首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 750 毫秒
1.
The structural gene coding for citrate synthase from the gram-positive soil isolate Bacillus sp. strain C4 (ATCC 55182) capable of secreting acetic acid at pH 5.0 to 7.0 in the presence of dolime has been cloned from a genomic library by complementation of an Escherichia coli auxotrophic mutant lacking citrate synthase. The nucleotide sequence of the entire 3.1-kb HindIII fragment has been determined, and one major open reading frame was found coding for citrate synthase (ctsA). Citrate synthase from Bacillus sp. strain C4 was found to be a dimer (Mr, 84,500) with a subunit with an Mr of 42,000. The N-terminal sequence was found to be identical with that predicted from the gene sequence. The kinetics were best fit to a bisubstrate enzyme with an ordered mechanism. Bacillus sp. strain C4 citrate synthase was not activated by potassium chloride and was not inhibited by NADH, ATP, ADP, or AMP at levels up to 1 mM. The predicted amino acid sequence was compared with that of the E. coli, Acinetobacter anitratum, Pseudomonas aeruginosa, Rickettsia prowazekii, porcine heart, and Saccharomyces cerevisiae cytoplasmic and mitochondrial enzymes.  相似文献   

2.
The cellulase gene from the alkalophilic Bacillus sp. strain 1139 was cloned in Escherichia coli using pBR322. Plasmid pFK1 was isolated from transformants producing cellulase, and the cloned cellulase gene was found to be in a 4 X 6 kb HindIII fragment. The cellulase gene was subcloned in a functional state on a 2 X 9 kb DNA fragment and its nucleotide sequence was determined. The coding sequence showed an open reading frame encoding 800 amino acids. The pFK1-encoded cellulase had the same enzymic properties as the extracellular cellulase produced by the alkalophilic Bacillus sp. strain 1139, but its Mr was slightly higher.  相似文献   

3.
3,4-Dihydroxy-2-butanone 4-phosphate is biosynthesized from ribulose 5-phosphate and serves as the biosynthetic precursor for the xylene ring of riboflavin. The gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase of Escherichia coli has been cloned and sequenced. The gene codes for a protein of 217 amino acid residues with a calculated molecular mass of 23,349.6 Da. The enzyme was purified to near homogeneity from a recombinant E. coli strain and had a specific activity of 1,700 nmol mg-1 h-1. The N-terminal amino acid sequence and the amino acid composition of the protein were in agreement with the deduced sequence. The molecular mass as determined by ion spray mass spectrometry was 23,351 +/- 2 Da, which is in agreement with the predicted mass. The previously reported loci htrP, "luxH-like," and ribB at 66 min of the E. coli chromosome are all identical to the gene coding for 3,4-dihydroxy-2-butanone 4-phosphate synthase, but their role had not been hitherto determined. Sequence homology indicates that gene luxH of Vibrio harveyi and the central open reading frame of the Bacillus subtilis riboflavin operon code for 3,4-dihydroxy-2-butanone 4-phosphate synthase.  相似文献   

4.
本研究用鸟枪法构建了枯草芽孢杆菌(Bacillus subtilis)HB002的基因组文库,经平板法筛选得到了六株能水解合成底物对-硝基苯-α-D-葡萄糖吡喃糖苷的阳性克隆,经鉴定均含克隆了寡聚-1,6-葡萄糖苷酶基因的重组质粒(命名为pHBM001-pHBM006)。选择pHBM003,对其插入片段测序分析,此片段内有一编码561个氨基酸的开放阅读框,该 蛋白质的计算分子量为65.985kD。HB002的寡聚-1,6-葡萄糖苷酶的氨基酸序列与Bacillus sp.和凝结芽孢杆菌(Bacillus coagulans)的寡聚-1,6-葡萄糖苷酶的氨基酸序列一致性分别为81%、67%,相似性分别为89%、79%。从pHBM003中扩增出寡聚-1,6-葡萄糖苷酶基因,克隆到pBV220上,转化大肠杆菌(Escherichia coli)DH5α,得到三个能水解对-硝基苯-α-D-葡萄糖吡喃糖苷的阳性克隆HBM003-1~HBM003-3,将此三个菌株热诱导表达,SDS-PAGE电泳可检测到特异表达的蛋白质,其中HBM003-1、HBM003-2表达的蛋白约66kD,为完整的寡聚-1,6-葡萄糖苷酶,而HBM003-3表达的蛋白质偏小;表达的蛋白质均有寡聚-1,6-葡萄糖苷酶活性。  相似文献   

