首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The anti-receptor antibody, 225 mAb, is known to block binding of ligand to the epidermal growth factor receptor (EGFR). However, the effect of this neutralizing antibody on EGFR endocytosis, trafficking and degradation remains unclear. Here, we demonstrate that endocytosis of (125)I-225 mAb occurs, albeit with a slower rate than that of EGF. Using pulse chase assays, we show that internalized (125)I-225 mAb is recycled to the surface much more efficiently than internalized (125)I-EGF. Also, we found that internalization of (125)I-225 mAb, in contrast to that of EGF, is independent of receptor tyrosine kinase activity, as evidenced by its insensitivity to AG1478, a specific EGFR tyrosine kinase inhibitor. Analysis of the levels of cell surface and total EGFR showed that treatment with 225 mAb results in a 30-40% decrease in surface EGFR and a relatively slow downregulation of total EGFR. Taken together, these data indicate that 225 mAb induces internalization and downregulation of EGFR via a mechanism distinct from that underlying EGF-induced EGFR internalization and downregulation.  相似文献   

2.
The human epidermal growth factor receptor 2 (HER2/ErbB2) is overexpressed in a number of human cancers. HER2 is the preferred heterodimerization partner for other epidermal growth factor receptor (EGFR) family members and is considered to be resistant to endocytic down‐regulation, properties which both contribute to the high oncogenic potential of HER2. Antibodies targeting members of the EGFR family are powerful tools in cancer treatment and can function by blocking ligand binding, preventing receptor dimerization, inhibiting receptor activation and/or inducing receptor internalization and degradation. With respect to antibody‐induced endocytosis of HER2, various results are reported, and the effect seems to depend on the HER2 expression level and whether antibodies are given as individual antibodies or as mixtures of two or more. In this study, the effect of a mixture of two monoclonal antibodies against non‐overlapping epitopes of HER2 was investigated with respect to localization and stability of HER2. Individual antibodies had limited effect, but the combination of antibodies induced internalization and degradation of HER2 by multiple endocytic pathways. In addition, HER2 was phosphorylated and ubiquitinated upon incubation with the antibody combination, and the HER2 kinase activity was found to be instrumental in antibody‐induced HER2 down‐regulation.  相似文献   

3.
While epidermal growth factor receptor (EGFR) has been shown to be important in the entry process for multiple viruses, including hepatitis C virus (HCV), the molecular mechanisms by which EGFR facilitates HCV entry are not well understood. Using the infectious cell culture HCV model (HCVcc), we demonstrate that the binding of HCVcc particles to human hepatocyte cells induces EGFR activation that is dependent on interactions between HCV and CD81 but not claudin 1. EGFR activation can also be induced by antibody mediated cross-linking of CD81. In addition, EGFR ligands that enhance the kinetics of HCV entry induce EGFR internalization and colocalization with CD81. While EGFR kinase inhibitors inhibit HCV infection primarily by preventing EGFR endocytosis, antibodies that block EGFR ligand binding or inhibitors of EGFR downstream signaling have no effect on HCV entry. These data demonstrate that EGFR internalization is critical for HCV entry and identify a hitherto-unknown association between CD81 and EGFR.  相似文献   

4.
The roles of EGF receptor (EGFR) kinase activity and ubiquitination in EGFR endocytosis have been controversial. The adaptor protein and ubiquitin ligase Cbl has reportedly been required. Consistently, we now report that siRNA-mediated knock-down of c-Cbl and Cbl-b significantly slowed clathrin-dependent internalization of activated wild-type (wt) EGFR by inhibiting recruitment of the EGFR to clathrin-coated pits. However, a chimeric protein consisting of wt-EGFR, a C-terminal linker and four linearly connected ubiquitins was found to interact with Eps15 and epsin 1 and to be constitutively endocytosed in a clathrin-dependent manner. Interestingly, endocytosis of this fusion protein did not require binding of EGF. Nor was kinase activity required, and the fusion protein was endocytosed in the presence of an EGFR kinase inhibitor, which efficiently counteracted tyrosine phosphorylation. This demonstrates that ubiquitination over-rides the requirement for kinase activity in recruitment of the EGFR to clathrin-coated pits.  相似文献   

