首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The microtubule-associated protein tau is a natively unfolded protein in solution, yet it is able to polymerize into the ordered paired helical filaments (PHF) of Alzheimer's disease. In the splice isoforms lacking exon 10, this process is facilitated by the formation of beta-structure around the hexapeptide motif PHF6 ((306)VQIVYK(311)) encoded by exon 11. We have investigated the structural requirements for PHF polymerization in the context of adult tau isoforms containing four repeats (including exon 10). In addition to the PHF6 motif there exists a related PHF6* motif ((275)VQIINK(280)) in the repeat encoded by the alternatively spliced exon 10. We show that this PHF6* motif also promotes aggregation by the formation of beta-structure and that there is a cross-talk between the two hexapeptide motifs during PHF aggregation. We also show that two of the tau mutations found in hereditary frontotemporal dementias, DeltaK280 and P301L, have a much stronger tendency for PHF aggregation which correlates with their high propensity for beta-structure around the hexapeptide motifs.  相似文献   

2.
Post-translationally modified tau is the primary component of tau neurofibrillary tangles, a pathological hallmark of Alzheimer''s disease and other tauopathies. Post-translational modifications (PTMs) within the tau microtubule (MT)-binding domain (MBD), which encompasses two hexapeptide motifs that act as critical nucleating regions for tau aggregation, can potentially modulate tau aggregation as well as interactions with MTs and membranes. Here, we characterize the effects of a recently discovered tau PTM, lysine succinylation, on tau–tubulin interactions and compare these to the effects of two previously reported MBD modifications, lysine acetylation and tyrosine phosphorylation. As generation of site-specific PTMs in proteins is challenging, we used short synthetic peptides to quantify the effects on tubulin binding of three site-specific PTMs located within the PHF6 (paired helical filament [PHF] residues 275–280) and PHF6 (residues 306–311) hexapeptide motifs: K280 acetylation, Y310 phosphorylation, and K311 succinylation. We compared these effects to those observed for MBD PTM-mimetic point mutations K280Q, Y310E, and K311E. Finally, we evaluated the effects of these PTM-mimetic mutations on MBD membrane binding and membrane-induced fibril and oligomer formation. We found that all three PTMs perturb tau MT binding, with Y310 phosphorylation exerting the strongest effect. PTM-mimetic mutations partially recapitulated the effects of the PTMs on MT binding and also disrupted tau membrane binding and membrane-induced oligomer and fibril formation. These results imply that these PTMs, including the novel and Alzheimer''s disease–specific succinylation of tau K311, may influence both the physiological and pathological interactions of tau and thus represent targets for therapeutic intervention.  相似文献   

3.
Li W  Lee VM 《Biochemistry》2006,45(51):15692-15701
Tau proteins are building blocks of the filaments that form neurofibrillary tangles of Alzheimer's disease (AD) and related neurodegenerative tauopathies. It was recently reported that two VQIXXK motifs in the microtubule (MT) binding region, named PHF6 and PHF6*, are responsible for tau fibrillization. However, the exact role each of these motifs plays in this process has not been analyzed in detail. Using a recombinant human tau fragment containing only the four MT-binding repeats (K18), we show that deletion of either PHF6 or PHF6* affected tau assembly but only PHF6 is essential for filament formation, suggesting a critical role of this motif. To determine the amino acid residues within PHF6 that are required for tau fibrillization, a series of deletion and mutation constructs targeting this motif were generated. Deletion of VQI in either PHF6 or PHF6* lessened but did not eliminate K18 fibrillization. However, removal of the single K311 residue from PHF6 completely abrogated the fibril formation of K18. K311D mutation of K18 inhibited tau filament formation, while K311A and K311R mutations had no effect. These data imply that charge change at position 311 is important in tau fibril formation. A similar requirement of nonnegative charge at this position for fibrillization was observed with the full-length human tau isoform (T40), and data from these studies indicate that the formation of fibrils by T40K311D and T40K311P mutants is repressed at the nucleation phase. These findings provide important insights into the mechanisms of tau fibrillization and suggest targets for AD drug discovery to ameliorate neurodegeneration mediated by filamentous tau pathologies.  相似文献   

