acer rubrum, Carpinus caroliniana, and Platanus occidentalis were germinated and grown under contrasting light regimes: varied light (59% of the abovecanopy photon flux incrementally decreased to 9%, simulating a forest understory during canopy leaf-out) and low light (constantly less than 10%, simulating an understory after leaf-out). By the time that light in both treatments was equilibrated at 9%, 44 days after the first germination, varied light plants were an order of magnitude larger than low light plants. However, in the remainder of the experiment, during which all plants were kept at 9% light, varied light plants had lower relative growth due to: 1) lower leaf area per unit of plant mass; and 2) lower net productivity per unit of leaf area. A subset of plants were flooded after light equilibration, resulting in reduced growth. Varied and low light plants were equally affected by flooding. Reported differences among species in shade tolerance were poorly correlated with differences in response to light treatment.  相似文献   

8.
Cistus salvifolius L. is the most widely spread Cistus species around the Mediterranean basin. It colonizes a wide range of habitats growing from sea level to 1,800 m a.s.l., on silicolous and calcicolous soils, in sun areas as well as in the understory of wooded areas. Nevertheless, this species has been mainly investigated in term of its responsiveness to drought. Our aim was to understand which leaf traits allow C. salvifolius to cope with low-light environments. We questioned if biochemical and physiological leaf trait variations in response to a reduced photosynthetic photon flux density were related to leaf morphological plasticity, expressed by variations of specific leaf area (SLA) and its anatomical components (leaf tissue density and thickness). C. salvifolius shrubs growing along the Latium coast (41°43'N,12°18'E, 14 m a.s.l., Italy) in the open and in the understory of a Pinus pinea forest, were selected and the relationships between anatomical, gas exchange, chlorophyll (Chl) fluorescence, and biochemical parameters with SLA and PPFD variations were tested. The obtained results suggested long-term acclimation of the selected shrubs to contrasting light environments. In high-light conditions, leaf nitrogen and Chl contents per leaf area unit, leaf thickness, and Chl a/b ratio increased, thus maximizing net photosynthesis, while in shade photosynthesis, it was downregulated by a significant reduction in the electron transport rate. Nevertheless, the increased pigment-protein complexes and the decreased Chl a/b in shade drove to an increased light-harvesting capacity (i.e. higher actual quantum efficiency of PSII). Moreover, the measured vitality index highlighted the photosynthetic acclimation of C. salvifolius to contrasting light environments. Overall, our results demonstrated the morphological, anatomical, and physiological acclimation of C. salvifolius to a reduced light environment.  相似文献   

9.
Many studies have demonstrated that reduced light availability, which can be manipulated at local scales by planting or seeding canopy species, can curtail the growth of invasive species and promote the growth of native species. Species differences in functional traits, such as light use and stress tolerance, may be used to determine how native and invasive species will respond to these resource manipulations. We altered light availability in a mesic Hawaiian forest understory and found that low light levels reduced the biomass and growth of two invasive grasses (Pennisetum clandestinum and Ehrharta stipoides) relative to two native shrubs (Pipturus albidus and Coprosma rhynchocarpa) and two native canopy species (Metrosideros polymorpha and Acacia koa). Native species generally displayed traits associated with shade tolerance (high quantum yield, chlorophyll content, and leaf mass per area), whereas the two invasive grasses displayed traits associated with shade intolerance (high photosynthetic rate and growth rate). Several key traits pertaining to light acquisition and shade tolerance (quantum yield, chlorophyll content, and leaf mass per area) predicted seedling survival in low‐light treatments. Our data suggest that differences in light use among native and invasive species can help to determine the utility of resource manipulation as a restoration tool and, more specifically, to predict which native species will be optimal for restoration efforts that manipulate light availability.  相似文献   

10.
The physiology, morphology and growth of first-year Betula papyrifera Marsh., Betula alleghaniensis Britton, Ostrya virginiana (Mill.) K. Koch, Acer saccharum Marsh., and Quercus rubra L. seedlings, which differ widely in reported successional affinity and shade tolerance, were compared in a controlled high-resource environment. Relative to late-successional, shade-tolerant Acer and Ostrya species, early-successional, shade-intolerant Betula species had high relative growth rates (RGR) and high rates of photosynthesis, nitrogen uptake and respiration when grown in high light. Fire-adapted Quercus rubra had intermediate photosynthetic rates, but had the lowest RGR and leaf area ratio and the highest root weight ratio of any species. Interspecific variation in RGR in high light was positively correlated with allocation to leaves and rates of photosynthesis and respiration, and negatively related to seed mass and leaf mass per unit area. Despite higher respiration rates, early-successional Betula papyrifera lost a lower percentage of daily photosynthetic CO2 gain to respiration than other species in high light. A subset comprised of the three Betulaceae family members was also grown in low light. As in high light, low-light grown Betula species had higher growth rates than tolerant Ostrya virainiana. The rapid growth habit of sarly-successional species in low light was associated with a higher proportion of biomass distributed to leaves, lower leaf mass per unit area, a lower proportion of biomass in roots, and a greater height per unit stem mass. Variation in these traits is discussed in terms of reported species ecologies in a resource availability context.  相似文献   