5.
Certain combinations of non-competitive anti-EGFR antibodies have been reported to produce new effects on cells compared to either antibody used separately. New and enhanced combination-activity includes increased inhibition of signaling, increased receptor internalization and degradation, reduced proliferation of tumor cell lines and induction of complement-dependent cytotoxicity (CDC) effector function. To test requirements and mechanisms to elicit enhanced combination-activity with different EGFR binding domains, we created an anti-EGFR biparatopic antibody. A biparatopic antibody interacts through two different antigen-binding sites to a single antigen. A heterodimeric antibody with one binding domain derived from the C225 antibody and one binding domain derived from the humanized 425 (hu425) antibody was built on the strand-exchange engineered domain (SEED) scaffold. This anti-EGFR biparatopic-SEED antibody was compared to parental antibodies used alone and in combination, and to the corresponding monovalent anti-EGFR-SEED antibodies used alone or in combination. We found that the anti-EGFR biparatopic-SEED had enhanced activity, similar to the combination of the two parental antibodies. Combinations of monovalent anti-EGFR-SEED antibodies did not produce enhanced effectiveness in cellular assays. Our results show that the anti-EGFR biparatopic antibody created using the SEED scaffold has enhanced combination-activity in a single molecule. Furthermore, these data suggest that the potential to cross-link the two different epitopes is an important requirement in the mechanism of enhanced combination-activity.  相似文献   

6.
Endocytic trafficking plays an important role in the regulation of the epidermal growth factor receptor (EGFR). To address if cellular kinases regulate EGFR internalization, we used anisomycin, a potent activator of kinase cascades in mammalian cells, especially the stress-activated mitogen-activated protein (MAP) kinase subtypes. Here, we report that activation of p38 MAP kinase by anisomycin is sufficient to induce internalization of EGFR. Anisomycin and EGF employ different mechanisms to promote EGFR endocytosis as anisomycin-induced internalization does not require tyrosine kinase activity or ubiquitination of the receptor. In addition, anisomycin treatment did not result in delivery and degradation of EGFR at lysosomes. Incubation with a specific inhibitor of p38, or depletion of endogenous p38 by small interfering RNAs, abolished anisomycin-induced internalization of EGFR while having no effect on transferrin endocytosis, indicating that the effect of p38 activation on EGFR endocytosis is specific. Interestingly, inhibition of p38 activation also abolished endocytosis of EGFR induced by UV radiation. Our results reveal a novel role for p38 in the regulation of EGFR endocytosis and suggest that stimulation of EGFR internalization by p38 might represent a general mechanism to prevent generation of proliferative or anti-apoptotic signals under stress conditions.  相似文献   

7.
Keratinocyte growth factor receptor (KGFR) is a receptor tyrosine kinase expressed on epithelial cells. Following ligand binding, KGFR is rapidly activated and internalized by clathrin-mediated endocytosis. Among the possible receptor substrates which could be involved in the regulation of KGFR endocytosis and down-modulation, we analyzed here the eps15 protein in view of the proposed general role of eps15 in regulating clathrin-mediated endocytosis as well as that of eps15 tyrosine phosphorylation in the control of regulated endocytosis. Immunoprecipitation and Western blot analysis showed that activated KGFR was not able to phosphorylate eps15, suggesting that eps15 is not a receptor substrate. Double immunofluorescence and confocal microscopy revealed that activated KGFR, differently from epidermal growth factor receptor (EGFR), did not induce recruitment of eps15 to the cell plasma membrane. Microinjection of a monoclonal antibody directed against the C-terminal DPF domain which contains the AP2 binding region of eps15 led to inhibition of both pathways of receptor-mediated endocytosis, the EGFR ligand-induced endocytosis and the transferrin constitutive endocytosis, but did not appear to block the KGFR ligand-induced internalization. Taken together our results indicate that the clathrin-mediated uptake of KGFR is not mediated by eps15.  相似文献   

