首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Although glyphosate-resistant (GR) technology is used in most countries producing soybeans (Glycine max L.), there are no particular fertilize recommendations for use of this technology, and not much has been reported on the influence of glyphosate on GR soybean nutrient status. An evaluation of different cultivar maturity groups on different soil types, revealed a significant decrease in macro and micronutrients in leaf tissues, and in photosynthetic parameters (chlorophyll, photosynthetic rate, transpiration and stomatal conductance) with glyphosate use (single or sequential application). Irrespective of glyphosate applications, concentrations of shoot macro- and micronutrients were found lower in the near-isogenic GR-cultivars compared to their respective non-GR parental lines Shoot and root dry biomass were reduced by glyphosate with all GR cultivars evaluated in both soils. The lower biomass in GR soybeans compared to their isogenic normal lines probably represents additive effects from the decreased photosynthetic parameters as well as lower availability of nutrients in tissues of the glyphosate treated plants.  相似文献   

2.
The crop area planted to conventional soybeans has decreased annually while that planted to glyphosate-resistant (RR) soybean has drastically increased mainly due to the wide adoption of glyphosate in current weed management systems. With the extensive use of glyphosate, many farmers have noted visual plant injury in RR soybean varieties after glyphosate application. A new generation designated as “second generation—RR2” has been recently developed and these RR2 cultivars already are commercially available for farmers and promoted as higher yielding relative to the previous RR cultivars. However, little information is currently available about the performance of RR2 soybean beyond commercial and farmer testimonial data. Thus, an evaluation of different glyphosate rates applied in different growth stages of the first and second generation of RR soybeans, revealed a significant decrease in photosynthesis. In general, increased glyphosate rate and late applications (V6) pronounced decrease photosynthetic parameters and consequently decreased in leaf area and shoot biomass production. In contrast, low rate and early applications were less damage for the RR soybean plants, suggesting that with early applications (V2), plants probably have more time to recover from glyphosate or its metabolites effects regarding late applications.  相似文献   

3.
The planting of RR2 Intacta soybeans by farmers has been expanding strongly. However, some visual injuries have been noted after glyphosate application. The aim of this study was to evaluate the influence of glyphosate application on chlorophyll, photosynthesis and water use of four Intacta RR2 soybean cultivars. The experiment was conducted in a greenhouse, in a randomized block design with a 3 × 4 factorial scheme, consisting of three glyphosate rates and four soybean cultivars. The glyphosate formula used was isopropylamine salt + potassium salt. The parameters analyzed were phytotoxicity at 7, 14, 21 and 28 days after application, and total chlorophyll index at 0, 3, 7, 14, 21, 28, 35, 42 and 49 days after application. Furthermore, 40 days after application, the net CO2 assimilation rate (A), transpiration rate (E), stomatal conductance (G), and internal CO2 concentration (Ci) were evaluated as well. The water-use efficiency (WUE) and carboxylation efficiency were calculated. The data were submitted to analysis of variance and compared by the Tukey’s test (p ≤ 0.05), followed by regression analysis. The phytotoxicity influence could be seen until 21 days after application, in which Monsoy 6210 IPRO cultivar was the most injured. The increasing doses promoted a reduction of the chlorophyll level up to 35 days after application in Monsoy 6410 IPRO. The cultivars tested here showed similar chlorophyll index values. On the 3rd, 7th and 14th DAA (Fig. 5a–c), there was a significant linear decline in the chlorophyll index with rising glyphosate dose for all four cultivars. The chlorophyll index cultivars were not influenced by the doses on the 42nd and 49th DAA. There was no difference in water use and carboxylation efficiency. The parameters A, E and A/Ci showed a positive correlation as the doses increased, while Ci declined, in both cultivars. The application of glyphosate on these soybean cultivars causes different injuries according to the sensitivity. In general, RR2 soybeans have the ability to recover from visual intoxication injuries and reestablish the normal chlorophyll production and photosynthetic parameters after glyphosate application.  相似文献   