11.
Sack  Lawren  Grubb  Peter J.  Marañón  Teodoro 《Plant Ecology》2003,168(1):139-163
It has been hypothesized that plants cannot tolerate combined shade and drought, as a result of morphological trade-offs. However, numerous plant species are reportedly widespread in shaded forest understories that face drought, whether seasonal or occasional. We studied juveniles of six plant species that cope with strong summer drought in the understoreys of mixed Quercus forests in southern Spain: the tall-shrubs Phillyrea latifolia and Viburnum tinus, the perennial herb Rubia peregrina, the small shrub Ruscus aculeatus, and climbers Hedera helix and Smilax aspera. All of these species persist in evergreen shade (c. 3% daylight). Two other species were studied as comparators, Ruscus hypoglossum, less tolerant of drought, and Ceratonia siliqua, less tolerant of shade. Morphological and chemical variables relevant to shade and drought tolerance were measured for juveniles in a range of sizes, and also for the leaves of mature plants. The species converge in features that confer tolerance of shade plus drought by reducing demand for resources. Demand for water is reduced through a moderate to high below-ground mass fraction and low to moderate specific leaf area (respectively 0.22–0.52 and 112–172 cm2 g–1 at 1.00 g total dry mass). Demand for both irradiance and water is reduced through a low to moderate foliar nitrogen concentration and long-lived, physically protected leaves (2 yr). The species also converge in features that confer tolerance of either low irradiance or drought through specialized capture of resource, without precluding the other tolerance. These features include deep roots relative to shoot size, moderately higher specific leaf area in shade (1.2–2.0 × that in sun) and higher chlorophyll:nitrogen ratio in shade. Foliar chlorophyll per unit mass was higher in shade, but chlorophyll was not necessarily synthesized in greater amounts; rather, it was higher apparently due to shade effects on structural features linked with specific leaf area. In contrast, N per unit mass was higher in sun leaves independently of specific leaf area. Despite these convergences, the species diverge considerably in their root mass allocation and architecture, leaf saturated water content, density of stomata and guard cell size. No single narrowly defined functional type is needed for tolerance of shade plus drought.  相似文献   

12.
一直以来黄波罗(Phellodendron amurense)被认为是不耐阴树种, 然而引入美国纽约后, 发现它具有一定的耐阴性, 在全光和林下均能更新, 在纽约已经成为生物入侵种。为了探讨黄波罗的耐阴性问题, 通过设置自然光与遮阴(15%自然光)两种光环境, 观测了三年生黄波罗幼苗(遮阴1 a后)光合生理参数、光能利用效率、叶绿素和比叶重的变化。结果表明, 与自然光处理相比, 遮阴处理的黄波罗幼苗最大光合速率、表观量子效率和暗呼吸速率略有下降, 但差异不显著(p>0.05), 光补偿点下降显著(p<0.05); 同时, 单位面积叶绿素含量无显著差异(p>0.05), 而单位干重叶绿素含量显著升高, 比叶重显著下降, 叶面积显著增大(p<0.05)。上述结果说明: 遮阴的黄波罗幼苗通过降低光补偿点和暗呼吸速率利用环境中的弱光, 同时通过减小比叶重、增大叶面积和提高叶绿素b相对含量来增强对光的捕获, 使其在弱光时的光能利用效率提高。由此推断, 黄波罗幼苗能适应一定程度的遮阴。  相似文献   