8.
Current models put forward that the epidermal growth factor receptor (EGFR) is efficiently internalized via clathrin-coated pits only in response to ligand-induced activation of its intrinsic tyrosine kinase and is subsequently directed into a lysosomal-proteasomal degradation pathway by mechanisms that include receptor tyrosine phosphorylation and ubiquitylation. Herein, we report a novel mechanism of EGFR internalization that does not require ligand binding, receptor kinase activity, or ubiquitylation and does not direct the receptor into a degradative pathway. Inhibition of basal protein kinase A (PKA) activity by H89 and the cell-permeable substrate peptide Myr-PKI induced internalization of 40-60% unoccupied, inactive EGFR, and its accumulation into early endosomes without affecting endocytosis of transferrin and mu-opioid receptors. This effect was abrogated by interfering with clathrin function. Thus, the predominant distribution of inactive EGFR at the plasma membrane is not simply by default but involves a PKA-dependent restrictive condition resulting in receptor avoidance of endocytosis until it is stimulated by ligand. Furthermore, PKA inhibition may contribute to ligand-induced EGFR endocytosis because epidermal growth factor inhibited 26% of PKA basal activity. On the other hand, H89 did not alter ligand-induced internalization of EGFR but doubled its half-time of down-regulation by retarding its segregation into degradative compartments, seemingly due to a delay in the receptor tyrosine phosphorylation and ubiquitylation. Our results reveal that PKA basal activity controls EGFR function at two levels: 1) residence time of inactive EGFR at the cell surface by a process of "endocytic evasion," modulating the accessibility of receptors to stimuli; and 2) sorting events leading to the down-regulation pathway of ligand-activated EGFR, determining the length of its intracellular signaling. They add a new dimension to the fine-tuning of EGFR function in response to cellular demands and cross talk with other signaling receptors.  相似文献   

9.
Like many other receptor tyrosine kinases (RTKs), platelet-derived growth factor (PDGF) receptor β (PDGFR-β) is internalized and degraded in lysosomes in response to PDGF stimulation, which regulates many aspects of cell signalling. However, little is known about the regulation of PDGFR-β endocytosis. Given that ligand binding is essential for the rapid internalization of RTKs, the events induced by the ligand binding likely contribute to the regulation of ligand-induced RTK internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. In this communication, we examined the role of PDGFR-β kinase activity, PDGFR-β dimerization and PDGFR-β C-terminal motifs in PDGF-induced PDGFR-β internalization. We showed that inhibition of PDGFR-β kinase activity by chemical inhibitor or mutation did not block PDGF-induced PDGFR-β endocytosis, suggesting that the kinase activity is not essential. We further showed that dimerization of PDGFR-β is essential and sufficient to drive PDGFR-β internalization independent of PDGFR-β kinase activation. Moreover, we showed that the previously reported 14 amino acid sequence 952-965 is required for PDGF-induced PDGFR-β internalization. Most importantly, we showed that this PDGFR-β internalization motif is exchangeable with the EGFR internalization motif (1005-1017) in mediating ligand-induced internalization of both PDGFR-β and EGFR. This indicates a common mechanism for the internalization of both PDGFR-β and EGFR.  相似文献   

10.
Several inhibitors of epidermal growth factor receptor (EGFR) kinase and Src family kinases (SFK) were employed to study the role of these kinases in EGFR internalization through clathrin-coated pits. The EGFR kinase-specific compound PD158780 substantially diminished EGFR internalization. PP2, an inhibitor of SFK, had a moderate effect on EGFR internalization in several types of cells, including cells lacking SFK, indicating that the inhibition of endocytosis by PP2 is mediated by kinases other than SFK. In contrast, SU6656, a more specific inhibitor of SFK, did not affect EGFR internalization. To examine what stage of internalization requires receptor kinase activity, we established a quantitative assay based on three-dimensional fluorescence microscopy that measures co-localization of an EGF-rhodamine conjugate and a fluorescently tagged clathrin adaptor protein complex, AP-2. Interestingly, recruitment of EGFR into coated pits did not require physiological temperature because the maximal accumulation of EGFR in coated pits was observed at 4 degrees C. Pretreatment of the cells with PD158780 prevented EGFR recruitment into coated pits, whereas the inhibitor did not block the internalization of receptors that had first been allowed to enter the coated pits at 4 degrees C. These data demonstrate that the activation of receptor kinase is essential for the initial, coated pit recruitment step of endocytosis.  相似文献   