4.
In Argentina, transgenic soybean crop (Roundup Ready, RR) has undergone a major expansion over the last 15 years, with the consequent increase of glyphosate applications, a broad-spectrum and post emergence herbicide. Soybean crops are inhabited by several arthropods. Eriopis connexa Germar (Coleoptera: Coccinelidae) is a predator associated to soybean soft-bodies pest and have a Neotropical distribution. Nowadays, it is being considered a potentially biological control agent in South America. The objectives of this work were to evaluate the side-effects of glyphosate on larvae (third instar) and adults of this predator. Commercial compound and the maximum registered concentrations for field use were employed: GlifoGlex 48 (48% glyphosate, 192 mg a.i./litre, Gleba Argentina S.A.). The exposure was by ingestion through the treated prey (Rophalosiphum padi) or by drinking treated water during 48 h for treatment of the adult. The herbicide solutions were prepared using distilled water as solvent. The bioassays were carried out in the laboratory under controlled conditions: 23 +/- 0.5 degrees C, 75 +/- 5% RH and 16:8 (L:D) of photoperiod. Development time, weight of pupae, adult emergence, pre-oviposition period, fecundity and fertility were evaluated as endpoints. Larvae from glyphosate treatment molted earlier than controls. In addition, the weight of pupae, longevity, fecundity and fertility were drastically reduced in treated organisms. The reductions were more drastic when the treatments were performed at the third larval stage than as adult. The reproduction capacity of the predator was the most affected parameter and could be related to a hormonal disruption by glyphosate in the treated organisms. This work can confirm the deleterious effects of this herbicide on beneficial organisms. Also, it agrees with prior studies carried out on other predators associated to soybean pest, such as Chrysoperla externa (Neuroptera: Chrysopidae) and Alpaida veniliae (Araneae: Araneidae).  相似文献   

5.
Stepwise selection was carried out with increasing glyphosate concentrations to produce suspension cultures of Medicago sativa L. (alfalfa), Glycine max L. (Merr.) (soybean) and Nicotiana tabacum L. (tobacco) (two lines) that were at least 100-fold more resistant than the original culture as measured by the I50. The selection process required from 8 to 11 transfers to fresh medium over a total period from 161 to 312 days. The alfalfa and soybean lines contained 62- and 21-fold higher activity levels of the glyphosate target enzyme, 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), respectively. The tobacco lines had EPSPS enzyme activity levels more than 800-times higher than the original cultures. The EPSPS gene copy number and mRNA were increased in all of the lines as measured by southern and northern hybridization, respectively. Thus, as has been found before with most glyphosate-resistant suspension cultures, the resistance is caused by high EPSPS enzyme activity due to EPSPS gene amplification. Alfalfa and soybean EPSPS gene amplification and the very high EPSPS enzyme activity increases found in the tobacco cultures have not been reported before. These studies show that EPSPS gene amplification can occur in many plant species to confer glyphosate tolerance.  相似文献   

6.
Glyphosate-resistant (GR) transgenic soybean has never been cultivated commercially in China. It is essential to develop the separation measures required to prevent out-crossing between GR and conventional soybean (Glycine max (L.) Merr.) by characterizing the transgene flow before GR soybean is released. In this study, the transgene flow from a GR transgenic soybean AG5601 to conventional soybeans was characterized. First, natural out-crossing rate was evaluated using 36 conventional soybean varieties interplanted with GR soybean AG5601 transformed with a cp4 EPSPS gene conferring the resistance to herbicide glyphosate in the field in 2007 and 2008 in China. Second, drift distance of cp4 EPSPS gene from GR soybean AG5601 to soybean cv. Zhonghuang13 was evaluated using the progenies harvested from eight directions at different distance. Third, the relationship of gene flow of GR soybean AG5601 with flowering synchronization days or insect pollinators of each variety was analyzed using regression analysis. Thirty-two of 36 tested conventional soybean varieties had surviving progenies after two times of sprays of glyphosate, and 49 of 41,679 progenies were verified to be glyphosate-tolerant heterozygous offspring. The out-crossing rates in positive varieties (having surviving offspring after two times of sprays of glyphosate) ranged from 0.039 to 0.934 %. The farthest distance (drift distance) between soybean AG5601 and cv. Zhonghuang13 at which out-pollinating was still able to be observed was 15 m, with an out-crossing rate of 0.012 %. Regression analysis showed that there was a positive relationship between cross-pollination frequency and flowering synchronization days or pollinator insects. Therefore, when GR soybean is released to the field, it should be critically separated with the conventional soybean in space and cultivation time with efficient insect control during flowering.  相似文献   