4.
The abnormal aggregation of the microtubule associated protein tau into paired helical filaments (PHFs) is one the hallmarks of Alzheimer's disease. The soluble protein is one of the longest natively unfolded proteins, lacking significant amounts of secondary structure over a sequence of 441 amino acids in the longest isoform. Furthermore, the unfolded character is consistent with some notable features of the protein like stability towards heat and acid treatment. It is still unclear how these characteristics support the physiological function of binding to and stabilization of microtubules. We review here some recent studies on how an unfolded protein such as tau can adopt beta-structure, which then leads to the highly ordered morphology of the PHFs. The core sequence for both microtubule binding and PHF formation is the microtubule binding domain containing three or four repeats. This region alone is sufficient for PHF formation and mostly unfolded in the soluble state. A search for sequence motifs within this region crucial for PHF building revealed two hexapeptides in the second and the third repeat. Some of the genetically linked cases of FTDP-17 show missense mutations in or adjacent to these hexapeptide motifs. Proteins containing the P301L and the DeltaK280 mutations exhibit accelerated aggregation. The importance of the two hexapeptides stems from their capacity to undergo a conformational change from a random coil to a beta sheet structure. The increase of beta sheet structure is a typical feature of an amyloidogenic protein and is the basis of other characteristics like a decreased sensitivity towards proteolytic degradation and Congo red binding. PHFs aggregated in vitro and in vivo contain beta-sheet structure, as judged by circular dichroism (CD) spectroscopy, Fourier transform infrared (FTIR) spectroscopy and X-ray diffraction.  相似文献   

5.
Recent evidence from several laboratories shows that the paired helical filaments of Alzheimer's disease brains consist mainly of the protein tau in an abnormally phosphorylated form, but the mode of assembly is not understood. Here we use EM to study several constructs derived from human brain tau and expressed in Escherichia coli. All constructs or tau isoforms are rodlike molecules with a high tendency to dimerize in an antiparallel fashion, as shown by antibody labeling and chemical crosslinking. The length of the rods is largely determined by the region of internal repeats that is also responsible for microtubule binding. One unit length of the repeat domain (three or four repeats) is around 22-25 nm, comparable to the cross-section of Alzheimer PHF cores. Constructs corresponding roughly to the repeat region of tau can form synthetic paired helical filaments resembling those from Alzheimer brain tissue. A similar self-assembly occurs with the chemically cross-linked dimers. In both cases there is no need for phosphorylation of the protein.  相似文献   

6.
MAP2 and tau exhibit microtubule-stabilizing activities that are implicated in the development and maintenance of neuronal axons and dendrites. The proteins share a homologous COOH-terminal domain, composed of three or four microtubule binding repeats separated by inter-repeats (IRs). To investigate how MAP2 and tau stabilize microtubules, we calculated 3D maps of microtubules fully decorated with MAP2c or tau using cryo-EM and helical image analysis. Comparing these maps with an undecorated microtubule map revealed additional densities along protofilament ridges on the microtubule exterior, indicating that MAP2c and tau form an ordered structure when they bind microtubules. Localization of undecagold attached to the second IR of MAP2c showed that IRs also lie along the ridges, not between protofilaments. The densities attributable to the microtubule-associated proteins lie in close proximity to helices 11 and 12 and the COOH terminus of tubulin. Our data further suggest that the evolutionarily maintained differences observed in the repeat domain may be important for the specific targeting of different repeats to either alpha or beta tubulin. These results provide strong evidence suggesting that MAP2c and tau stabilize microtubules by binding along individual protofilaments, possibly by bridging the tubulin interfaces.  相似文献   