11.
The epidermal growth factor receptor ( EGFR ) is an important regulator of normal growth and differentiation, and it is involved in the pathogenesis of many cancers. Endocytic downregulation is central in terminating EGFR signaling after ligand stimulation. It has been shown that p38 MAPK activation also can induce EGFR endocytosis. This endocytosis lacks many of the characteristics of ligand‐induced EGFR endocytosis. We compared the two types of endocytosis with regard to the requirements for proteins in the internalization machinery. Both types of endocytosis require clathrin, but while epidermal growth factor (EGF) ‐induced EGFR internalization also required Grb 2 , p38 MAPK ‐induced internalization did not. Interestingly , AP ‐2 knock down blocked p38 MAPK ‐induced EGFR internalization, but only mildly affected EGF ‐induced internalization. In line with this, simultaneously mutating two AP ‐2 interaction sites in EGFR affected p38 MAPK ‐induced internalization much more than EGF ‐induced EGFR internalization. Thus, it seems that EGFR in the two situations uses different sets of internalization mechanisms.  相似文献   

12.
Monoclonal antibodies directed against the low density lipoprotein (LDL) receptor have been prepared by immunization of mice with a partially purified receptor from bovine adrenal cortex. Spleen cells from the mice were fused with the Sp2/0-Ag14 line of mouse myeloma cells. The most extensively studied monoclonal antibody, designated immunoglobulin-C7, reacts with the human and bovine LDL receptor, but not with receptors from the mouse, rat, Chinese hamster, rabbit, or dog. 125I-labeled monoclonal antibody binds to human fibroblasts in amounts that are equimolar to 125I-LDL. In fibroblasts from 6 of 8 patients with the receptor-negative form of homozygous familial hypercholesterolemia, which have less than 5% of normal LdL binding, the amount of monoclonal antibody binding was also less than 5% of normal. Fibroblasts from the other two receptor-negative homozygotes bound an amount of monoclonal antibody that was much greater than expected on the basis of LDL binding, suggesting that these two patients produce a structurally altered receptor that binds the antibody, but not LDL. In normal fibroblasts, the receptor-bound monoclonal antibody was taken up and degraded at 37 degrees C at rapid rate similar to that for LDL. Fibroblasts from a patient with the internalization defective form of familial hypercholesterolemia bound the monoclonal antibody, but did not internalize or degrade it. The current data demonstrate the usefulness of monoclonal antibodies as probes for the study of the cellular and genetic factors involved in receptor-mediated endocytosis.  相似文献   

13.
CC-chemokine receptor 5 (CCR5) is the principal coreceptor for macrophage-tropic strains of human immunodeficiency virus type 1 (HIV-1). We have generated a set of anti-CCR5 monoclonal antibodies and characterized them in terms of epitope recognition, competition with chemokine binding, receptor activation and trafficking, and coreceptor activity. MC-4, MC-5, and MC-7 mapped to the amino-terminal domain, MC-1 to the second extracellular loop, and MC-6 to a conformational epitope covering multiple extracellular domains. MC-1 and MC-6 inhibited regulated on activation normal T cell expressed and secreted (RANTES), macrophage inflammatory polypeptide-1beta, and Env binding, whereas MC-5 inhibited macrophage inflammatory polypeptide-1beta and Env but not RANTES binding. MC-6 induced signaling in different functional assays, suggesting that this monoclonal antibody stabilizes an active conformation of CCR5. Flow cytometry and real-time confocal microscopy showed that MC-1 promoted strong CCR5 endocytosis. MC-1 but not its monovalent isoforms induced an increase in the transfer of energy between CCR5 molecules. Also, its monovalent isoforms bound efficiently, but did not internalize the receptor. In contrast, MC-4 did not prevent RANTES binding or subsequent signaling, but inhibited its ability to promote CCR5 internalization. These results suggest the existence of multiple active conformations of CCR5 and indicate that CCR5 oligomers are involved in an internalization process that is distinct from that induced by the receptor's agonists.  相似文献   