7.
以萌发初期大豆弯曲的子叶节为靶点,利用草甘膦(Roundup)点施鉴定法,分析了221份大豆微核心种质的草甘膦耐受性及其与抗草甘膦转CP4-EPSPS基因大豆AG5601的差异,结果表明,草甘膦对不同大豆种质的抑制程度与点施的草甘膦浓度呈正相关,Roundup稀释浓度为1/1000、1/10000时,草甘膦对大豆生长几乎无影响;Roundup稀释浓度为1/10时,草甘膦显著抑制大豆生长,导致植株死亡;Roundup稀释浓度为1/100时,不同大豆种质对草甘膦耐受性差异显著,并鉴定出对草甘膦具有较好耐受性的种质10份。虽然大豆微核心种质对草甘膦的耐受程度远远低于AG5601,但不同大豆种质对草甘膦耐受性存在显著差异,这为利用转基因和杂交转育技术培育抗草甘膦转基因大豆的受体或轮回亲本的选择提供了理论依据。  相似文献   

8.
为了评估转基因抗草甘膦除草剂大豆的食用安全性,以20%的比例将转基因抗草甘膦除草剂大豆GTS40-3-2和其亲本非转基因大豆A5403豆粕分别添加到基础饲料中喂养两代Sprague-Dawley(SD)大鼠,采用定性、定量PCR和ELISA方法检测转基因大豆成分相关基因和蛋白在长期饲喂的大鼠体内代谢残留状况。结果表明,大鼠喂养转基因大豆豆粕后,除了大鼠肠粪和盲肠内容物检测到有转基因成分的残留,肠道菌群和实质脏器均未发现相关基因和蛋白。结果提示,长期饲喂转基因抗草甘膦除草剂大豆GTS40-3-2与亲本A5403大豆豆粕对SD大鼠具有同样的食用安全性。  相似文献   

9.
Aims: Glyphosate‐resistant (GR) soybean production increases each year because of the efficacy of glyphosate for weed management. A new or ‘second’ generation of GR soybean (GR2) is now commercially available for farmers that is being promoted as higher yielding relative to the previous, ‘first generation’ (GR1) cultivars. Recent reports show that glyphosate affects the biology and ecology of rhizosphere micro‐organisms in GR soybean that affect yield. The objective of this research was to evaluate the microbiological interactions in the rhizospheres of GR2 and GR1 soybean and the performance of the cultivars with different rates of glyphosate applied at different growth stages. Methods and Results: A greenhouse study was conducted using GR1 and GR2 soybean cultivars grown in a silt loam soil. Glyphosate was applied at V2, V4 and V6 growth stages at three rates. Plants harvested at R1 growth stage had high root colonization by Fusarium spp.; reduced rhizosphere fluorescent pseudomonads, Mn‐reducing bacteria, and indoleacetic acid–producing rhizobacteria; and reduced shoot and root biomass. Conclusions: Glyphosate applied to GR soybean, regardless of cultivar, negatively impacts the complex interactions of microbial groups, biochemical activity and root growth that can have subsequent detrimental effects on plant growth and productivity. Significance and Impact of the Study: The information presented here will be crucial in developing strategies to overcome the potential detrimental effects of glyphosate in GR cropping systems.  相似文献   

10.
大豆是事关人民生活和经济社会发展的重要农产品之一,提高大豆生产水平和增加自给能力,是中国农业生产必须解决的重大问题。由于中国耕地资源不足的限制,科技创新是提升大豆生产能力的唯一出路。转基因育种是推动大豆生产发展的颠覆性技术,对美国、巴西和阿根廷等世界主产国大豆产业的发展发挥了重要作用。经过20多年的科技创新,中国转基因耐除草剂和抗虫育种技术已经成熟,这些产品的产业化种植可显著降低大豆生产成本和提升单产水平。基于中国转基因大豆技术发展进度和大豆生产的国情特点,我们提出了采用如下策略科学有序推进产业化工作。一是,在产品应用时间上,按照单一耐草甘膦除草剂、多个基因耐草甘膦和草铵膦等多种除草剂,以及耐除草剂与抗虫等复合性状等产品,依次推进相关种子的产业化;二是,在产品区域布局上,按照靶标杂草和害虫的地理分布特点顶层设计各种耐除草剂和抗虫大豆产品的种植区域;三是,在生物安全管理上,研发应用抗性杂草和害虫种群监测与治理技术,延长转基因产品的使用寿命。同时,还要加强野生大豆资源的保护工作,降低转基因大豆基因漂移对野生大豆生物多样性的影响。  相似文献   