13.
The effects of shade on the growth, leaf photosynthetic characteristics, and chlorophyll (Chl) fluorescence parameters of Lycoris radiata var. radiata were determined under differing irradiances (15, 65, and 100% of full irradiance) within pots. The HI plants exhibited a typical decline in net photosynthetic rate (P N) during midday, which was not observed in MI- and LI plants. This indicated a possible photoinhibition in HI plants as the ratio of variable to maximum fluorescence (Fv/Fm) value was higher and the minimal fluorescence (F0) was lower in the, and LI plants. Diurnal patterns of stomatal conductance (g s) and transpiration rate (E) were remarkably similar to those of P N at each shade treatments, and the intercellular CO2 concentration (C i) had the opposite change trend. Under both shading conditions, the light saturation point, light compensation point and photon-saturated photosynthetic rate (P max) became lower than those under full sunlight, and it was the opposite for the apparent quantum yield (AQY). The higher the level of shade, the lower the integrated daytime carbon gain, stomatal and epidermis cell densities, specific leaf mass (SLM), bulb mass ratio (BMR), leaf thickness, and Chl a/b ratio. In contrast, contents of Chls per dry mass (DM), leaf area ratio (LAR), leaf mass ratio (LMR), leaf length, leaf area and total leaf area per plant increased under the same shade levels to promote photon absorption and to compensate for the lower radiant energy. Therefore, when the integrated daytime carbon gain, leaf area and total leaf area per plant, which are the main factors determining the productivity of L. radiata var. radiata plant, were taken into account together, this species may be cultivated at about 60∼70% of ambient irradiance to promote its growth.  相似文献   

14.
The photosynthetic CO2-fixation rates, chlorophyll content, chloroplast ultrastructure and other leaf characteristics (e.g. variable fluorescence, stomata density, soluble carbohydrate content) were studied in a comparative way in sun and shade leaves of beech (Fagus sylvatica) and in high-light and low-light seedlings.
  1. Sun leaves of the beech possess a smaller leaf area, higher dry weight, lower water content, higher stomata density, higher chlorophyll a/b ratios and are thicker than the shade leaves. Sun leaves on the average contain more chlorophyll in a leaf area unit; the shade leaf exhibits more chlorophyll on a dry weight basis. Sun leaves show higher rates for dark respiration and a higher light saturation of photosynthetic CO2-fixation. Above 2000 lux they are more efficient in photosynthetic quantum conversion than the shade leaves.
  2. The development of HL-radish plants proceeds much faster than that of LL-plants. The cotyledons of HL-plants show a higher dry weight, lower water content, a higher ratio of chlorophyll a/b and a higher gross photosynthesis rate than the cotyledons of the LL-plants, which possess a higher chlorophyll content per dry weight basis. The large area of the HL-cotyledon on the one hand, as well as the higher stomata density and the higher respiration rate in the LL-cotyledon on the other hand, are not in agreement with the characteristics of sun and shade leaves respectively.
  3. The development, growth and wilting of wheat leaves and the appearance of the following leaves (leaf succession) is much faster at high quanta fluence rates than in weak light. The chlorophyll content is higher in the HL-leaf per unit leaf area and in the LL-leaf per g dry weight. There are no differences in the stomata density and leaf area between the HL- and LL-leaf. There are fewer differences between HL- and LL-leaves than in beech or radish leaves.
  4. The chloroplast ultrastructure of shade-type chloroplasts (shade leaves, LL-leaves) is not only characterized by a much higher number of thylakoids per granum and a higher stacking degree of thylakoids, but also by broader grana than in sun-type chloroplasts (sun leaves, HL-leaves). The chloroplasts of sun leaves and of HL-leaves exhibit large starch grains.
  5. Shade leaves and LL-leaves exhibit a higher maximum chlorophyll fluorescence and it takes more time for the fluorescence to decline to the steady state than in sun and HL-leaves. The variable fluorescence VF (ratio of fluorescence decrease to steady state fluorescence) is always higher in the sun and HL-leaf of the same physiological stage (maximum chlorophyll content of the leaf) than in the shade and LL-leaf. The fluorescence emission spectra of sun and HL-leaves show a higher proportion of chlorophyli fluorescence in the second emission maximum F2 than shade and LL-leaves.
  6. The level of soluble carbohydrates (reducing sugars) is significantly higher in sun and HL-leaves than in shade and LL-leaves and even reflects changes in the amounts of the daily incident light.
  7. Some but not all characteristics of mature sun and shade leaves are found in HL- and LL-leaves of seedlings. Leaf thickness, dry weight, chlorophyll content, soluble carbohydrate level, photosynthetic CO2-fixation, height and width of grana stacks and starch content, are good parameters to describe the differences between LL- and HL-leaves; with some reservations concerning age and physiological stage of leaf, a/b ratios, chlorophyll content per leaf area unit and the variable fluorescence are also suitable.
  相似文献   