14.
Wang Q  Zhu F  Wang Z 《Experimental cell research》2007,313(15):3349-3363
Most studies regarding the role of epidermal growth factor (EGF) receptor (EGFR) C-terminal domain in EGFR internalization are done in the context of EGFR kinase activation. We recently showed that EGF-induced EGFR internalization is directly controlled by receptor dimerization, rather than kinase activation. Here we studied the role of EGFR C-terminus in EGF-induced EGFR internalization with or without EGFR kinase activation. We showed that graduate truncation of EGFR from C-terminus to 1044 did not affect EGF-induced EGFR endocytosis with or without kinase activation. However, truncation to 991 or further completely inhibited EGFR endocytosis. Graduate truncation within 991-1044 progressively lower EGF-induced EGFR endocytosis with most significant effects observed for residues 1005-1017. The endocytosis patterns of mutant EGFRs are independent of EGFR kinase activation. The residues 1005-1017 were also required for EGFR internalization triggered by non-ligand-induced receptor dimerization. This indicates that residues 1005-1017 function as an internalization motif, rather than a dimerization motif, to mediate EGFR internalization. Furthermore, we showed that the di-leucine motif 1010LL1011 within this region is essential in mediating EGF-induced rapid EGFR internalization independent of kinase activation. We conclude that EGFR C-terminal sequences 1005-1017 and the 1010LL1011 motif are essential for EGF-induced EGFR endoytosis independent of EGFR kinase activation and autophosphorylation.  相似文献   

15.
Endocytosis of the epidermal growth factor receptor (EGFR) is important for the regulation of EGFR signaling. However, EGFR endocytosis mechanisms are poorly understood, which precludes development of approaches to specifically inhibit EGFR endocytosis and analyze its impact on signaling. Using a combination of receptor mutagenesis and RNA interference, we demonstrate that clathrin-dependent internalization of activated EGFR is regulated by four mechanisms, which function in a redundant and cooperative fashion. These mechanisms involve ubiquitination of the receptor kinase domain, the clathrin adaptor complex AP-2, the Grb2 adaptor protein, and three C-terminal lysine residues (K1155, K1158, and K1164), which are acetylated, a novel posttranslational modification for the EGFR. Based on these findings, the first internalization-defective EGFR mutant with functional kinase and normal tyrosine phosphorylation was generated. Analysis of the signaling kinetics of this mutant revealed that EGFR internalization is required for the sustained activation of protein kinase B/AKT but not for the activation of mitogen-activated protein kinase.  相似文献   

16.
Epidermal growth factor (EGF)-induced signaling was investigated in cells conditionally defective in clathrin-dependent endocytosis by overexpression of K44A dynamin in HeLa cells and potassium depletion in Hep2 cells. Overexpression of mutant dynamin disrupts high-affinity EGF-EGF receptor (EGFR) interaction (T. Ringerike, E. Stang, L. E. Johannessen, D. Sandnes, F. O. Levy, and I. H. Madshus, 1998, J. Biol. Chem. 273, 16639-16642). However, the EGFR substrates Shc and c-Cbl were as efficiently tyrosine phosphorylated in endocytosis-deficient HeLa cells exhibiting only low-affinity EGFRs as in HeLa cells with intact endocytosis and with both high- and low-affinity EGFRs. Both Raf and mitogen-activated protein kinase (MAPK) were activated to the same extent and with the same kinetics. HeLa cells distributed equally in the cell cycle regardless of EGFR internalization. Upon potassium depletion of Hep2 cells, EGF-induced EGFR endocytosis was inhibited. However, the EGFR and MAPK were efficiently activated by EGF in both the absence and the presence of clathrin-dependent endocytosis. The EGFR was weakly tyrosine phosphorylated by potassium depletion even in the absence of EGF, and this activation resulted in detectable activation of MAPK. Our results demonstrate that internalization of EGFR by clathrin-dependent endocytosis is not required for activation of MAPK.  相似文献   

17.
18.

Background

The epidermal growth factor receptor (EGFR) is overexpressed in 80% of non-small cell lung cancer (NSCLC) and is associated with poor survival. In recent years, EGFR-targeted inhibitors have been tested in the clinic for NSCLC. Despite the emergence of novel therapeutics and their application in cancer therapy, the overall survival rate of lung cancer patients remains 15%. To develop more effective therapies for lung cancer we have combined the anti-EGFR antibody (Clone 225) as a molecular therapeutic with hybrid plasmonic magnetic nanoparticles (NP) and tested on non-small cell lung cancer (NSCLC) cells.