11.
Effects of Glyphosate on Metabolism of Phenolic Compounds   总被引:1,自引:0,他引:1  
Light enhanced the inhibiting effect of root-fed glyphosate (5 × 10?4M) on dry weight accumulation of soybean [Glycine max. (L.) Merr.] seedling axes. Inhibition of growth by light was greatest in hypocotyls, whereas by glyphosate it was greatest in roots. A synergistic effect of light and glyphosate on stimulation of phenylalanine ammonia-Iyase (PAL, E.C. 4.3.1.5) activity was also demonstrated. In continuous white light PAL activity increased linearly for 4 days in axes of seedlings exposed to glyphosate. Evidence of phytochrome involvement in the light effect was shown. The stimulatory effect of glyphosate on PAL activity was greater in roots than in hypocotyls. Soluble hydroxyphenolic compound levels were reduced by glyphosate but were increased by light on a per axis basis. On a fresh weight basis, hydroxyphenolics were more concentrated in glyphosate-treated than in control tissues in the light. When compared to other amino acids, disproportionate decreases in free pools of phenylalanine and tyrosine occurred in axes of seedlings treated with glyphosate and light. The effect of light on all measured parameters was mainly in the hypocotyl, while that of glyphosate was primarily in the root. In the light, glyphosate caused increases in levels of glutamine and other amino acids that may be the result of amination reactions, protecting from excess ammonia generated by enhanced PAL activity. These results suggest that PAL has a strong influence on its substrate levels in this system and/or that glyphosate inhibits synthesis of aromatic amino acids.  相似文献   

12.
Iron (Fe) deficiency is increasingly being observed in cropping systems with frequent glyphosate applications. A likely reason for this is that glyphosate interferes with root uptake of Fe by inhibiting ferric reductase in roots required for Fe acquisition by dicot and nongrass species. This study investigated the role of drift rates of glyphosate (0.32, 0.95 or 1.89 mm glyphosate corresponding to 1, 3 and 6% of the recommended herbicidal dose, respectively) on ferric reductase activity of sunflower (Helianthus annuus) roots grown under Fe deficiency conditions. Application of 1.89 mm glyphosate resulted in almost 50% inhibition of ferric reductase within 6 h and complete inhibition 24 h after the treatment. Even at lower rates of glyphosate (e.g. 0.32 mm and 0.95 mm), ferric reductase was inhibited. Soluble sugar concentration and the NAD(P)H oxidizing capacity of apical roots were not decreased by the glyphosate applications. To our knowledge, this is the first study reporting the effects of glyphosate on ferric reductase activity. The nature of the inhibitory effect of glyphosate on ferric reductase could not be identified. Impaired ferric reductase could be a major reason for the increasingly observed Fe deficiency in cropping systems associated with widespread glyphosate usage.  相似文献   

13.
A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray with 2 mM glyphosate affected IAA metabolism to a varied degree. The induced increase of IAA metabolism was greater in buckwheat, Alaska pea, and mungbean than soybean, Little marvel pea, and American germander. The increased IAA metabolism was correlated with the inhibition of growth and with the decrease of ethylene production. The natural rate of IAA metabolism was markedly different among the plant species and cultivars tested and appeared to be related to the sensitivity of the plants to glyphosate. American germander and Little marvel pea with high rates of IAA metabolism were more tolerant to glyphosate than buckwheat and Alaska pea, which had low rates of IAA metabolism. Plants with a high natural rate of IAA metabolism were probably less dependent on IAA and thus less susceptible to glyphosate.  相似文献   

14.
A comparison study was conducted on the effect of glyphosate (N-[phosphonomethyl]glycine) on indole-3-[2-14C]acetic acid (IAA) metabolism, ethylene production, and growth of 7-day-old seedlings of different plants. The plants tested were American germander (Teucrium canadense L.), soybean (Glycine max L. Merr.), pea (Pisum sativum L. cv. Alaska and Little marvel), mungbean (Vigna radiata L.), and buckwheat (Fagopyrum esculentum Moench). A spray with 2 mM glyphosate affected IAA metabolism to a varied degree. The induced increase of IAA metabolism was greater in buckwheat, Alaska pea, and mungbean than soybean, Little marvel pea, and American germander. The increased IAA metabolism was correlated with the inhibition of growth and with the decrease of ethylene production.The natural rate of IAA metabolism was markedly different among the plant species and cultivars tested and appeared to be related to the sensitivity of the plants to glyphosate. American germander and Little marvel pea with high rates of IAA metabolism were more tolerant to glyphosate than buckwheat and Alaska pea, which had low rates of IAA metabolism. Plants with a high natural rate of IAA metabolism were probably less dependent on IAA and thus less susceptible to glyphosate.  相似文献   