5.
An enantiomer-selective amidase active on several 2-aryl and 2-aryloxy propionamides was identified and purified from Brevibacterium sp. strain R312. Oligonucleotide probes were designed from limited peptide sequence information and were used to clone the corresponding gene, named amdA. Highly significant homologies were found at the amino acid level between the deduced sequence of the enantiomer-selective amidase and the sequences of known amidases such as indoleacetamide hydrolases from Pseudomonas syringae and Agrobacterium tumefaciens and acetamidase from Aspergillus nidulans. Moreover, amdA is found in the same orientation and only 73 bp upstream from the gene coding for nitrile hydratase, strongly suggesting that both genes are part of the same operon. Our results also showed that Rhodococcus sp. strain N-774 and Brevibacterium sp. strain R312 are probably identical, or at least very similar, microorganisms. The characterized amidase is an apparent homodimer of Mr 2 x 54,671 which exhibited under our conditions a specific activity of about 13 to 17 mumol of 2-(4-hydroxyphenoxy)propionic R acid formed per min per mg of enzyme from the racemic amide. Large amounts of an active recombinant enzyme could be produced in Escherichia coli at 30 degrees C under the control of an E. coli promoter and ribosome-binding site.  相似文献   

6.
A hybrid plasmid, pDB2, was constructed by ligating a 3.24 kb EcoRI/HindIII fragment of the Escherichia coli chromosome into pBR322. This was used to transform a gltA mutant which was devoid of citrate synthase activity. The resultant strain expressed very high citrate synthase activity and this enabled a simplified purification of the homogeneous enzyme in high yield. The subunit Mr was estimated as 47000-49000 by SDS gel electrophoresis, which closely resembles the eukaryotic form of the enzyme. Evidence for some conservation of sequence between the two proteins was revealed in the acid cleavage pattern at aspartyl-prolyl residues. In addition to coding for the structural gene for citrate synthase, the 3.24 kb EcoRI/HindIII fragment also retained the genetic structure necessary for control of enzyme synthesis since the expression of enzyme activity in the strain harbouring pDB2 was still subject to glucose repression.  相似文献   

7.
The gene coding for Bacillus cereus ATCC7064 (mesophile) oligo-1,6-glucosidase was cloned within a 2.8-kb SalI-EcoRI fragment of DNA, using the plasmid pUC19 as a vector and Escherichia coli C600 as a host. E. coli C600 bearing the hybrid plasmid pBCE4 accumulated oligo-1,6-glucosidase in the cytoplasm. The cloned enzyme coincided absolutely with B. cereus oligo-1,6-glucosidase in its Mr (65,000), in its electrophoretic behavior on a polyacrylamide gel with or without sodium dodecyl sulfate, in its isoelectric point (4.5), in the temperature dependence of its stability and activity, and in its antigenic determinants. The nucleotide sequence of B. cereus oligo-1,6-glucosidase gene and its flanking regions was determined with both complementary strands of DNA (each 2838 nucleotides). The gene consisted of an open reading frame of 1674 bp commencing with a ATG start codon and followed by a TAA stop codon. The amino acid sequence deduced from the nucleotide sequence predicted a protein of 558 amino acid residues with a Mr of 66,010. The amino acid composition and Mr were comparable with those of B. cereus oligo-1,6-glucosidase. The predicted N-terminal sequence of 10 amino acid residues agreed completely with that of the cloned ligo-1,6-glucosidase. The deduced amino acid sequence of B. cereus oligo-1,6-glucosidase was 72% and 42% similar to those from Bacillus thermoglucosidasius KP1006 (DSM2542, obligate thermophile) oligo-1,6-glucosidase and from Saccharomyces carlsbergensis CB11 alpha-glucosidase, respectively. Predictions of protein secondary structures along with amino acid sequence alignments demonstrated that B. cereus oligo-1,6-glucosidase may take the similar (alpha/beta)8-barrel super-secondary structure, a barrel of eight parallel beta-strands surrounded by eight alpha-helices, in its N-terminal active site domain as S. carlsbergensis alpha-glucosidase and Aspergillus oryzae alpha-amylase.  相似文献   