7.
The aggregation of Tau into paired helical filaments is involved in the pathogenesis of several neurodegenerative diseases, including Alzheimer disease. The aggregation reaction is characterized by conformational conversion of the repeat domain, which partially adopts a cross-β-structure in the resulting amyloid-like fibrils. Here, we report the selection and characterization of an engineered binding protein, β-wrapin TP4, targeting the Tau repeat domain. TP4 was obtained by phage display using the four-repeat Tau construct K18ΔK280 as a target. TP4 binds K18ΔK280 as well as the longest isoform of human Tau, hTau40, with nanomolar affinity. NMR spectroscopy identified two alternative TP4-binding sites in the four-repeat domain, with each including two hexapeptide motifs with high β-sheet propensity. Both binding sites contain the aggregation-determining PHF6 hexapeptide within repeat 3. In addition, one binding site includes the PHF6* hexapeptide within repeat 2, whereas the other includes the corresponding hexapeptide Tau(337–342) within repeat 4, denoted PHF6**. Comparison of TP4-binding with Tau aggregation reveals that the same regions of Tau are involved in both processes. TP4 inhibits Tau aggregation at substoichiometric concentration, demonstrating that it interferes with aggregation nucleation. This study provides residue-level insight into the interaction of Tau with an aggregation inhibitor and highlights the structural flexibility of Tau.  相似文献   

8.
Eliezer D  Barré P  Kobaslija M  Chan D  Li X  Heend L 《Biochemistry》2005,44(3):1026-1036
The microtubule-associated protein tau is found aggregated into paired helical filaments in the intraneuronal neurofibrillary tangle deposits of victims of Alzheimer's disease (AD) and other related dementias. Tau contains a repeat domain consisting of three or four 31-32-residue imperfect repeats that forms the core of tau filaments and is capable of self-assembling into filaments in vitro. We have used high-resolution NMR spectroscopy to characterize the structural properties of the three-repeat domain of tau at the level of individual residues. We find that three distinct regions of the polypeptide corresponding to previously mapped microtubule interaction sites exhibit a preference for helical conformations, suggesting that these sites adopt a helical structure when bound to microtubules. In addition, we directly observe a marked preference for extended or beta-strand-like conformations in a stretch of residues between two of the helical regions, which corresponds closely to a region previously implicated as an early site of beta-strand structure formation and intermolecular interactions leading to paired helical filament (PHF) formation. This observation supports the idea that this region of the protein plays a crucial role in the formation of tau aggregates. We further show that disulfide-bond-mediated dimer formation does not affect and is not responsible for the observed structural preferences of the protein. Our results provide the first high-resolution view of the structural properties of the protein tau, are consistent with an important role for beta structure in PHF formation, and may also help explain recent reports that tau filaments contain helical structure.  相似文献   

9.
The aggregation of the microtubule-associated tau protein and formation of "neurofibrillary tangles" is one of the hallmarks of Alzheimer disease. The mechanisms underlying the structural transition of innocuous, natively unfolded tau to neurotoxic forms and the detailed mechanisms of binding to microtubules are largely unknown. Here we report the high-resolution characterization of the repeat domain of soluble tau using multidimensional NMR spectroscopy. NMR secondary chemical shifts detect residual beta-structure for 8-10 residues at the beginning of repeats R2-R4. These regions correspond to sequence motifs known to form the core of the cross-beta-structure of tau-paired helical filaments. Chemical shift perturbation studies show that polyanions, which promote paired helical filament aggregation, as well as microtubules interact with tau through positive charges near the ends of the repeats and through the beta-forming motifs at the beginning of repeats 2 and 3. The high degree of similarity between the binding of polyanions and microtubules supports the hypothesis that stable microtubules prevent paired helical filament formation by blocking the tau-polyanion interaction sites, which are crucial for paired helical filament formation.  相似文献   