Methodology/Principal Findings

Cell viability was determined by trypan-blue assay. Cellular protein expression was determined by Western blotting. C225-NPs were detected by electron microscopy and confocal microscopy, and EGFR expression using immunocytochemistry. C225-NP exhibited a strong and selective antitumor effect on EGFR-expressing NSCLC cells by inhibiting EGFR-mediated signal transduction and induced autophagy and apoptosis in tumor cells. Optical images showed specificity of interactions between C225-NP and EGFR-expressing NSCLC cells. No binding of C225-NP was observed for EGFR-null NSCLC cells. C225-NP exhibited higher efficiency in induction of cell killing in comparison with the same amount of free C225 antibody in tumor cells with different levels of EGFR expression. Furthermore, in contrast to C225-NP, free C225 antibody did not induce autophagy in cells. However, the therapeutic efficacy of C225-NP gradually approached the level of free antibodies as the amount of C225 antibody conjugated per nanoparticle was decreased. Finally, attaching C225 to NP was important for producing the enhanced tumor cell killing as addition of mixture of free C225 and NP did not demonstrate the same degree of cell killing activity.

Conclusions/Significance

We demonstrated for the first time the molecular mechanism of C225-NP induced cytotoxic effects in lung cancer cells that are not characteristic for free molecular therapeutics thus increasing efficacy of therapy against NSCLC.  相似文献   

19.
Wang Q  Villeneuve G  Wang Z 《EMBO reports》2005,6(10):942-948
Given that ligand binding is essential for the rapid internalization of epidermal growth factor receptor (EGFR), the events induced by ligand binding probably contribute to the regulation of EGFR internalization. These events include receptor dimerization, activation of intrinsic tyrosine kinase activity and autophosphorylation. Whereas the initial results are controversial regarding the role of EGFR kinase activity in EGFR internalization, more recent data suggest that EGFR kinase activation is essential for EGFR internalization. However, we have shown here that inhibition of EGFR kinase activation by mutation or by chemical inhibitors did not block EGF-induced EGFR internalization. Instead, proper EGFR dimerization is necessary and sufficient to stimulate EGFR internalization. We conclude that EGFR internalization is controlled by EGFR dimerization, rather than EGFR kinase activation. Our results also define a new role for EGFR dimerization: by itself it can drive EGFR internalization, independent of its role in the activation of EGFR kinase.  相似文献   

20.
In mammalian cells, the binding of epidermal growth factor (EGF) to its receptor (EGFR), a glycoprotein with intrinsic tyrosine kinase activity, leads to the pleiotropic responses to EGF. Among these, a negative feedback response by stimulation of receptor internalization and lysosomal degradation, this attenuating signal transduction. In this work, data are reported on the identification of specific EGFRs in isolated digestive gland cells from the marine mussel (Mytilus galloprovincialis Lam.) By immunoelectron microscopy. In control digestive cells, EGFR immunoreactivity was mainly associated with cytoplasmic membrane structures and, to a lesser extent, the cell membrane. The presence of EGFR-like receptors was confirmed by Western blotting of digestive gland cell extracts with two different monoclonal antibodies that recognize either intracellular or extracellular epitopes. The addition of mammalian EGF resulted in significant time and temperature-dependent changes in EGFR subcellular distribution in mussel cells. In cells exposed to EGF for 0-15 min at 4 degrees C, the distribution of EGFR was not significantly different from that of the control cells. On the other hand, at 18 degrees C, an increased labelling along the cell membrane was observed after 5-10 min after EGF addition, with a concomitant decrease in the cytoplasmic signal. Moreover, after 20 min of exposure to EGF, ligand binding apparently resulted in EGFR compartmentation within the lysosomes. These observations were confirmed by quantitative analysis of EGFR labelling at different times of EGF exposure. Similar results were obtained utilizing the two different monoclonal antibodies. The results indicate that, in mussel digestive cells, the binding of heterologous EGF to specific receptors induces a negative feedback response by stimulating the lysosomal degradation of EGFR, thus suggesting the presence of mechanisms responsible for receptor downregulation similar to those observed in mammalian cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号