8.
When grown on xanthan as a carbon source, the bacterium Bacillus sp. strain GL1 produces extracellular xanthan lyase (75 kDa), catalyzing the first step of xanthan depolymerization (H. Nankai, W. Hashimoto, H. Miki, S. Kawai, and K. Murata, Appl. Environ. Microbiol. 65:2520-2526, 1999). A gene for the lyase was cloned, and its nucleotide sequence was determined. The gene contained an open reading frame consisting of 2,793 bp coding for a polypeptide with a molecular weight of 99,308. The polypeptide had a signal peptide (2 kDa) consisting of 25 amino acid residues preceding the N-terminal amino acid sequence of the enzyme and exhibited significant homology with hyaluronidase of Streptomyces griseus (identity score, 37.7%). Escherichia coli transformed with the gene without the signal peptide sequence showed a xanthan lyase activity and produced intracellularly a large amount of the enzyme (400 mg/liter of culture) with a molecular mass of 97 kDa. During storage at 4 degrees C, the purified enzyme (97 kDa) from E. coli was converted to a low-molecular-mass (75-kDa) enzyme with properties closely similar to those of the enzyme (75 kDa) from Bacillus sp. strain GL1, specifically in optimum pH and temperature for activity, substrate specificity, and mode of action. Logarithmically growing cells of Bacillus sp. strain GL1 on the medium with xanthan were also found to secrete not only xanthan lyase (75 kDa) but also a 97-kDa protein with the same N-terminal amino acid sequence as that of xanthan lyase (75 kDa). These results suggest that, in Bacillus sp. strain GL1, xanthan lyase is first synthesized as a preproform (99 kDa), secreted as a precursor (97 kDa) by a signal peptide-dependent mechanism, and then processed into a mature form (75 kDa) through excision of a C-terminal protein fragment with a molecular mass of 22 kDa.  相似文献   

9.
10.
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum.  相似文献   

11.
The gene coding for N-acyl-D-mannosamine dehydrogenase (NAM-DH) from Flavobacterium sp. strain 141-8 was cloned and expressed under the control of a lac promoter in Escherichia coli JM109. The DNA sequence of the gene was determined, and an open reading frame encoding a polypeptide composed of 272 amino acid residues (Mr, 27,473) was identified. The E. coli transformants which showed over 200-fold higher NAM-DH activity than did the Flavobacterium strain produced the enzyme as a protein fused with beta-galactosidase. Despite being a fusion, NAM-DH produced by E. coli transformants appeared unchanged in pH optimum, Km, and substrate specificity from Flavobacterium sp. strain 141-8. This newly recombinant enzyme may be applicable to the quantitative determination of sialic acid in serum.  相似文献   

12.
The gene encoding an acid endo-1,4-beta-glucanase from Bacillus sp. KSM-330 was cloned into the HindIII site of pBR322 and expressed in Escherichia coli HB101. The recombinant plasmid contained a 3.1 kb HindIII insert, 1.8 kb of which was sufficient for the expression of endoglucanase activity in E. coli HB101. Nucleotide sequencing of this region (1816 bp) revealed an open reading frame of 1389 bp. The protein deduced from this sequence was composed of 463 amino acids with an Mr of 51882. The deduced amino acid sequence from amino acids 56 through 75 coincided with the amino-terminal sequence of the endoglucanase, Endo-K, purified from culture of Bacillus sp. KSM-330. The deduced amino acid sequence of Endo-K had 30% homology with that of the celA enzyme from Clostridium thermocellum NCIB 10682 and 25% homology with that of the enzyme from Cellulomonas uda CB4. However, the Endo-K protein exhibited no homology with respect to either the nucleotide or the amino acid sequences of other endoglucanases from Bacillus that had been previously characterized. These results indicate that the gene for Endo-K in Bacillus sp. KSM-330 has evolved from an ancestral gene distinct from that of other Bacillus endoglucanases.  相似文献   