15.
An experiment was carried out to study whether low-light-induced damage to the photosynthetic system in leaves of cotton (Gossypium hirsutum cv. Deltapine) which are below the compensation point in the canopy can be arrested and reversed by increased illumination. In addition it was intended to find out whether the photosynthetic system in leaves of shade plants show a greater resistance to low-light-induced damage than leaves of plants from more exposed habitats. The plants were grown at high density, and increased illumination to the shade leaves in the canopy was achieved by thinning the stand. Thinning was carried out at two stages and its effects on the decline in the photosynthetic capacity of the 4th leaf were followed. An early thinning was carried out shortly after the 4th leaf dropped below the compensation point and a late thinning 2 weeks later. Comparison was also made between the low-light-induced damage to the photosynthetic capacity of the 4th leaf in plants grown under two light regimes during the progressive increase in self-shading of the 4th leaf within the canopy. It was observed that both types of thinning arrested the low-light-induced damage to the photosynthetic system in shade leaves. The decline in photosynthetic capacity of the 4th leaf was stopped after both early and late thinning. The dry weight of the shoot system in the early and late thinned plants was not significantly different. It was double that of the control plants. The plants thinned early did not have higher shoot weight than the late thinned plants since there was a rapid shedding of flowers and fruits after early thinning. The 4th leaf in the early thinned plants showed a 30% increase in chlorophyll content and dry weight per unit leaf area. It is suggested that shedding of flowers and fruits, and increases in chlorophyll and dry weight per unit leaf area in the early thinned plants were caused by a change in the hormonal balance of the plants. The photosynthetic system in leaves of shade plants showed a greater resistance to damage by low light intensity than the photosynthetic system in leaves of plants grown at higher light intensities.  相似文献   

16.
Xu CY  Schuster WS  Griffin KL 《Oecologia》2007,153(4):809-819
In the understory of a closed forest, plant growth is limited by light availability, and early leafing is proposed to be an important mechanism of plant invasion by providing a spring C “subsidy” when high light is available. However, studies on respiration, another important process determining plant net C gain, are rare in understory invasive plants. In this study, leaf properties and the temperature response of leaf respiration were compared between invasive Berberis thunbergii, an early leafing understory shrub, and two native shrubs, Kalmia latifolia, a broadleaf evergreen and Vaccinium corymbosum, a late-leafing deciduous species, in an oak-dominated deciduous forest. The seasonal trend of the basal respiration rates (R 0) and the temperature response coefficient (E 0), were different among the three shrubs and species-specific negative correlations were observed between R 0 and E 0. All three shrubs showed significant correlation between respiration rate on an area basis (20°C) and leaf N on an area basis. The relationship was attributed to the variation of both leaf N on a mass basis and leaf mass per area (LMA) in B. thunbergii, but to LMA only in K. latifolia and V. corymbosum. After modeling leaf respiration throughout 2004, B. thunbergii displayed much higher annual leaf respiration (mass based) than the two native shrubs, indicating a higher cost per unit of biomass investment. Thus, respiratory properties alone were not likely to lead to C balance advantage of B. thunbergii. Future studies on whole plant C budgets and leaf construction cost are needed to address the C balance advantage in early leafing understory shrubs like B. thunbergii.  相似文献   

17.

Main conclusion

Anthocyanins in upper (adaxial) leaf tissues provide greater photoprotection than in lower (abaxial) tissues, but also predispose tissues to increased shade acclimation and, consequently, reduced photosynthetic capacity. Abaxial anthocyanins may be a compromise between these costs/benefits. Plants adapted to shaded understory environments often exhibit red/purple anthocyanin pigmentation in lower (abaxial) leaf surfaces, but rarely in upper (adaxial) surfaces. The functional significance of this color pattern in leaves is poorly understood. Here, we test the hypothesis that abaxial anthocyanins protect leaves of understory plants from photo-oxidative stress via light attenuation during periodic exposure to high incident sunlight in the forest understory, without interfering with sunlight capture and photosynthesis during shade conditions. We utilize a cultivar of Colocasia esculenta exhibiting adaxial and abaxial anthocyanin variegation within individual leaves to compare tissues with the following color patterns: green adaxial, green abaxial (GG), green adaxial, red abaxial (GR), red adaxial, green abaxial (RG), and red adaxial, red abaxial (RR). Consistent with a photoprotective function of anthocyanins, tissues exhibited symptoms of increasing photoinhibition in the order (from least to greatest): RR, RG, GR, GG. Anthocyanic tissues also showed symptoms of shade acclimation (higher total chl, lower chl a/b) in the same relative order. Inconsistent with our hypothesis, we did not observe any differences in photosynthetic CO2 uptake under shade conditions between the tissue types. However, GG and GR had significantly (39 %) higher photosynthesis at saturating irradiance (A sat) than RG and RR. Because tissue types did not differ in nitrogen content, these patterns likely reflect differences in resource allocation at the tissue level, with greater nitrogen allocated toward energy processing in GG and GR, and energy capture in RG and RR (consistent with relative sun/shade acclimation). We conclude that abaxial anthocyanins are likely advantageous in understory environments because they provide some photoprotection during high-light exposure, but without the cost of decreased A sat associated with adaxial anthocyanin-induced shade syndrome.  相似文献   