10.
R Jakes  M Novak  M Davison    C M Wischik 《The EMBO journal》1991,10(10):2725-2729
The microtubule associated protein tau is incorporated into the pronase resistant core of the paired helical filament (PHF) in such a way that the repeat region is protected from proteases, but can be released as a major 12 kDa species from the PHF core by formic acid treatment and by boiling in SDS. This fragment retains the ability to aggregate in the presence of SDS. Detailed sequence analysis of the 12 kDa species shows that it consists of a mixture of peptides derived from the repeat region of 3- and 4-repeat tau isoforms comigrating as a single electrophoretic band. However, the 4-repeat isoforms released from the core lack either the first or the last repeat. The pronase-protected region of tau within the PHF core is therefore restricted to three repeats, regardless of isoform. The alignment of cleavage sites at homologous positions within tandem repeats after protease treatment indicates that the tau-core association is precisely constrained by the tandem repeat structure of the tau molecule.  相似文献   

11.
One of the hallmarks of Alzheimer's disease is the abnormal state of the microtubule-associated protein tau in neurons. It is both highly phosphorylated and aggregated into paired helical filaments, and it is commonly assumed that the hyperphosphorylation of tau causes its detachment from microtubules and promotes its assembly into PHFs. We have studied the relationship between the phosphorylation of tau by several kinases (MARK, PKA, MAPK, GSK3) and its assembly into PHFs. The proline-directed kinases MAPK and GSK3 are known to phosphorylate most Ser-Pro or Thr-Pro motifs in the regions flanking the repeat domain of tau: they induce the reaction with several antibodies diagnostic of Alzheimer PHFs, but this type of phosphorylation has only a weak effect on tau-microtubule interactions and on PHF assembly. By contrast, MARK and PKA phosphorylate several sites within the repeats (notably the KXGS motifs including Ser262, Ser324, and Ser356, plus Ser320); in addition PKA phosphorylates some sites in the flanking domains, notably Ser214. This type of phosphorylation strongly reduces tau's affinity for microtubules, and at the same time inhibits tau's assembly into PHFs. Thus, contrary to expectations, the phosphorylation that detaches tau from microtubules does not prime it for PHF assembly, but rather inhibits it. Likewise, although the phosphorylation sites on Ser-Pro or Thr-Pro motifs are the most prominent ones on Alzheimer PHFs (by antibody labeling), they are only weakly inhibitory to PHF assembly. This implies that the hyperphosphorylation of tau in Alzheimer's disease is not directly responsible for the pathological aggregation into PHFs; on the contrary, phosphorylation protects tau against aggregation.  相似文献   

12.
The tau family of microtubule-associated proteins has a microtubule-binding domain which includes three or four conserved sequence repeats. Pelleting assays show that when tubulin and tau are co- assembled into microtubules, the presence of taxol reduces the amount of tau incorporated. In the absence of taxol, strong binding sites for tau are filled by one repeat motif per tubulin dimer; additional tau molecules bind more weakly. We have labelled a repeat motif with nanogold and used three-dimensional electron cryomicroscopy to compare images of microtubules assembled with labelled or unlabelled tau. With kinesin motor domains bound to the microtubule outer surface to distinguish between alpha- and beta-tubulin, we show that the gold label lies on the inner surface close to the taxol binding site on beta-tubulin. Loops within the repeat motifs of tau have sequence similarity to an extended loop which occupies a site in alpha-tubulin equivalent to the taxol-binding pocket in beta-tubulin. We propose that loops in bound tau stabilize microtubules in a similar way to taxol, although with lower affinity so that assembly is reversible.  相似文献   

13.
Tau is the major antigenic component of neurofibrillary pathology in tauopathy, including Alzheimer's disease. Although conversion of soluble tau to an insoluble polymerized fibrillar form is a key factor in the pathogenesis of tauopathy, the mechanism of the change is unclear and no inhibitors of fibril formation are available. Monoclonal antibodies against the 1st or 2nd repeat of the microtubule binding domain, but not the C-terminal 16 residues, completely inhibited tau aggregation into PHF. Furthermore, they did not inhibit tau-induced tubulin assembly. Thus, they are useful to investigate tau protein conversion and will be useful therapeutic lead materials.  相似文献   