13.
The gene encoding NADH dehydrogenase from an alkalophile, Bacillus sp., was cloned and sequenced. The cloned DNA fragment contained an open reading frame of 1,557 nucleotides which encodes a polypeptide composed of 519 amino acid residues (Mr 55,830). The predicted amino acid sequence was consistent with the partial amino acid sequences including the N-terminal and C-terminal sequences determined in a previous study. Sequence comparison with other flavoenzymes revealed high homology between the present dehydrogenase and Escherichia coli thioredoxin reductase.  相似文献   

14.
The DNA sequence was determined for the cloned Agrobacterium sp. strain ATCC 21400 beta-glucosidase gene, abg. High-resolution nuclease S1 protection studies were used to map the abg mRNA 5' and 3' termini. A putative abg promoter was identified whose sequence shows similarities to the consensus promoter of Escherichia coli and with the nif promoter regions of Klebsiella. The abg coding sequence was 1,374 nucleotides long. The molecular weight of the enzyme, based on the predicted amino acid sequence, was 51,000. The observed Mr was 50,000 to 52,000. A region of deduced protein sequence was homologous to a region from two other beta-glucosidase sequences. This region of homology contained a putative active site by analogy with the active site of hen egg white lysozyme.  相似文献   

15.
Cloning and sequencing of Serratia protease gene.   总被引:46,自引:1,他引:45       下载免费PDF全文
The gene encoding an extracellular metalloproteinase from Serratia sp. E-15 has been cloned, and its complete nucleotide sequence determined. The amino acid sequence deduced from the nucleotide sequence reveals that the mature protein of the Serratia protease consists of 470 amino acids with a molecular weight of 50,632. The G+C content of the coding region for the mature protein is 58%; this high G+C content is due to a marked preference for G+C bases at the third position of the codons. The gene codes for a short pro-peptide preceding the mature protein. The Serratia protease gene was expressed in Escherichia coli and Serratia marcescens; the former produced the Serratia protease in the cells and the latter in the culture medium. Three zinc ligands and an active site of the Serratia protease were predicted by comparing the structure of the enzyme with those of thermolysin and Bacillus subtilis neutral protease.  相似文献   

16.
Citrate synthase is a key enzyme of the Krebs tricarboxylic acid cycle and catalyzes the stereospecific synthesis of citrate from acetyl coenzyme A and oxalacetate. The amino acid sequence and three-dimensional structure of pig citrate synthase dimers are known, and regions of the enzyme involved in substrate binding and catalysis have been identified. A cloned complementary DNA sequence encoding pig citrate synthase has been isolated from a pig kidney lambda gt11 cDNA library after screening with a synthetic oligonucleotide probe. The complete nucleotide sequence of the 1.5-kilobase cDNA was determined. The coding region consists of 1395 base pairs and confirms the amino acid sequence of purified pig citrate synthase. The derived amino acid sequence of pig citrate synthase predicts the presence of a 27 amino acid N-terminal leader peptide whose sequence is consistent with the sequences of other mitochondrial signal peptides. A conserved amino acid sequence in the mitochondrial leader peptides of pig citrate synthase and yeast mitochondrial citrate synthase was identified. To express the pig citrate synthase cDNA in Escherichia coli, we employed the inducible T7 RNA polymerase/promoter double plasmid expression vectors pGP1-2 and pT7-7 [Tabor, S., & Richardson, C. C. (1985) Proc. Natl. Acad. Sci. U.S.A. 82, 1074-1078]. The pig citrate synthase cDNA was modified to delete the N-terminal leader sequence; then by use of a synthetic oligonucleotide linker, the modified cDNA was cloned into pT7-7 immediately following the initiator Met. A glutamate-requiring (citrate synthase deficient), recA- E. coli mutant, DEK15, was transformed with pGP1-2 and then pT7-7PCS. pT7-7PCS complemented the E. coli gltA mutation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