15.
Glyphosate is a broad spectrum, non-selective herbicide which has been widely used for weed control. Much work has focused on elucidating the high accumulation of glyphosate in shoot apical bud (shoot apex). However, to date little is known about the molecular mechanisms of the sensitivity of shoot apical bud to glyphosate. Global gene expression profiling of the soybean apical bud response to glyphosate treatment was performed in this study. The results revealed that the glyphosate inhibited tryptophan biosynthesis of the shikimic acid pathway in the soybean apical bud, which was the target site of glyphosate. Glyphosate inhibited the expression of most of the target herbicide site genes. The promoter sequence analysis of key target genes revealed that light responsive elements were important regulators in glyphosate induction. These results will facilitate further studies of cloning genes and molecular mechanisms of glyphosate on soybean shoot apical bud.  相似文献   

16.
Glyphosate is a wide spectrum, non-selective, post-emergence herbicide. It acts on the shikimic acid pathway inhibiting 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), thus obstructing the synthesis of tryptophan, phenylalanine, tyrosine and other secondary products, leading to plant death. Transgenic glyphosate-resistant (GR) soybean [Glycine max (L.)] expressing an glyphosate-insensitive EPSPS enzyme has provided new opportunities for weed control in soybean production. The effect of glyphosate application on chlorophyll level, lipid peroxidation, catalase (CAT), ascorbate peroxidase (APX), guaiacol peroxidase (GOPX) and superoxide dismutase (SOD) activities, soluble amino acid levels and protein profile, in leaves and roots, was examined in two conventional (non-GR) and two transgenic (GR) soybean. Glyphosate treatment had no significant impact on lipid peroxidation, whilst the chlorophyll content decreased in only one non-GR cultivar. However, there was a significant increase in the levels of soluble amino acid in roots and leaves, more so in non-GR than in GR soybean cultivars. Root CAT activity increased in non-GR cultivars and was not altered in GR cultivars. In leaves, CAT activity was inhibited in one non-GR and one GR cultivar. GOPX activity increased in one GR cultivar and in both non-GR cultivars. Root APX activity increased in one GR cultivar. The soluble protein profiles as assessed by 1-D gel electrophoresis of selected non-GR and GR soybean lines were unaffected by glyphosate treatment. Neither was formation of new isoenzymes of SOD and CAT observed when these lines were treated by glyphosate. The slight oxidative stress generated by glyphosate has no relevance to plant mortality. The potential antioxidant action of soluble amino acids may be responsible for the lack of lipid peroxidation observed. CAT activity in the roots and soluble amino acids in the leaves can be used as indicators of glyphosate resistance.  相似文献   

17.
Endophytic bacteria are ubiquitous in most plant species influencing the host fitness by disease suppression, contaminant degradation, and plant growth promotion. This endophytic bacterial community may be affected by crop management such as the use of chemical compounds. For instance, application of glyphosate herbicide is common mainly due to the use of glyphosate-resistant transgenic plants. In this case, the bacterial equilibrium in plant–endophyte interaction could be shifted because some microbial groups are able to use glyphosate as a source of energy and nutrients, whereas this herbicide may be toxic to other groups. Therefore, the aim of this work was to study cultivable and noncultivable endophytic bacterial populations from soybean (Glycine max) plants cultivated in soil with and without glyphosate application (pre-planting). The cultivable endophytic bacterial community recovered from soybean leaves, stems, and roots included Acinetobacter calcoaceticus, A. junii, Burkholderiasp., B. gladioli, Enterobacter sakazaki, Klebsiella pneumoniae, Pseudomonas oryzihabitans, P. straminea, Ralstonia pickettii,and Sphingomonassp. The DGGE (Denaturing Gradient Gel Electrophoresis) analysis from soybean roots revealed some groups not observed by isolation that were exclusive for plants cultivated in soil with pre-planting glyphosate application, such as Herbaspirillum sp., and other groups in plants that were cultivated in soil without glyphosate, such as Xanthomonas sp. and Stenotrophomonas maltophilia. Furthermore, only two bacterial species were recovered from soybean plants by glyphosate enrichment isolation. They were Pseudomonas oryzihabitans and Burkholderia gladioliwhich showed different sensibility profiles to the glyphosate. These results suggest that the application at pre-planting of the glyphosate herbicide may interfere with the endophytic bacterial communitys equilibrium. This community is composed of different species with the capacity for plant growth promotion and biological control that may be affected. However, the evaluation of this treatment in plant production should be carried out by long-term experiments in field conditions.  相似文献   