18.
Tradescantia albiflora (Kunth), a trailing ground species naturally occurring in deep shade in rainforests, has an unusual photosynthetic acclimation profile for growth irradiance. Although capable of increasing its capacity for electron transport, photophosphorylation and carbon fixation when grown in full sunlight, Tradescantia has constant chlorophyll alb ratios, photosystem reaction centre stoichiometry and pigment-protein composition at all growth irradiances (Chow et al. 1991. Physiol. Plant. 81: 175–182). To gain an insight into the compensatory strategies which allow Tradescantia to grow in both high and low lights, plants were grown under shade cloth (100 to 1.4% relative growth irradiance) and leaf and chloroplast attributes were compared. While shade Tradescantia chloroplasts had three times more chlorophyll per chloroplast and twice the length of thylakoid membranes compared to plants grown in full sunlight, the ratios of appressed to nonappressed thylakoid membranes were constant. The average net surface charge density of destacked thylakoids was the same for plants grown at moderate and low-irradiance, consistent with their similar stacking profiles. Tradescantia plants grown in direct sunlight had 10-times more fresh and dry weight per plant compared to plants grown in shade, despite a lower photosynthetic capacity on a leaf area basis with partial photoinhibition. We conclude that having a light-harvesting apparatus permanently locked into the "shade-plant mode " does not necessarily prevent a plant from thriving in high light. Analyses of leaf growth at different irradiances provide a partial explanation of the manner in which Tradescantia compensates for very low photosynthetic capacity per unit leaf in sunlight.  相似文献   

19.
Abstract Photosynthetic and anatomical parameters of leaves from the juvenile and adult part of an ivy plant (Hedera helix L.) have been determined and compared with each other. Light-saturated net photosynthesis (per unit leaf area) was about 1.5 times higher in adult leaves than in juvenile ones. The lower photosynthetic capacity of juvenile leaves was caused by a lower stomatal and especially a lower residual conductance to the CO2-transfer. This corresponds with anatomical features of the leaves, i.e. lower stomatal frequency, fewer chloroplasts per cell, and – most important – thinner leaves, as well as with a less efficient photosynthetic apparatus measured as Hill reaction of isolated broken chloroplasts and activity of ribulose bisphosphate carboxylase. No differences in the respiration in light (relative to net photosynthesis) and in the CO2-compensation concentration could be detected between the two leaf types. These observed anatomical and photosynthetic parameters of the juvenile and adult ivy leaves resemble those reported for shade and sun leaves, respectively, although the leaves investigated originated from the same light environment.  相似文献   

20.
Alterations in light quality affect plant morphogenesis and photosynthetic responses but the effects vary significantly between species. Roses exhibit an irradiance‐dependent flowering control but knowledge on light quality responses is scarce. In this study we analyzed, the responses in morphology, photosynthesis and flowering of Rosa × hybrida to different blue (B) light proportions provided by light‐emitting diodes (LED, high B 20%) and high pressure sodium (HPS, low B 5%) lamps. There was a strong morphological and growth effect of the light sources but no significant difference in total dry matter production and flowering. HPS‐grown plants had significantly higher leaf area and plant height, yet a higher dry weight proportion was allocated to leaves than stems under LED. LED plants showed 20% higher photosynthetic capacity (Amax) and higher levels of soluble carbohydrates. The increase in Amax correlated with an increase in leaf mass per unit leaf area, higher stomata conductance and CO2 exchange, total chlorophyll (Chl) content per area and Chl a/b ratio. LED‐grown leaves also displayed a more sun‐type leaf anatomy with more and longer palisade cells and a higher stomata frequency. Although floral initiation occurred at a higher leaf number in LED, the time to open flowers was the same under both light conditions. Thereby the study shows that a higher portion of B light is efficient in increasing photosynthesis performance per unit leaf area, enhancing growth and morphological changes in roses but does not affect the total Dry Matter (DM) production or time to open flower.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号