17.
18.
A mutanase (alpha-1,3-glucanase)-producing microorganism was isolated from a soil sample and was identified as a relative of Paenibacillus sp. The mutanase was purified to homogeneity from culture, and its molecular mass was around 57 kDa. The gene for the mutanase was cloned by PCR using primers based on the N-terminal amino acid sequence of the purified enzyme. The determined nucleotide sequence of the gene consisted of 3651-bp open reading frame that encoded a predicted 1217-amino acid polypeptide including a 43-amino acid signal peptide. The mature enzyme showed similarity to mutanases RM1 of Bacillus sp. strain RM1 and KA-304 of Bacillus circulans with 65.6% and 62.7% identity, respectively. The predicted molecular mass of the mutanase was 123 kDa. Thus, the enzyme purified from the isolate appears to be truncated by proteolysis. The genes for the full-length and truncated mutanases were expressed in Bacillus subtilis cells, and the corresponding recombinant enzymes were purified to homogeneity. The molecular masses of the two enzymes were 116 and 57 kDa, respectively. The specific activity was 10-fold higher for the full-length enzyme than for the truncated enzyme. The optimal pH and temperature for both recombinant enzymes was pH 6.4 in citrate buffer and 45 degrees C to 50 degrees C. Amongst several tested polysaccharides, the recombinant full-length enzyme specifically hydrolyzed mutan.  相似文献   

19.
The nucleotide sequence of the gene coding for xylose isomerase from Ampullariella sp. strain 3876, a gram-positive bacterium, has been determined. A clone of a fragment of strain 3876 DNA coding for a xylose isomerase activity was identified by its ability to complement a xylose isomerase-defective Escherichia coli strain. One such complementation positive fragment, 2,922 nucleotides in length, was sequenced in its entirety. There are two open reading frames 1,182 and 1,242 nucleotides in length, on opposite strands of this fragment, each of which could code for a protein the expected size of xylose isomerase. The 1,182-nucleotide open reading frame was identified as the coding sequence for the protein from the sequence analysis of the amino-terminal region and selected internal peptides. The gene initiates with GTG and has a high guanine and cytosine content (70%) and an exceptionally strong preference (97%) for guanine or cytosine in the third position of the codons. The gene codes for a 43,210-dalton polypeptide composed of 393 amino acids. The xylose isomerase from Ampullariella sp. strain 3876 is similar in size to other bacterial xylose isomerases and has limited amino acid sequence homology to the available sequences from E. coli, Bacillus subtilis, and Streptomyces violaceus-ruber. In all cases yet studied, the bacterial gene for xylulose kinase is downstream from the gene for xylose isomerase. We present evidence suggesting that in Ampullariella sp. strain 3876 these genes are similarly arranged.  相似文献   

20.
For investigation of an unknown open reading frame which is present upstream of the nitrile hydratase (NHase) gene from Rhodococcus sp. N-774, a longer DNA fragment covering the entire gene was cloned in Escherichia coli. Nucleotide sequencing and detailed subcloning experiments predicted a single open reading frame consisting of 521 amino acid residues of Mr 54,671. The amino acid sequence, especially its NH2-terminal portion, showed significant homology with those of indoleacetamide hydrolases from Pseudomonas savastanoi and Agrobacterium tumefaciens, and acetamidase from Aspergillus nidulans. The 521-amino acid coding region was therefore expressed by use of the E. coli lac promoter in E. coli, and was found to direct a considerable amidase activity. This amidase hydrolyzed propionamide efficiently, and also hydrolyzed, at a lower efficiency, acetamide, acrylamide and indoleacetamide. These data clearly show that the unknown open reading frame present upstream of the NHase coding region encodes an amidase. Because the TAG translational stop codon of the amidase is located only 75 base pairs apart from the ATG start codon of the alpha-subunit of NHase, these genes are probably translated in a polycistronic manner.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号