18.
The herbicide glyphosate inhibits the shikimate pathway of the synthesis of amino acids such as phenylalanine, tyrosine, and tryptophan. However, much uncertainty remains concerning precisely how glyphosate kills plants or affects cellular redox homeostasis and related processes in glyphosate-sensitive and glyphosate-resistant crop plants. To address this issue, we performed an integrated study of photosynthesis, leaf proteomes, amino acid profiles, and redox profiles in the glyphosate-sensitive soybean (Glycine max) genotype PAN809 and glyphosate-resistant Roundup Ready Soybean (RRS). RRS leaves accumulated much more glyphosate than the sensitive line but showed relatively few changes in amino acid metabolism. Photosynthesis was unaffected by glyphosate in RRS leaves, but decreased abundance of photosynthesis/photorespiratory pathway proteins was observed together with oxidation of major redox pools. While treatment of a sensitive genotype with glyphosate rapidly inhibited photosynthesis and triggered the appearance of a nitrogen-rich amino acid profile, there was no evidence of oxidation of the redox pools. There was, however, an increase in starvation-associated and defense proteins. We conclude that glyphosate-dependent inhibition of soybean leaf metabolism leads to the induction of defense proteins without sustained oxidation. Conversely, the accumulation of high levels of glyphosate in RRS enhances cellular oxidation, possibly through mechanisms involving stimulation of the photorespiratory pathway.  相似文献   

19.
Aminooxyacetate (AOA), an in vitro inhibitor of phenylalanineammonia-lyase (PAL) and of some transaminases, was tested forcomparison with glyphosate's [N-(phosphonomethyl)glycine] effectson plant growth, PAL activity, and accumulation of hydroxyphenoliccompounds of three-day-old, dark-grown soybean [Glycine max(L.) Merr.] seedlings. Root-fed AOA (50 µM) and glyphosate(0.5 mM) caused similar decreases in growth rate and in accumulationof hydroxyphenolics, anthocyanin and chlorophyll. Together,these compounds were neither antagonistic nor synergistic inaffecting these parameters. AOA caused decreases in extractablePAL activity while increasing aromatic amino acid pools—theopposite of glyphosate's effects. In the light, the effect ofglyphosate on PAL and aromatic amino acids predominated overthose of AOA when the chemicals were given together. The effectsof AOA and glyphosate on most free amino acid levels were similar.In those cases in which the effects differed, glyphosate's effectpredominated over that of AOA when the chemicals were giventogether. The similarities and interactions of AOA and glyphosatein their effects on free amino acid profiles indicate that glyphosatesignificantly interferes with non-aromatic as well as aromaticamino acid synthesis. (Received April 6, 1982; Accepted June 28, 1982)  相似文献   

20.
《Reproductive biology》2020,20(4):512-519
Recently, infertility has become one of the most important endemic conditions, affecting approximately 15–20 % of couples worldwide. Among others, the careerist lifestyle, the increasing maternal age and the parallel increment in the aneuploidy rate of embryos play a crucial role in this phenomenon. In this study, embryological parameters and pregnancy outcomes were investigated in IVF cycles using either sequential embryo culture or a single step culture system. By sequential media, oocytes/embryos are needlessly exposed to the potentially negative effects of light exposure, temperature decrement and altered oxygen tension. In comparison with sequential media, single step media induced 1.28, 1.21 and 1.21-fold increments in implantation, biochemical pregnancy and clinical pregnancy rates, respectively. Pregnancy outcomes showed strong maternal age-dependency, so the difference between the two investigated culture systems was equalized by the increasing maternal ages (35–44 years) and the supposed incidence of embryo aneuploidy. Nevertheless, the significant enlargements in the outcomes of the younger ages (25–34) induced by the single step cultures suggest that, beside the resultant maternal aneuploidy, aneuploidy (reduced pregnancy rates) may evolve from exposure to the mentioned environmental stress factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号