14.
Short peptide sequences within the microtubule binding domain of the protein Tau are proposed to be core nucleation sites for formation of amyloid fibrils displaying the paired helical filament (PHF) morphology characteristic of neurofibrillary tangles. To study the structure of these proposed nucleation sites, we analyzed the x-ray diffraction patterns from the assemblies formed by a variety of PHF/tau-related peptide constructs containing the motifs VQIINK (PHF6*) in the second repeat and VQIVYK (PHF6) in the third repeat of tau. Peptides included: tripeptide acetyl-VYK-amide (AcVYK), tetrapeptide acetyl-IVYK-amide (AcPHF4), hexapeptide acetyl-VQIVYK-amide (AcPHF6), and acetyl-GKVQIINKLDLSNVQKDNIKHGSVQIVYKPVDLSKVT-amide (AcTR4). All diffraction patterns showed reflections at spacings of 4.7 A, 3.8 A, and approximately 8-10 A, which are characteristic of an orthogonal unit cell of beta-sheets having dimensions a=9.4 A, b=6.6 A, and c=approximately 8-10 A (where a, b, and c are the lattice constants in the H-bonding, chain, and intersheet directions). The sharp 4.7 A reflections indicate that the beta-crystallites are likely to be elongated along the H-bonding direction and in a cross-beta conformation. The assembly of the AcTR4 peptide, which contains both the PHF6 and PHF6* motifs, consisted of twisted sheets, as indicated by a unique fanning of the diffuse equatorial scattering and meridional accentuation of the (210) reflection at 3.8 A spacing. The diffraction data for AcVYK, AcPHF4, and AcPHF6 all were consistent with approximately 50 A-wide tubular assemblies having double-walls, where beta-strands constitute the walls. In this structure, the peptides are H-bonded together in the fiber direction, and the intersheet direction is radial. The positive-charged lysine residues face the aqueous medium, and tyrosine-tyrosine aromatic interactions stabilize the intersheet (double-wall) layers. This particular contact, which may be involved in PHF fibril formation, is proposed here as a possible aromatic target for anti-tauopathy drugs.  相似文献   

15.
Discodermolide interferes with the binding of tau protein to microtubules   总被引:2,自引:0,他引:2  
Kar S  Florence GJ  Paterson I  Amos LA 《FEBS letters》2003,539(1-3):34-36
We investigated whether discodermolide, a novel antimitotic agent, affects the binding to microtubules of tau protein repeat motifs. Like taxol, the new drug reduces the proportion of tau that pellets with microtubules. Despite their differing structures, discodermolide, taxol and tau repeats all bind to a site on beta-tubulin that lies within the microtubule lumen and is crucial in controlling microtubule assembly. Low concentrations of tau still bind strongly to the outer surfaces of preformed microtubules when the acidic C-terminal regions of at least six tubulin dimers are available for interaction with each tau molecule; otherwise binding is very weak.  相似文献   

16.
Derivatives of 2,4-thiazolidinedione have been reported to inhibit the aggregation of tau protein, in which compound 30 (C30) not only inhibit 80% of paired helical filament 6 (PHF6) aggregation, but also inhibit K18 and full-length tau aggregation. However, its inhibitory mechanism is unclear. In this study, to investigate the effect of C30 on tau protein, all-atom molecular dynamics simulation was performed on the PHF6 oligomer with and without C30. The results show that C30 can cause significant conformational changes in the PHF6 oligomer. The nematic order parameter P2 and secondary structure analyses show that C30 destroys the ordered structure of PHF6 oligomer, reduces the content of β-sheet structure, and transforms β-sheet into random coil structure. By clustering analysis, it was found that C30 has four possible binding sites on the PFH6 oligomer, and the binding ability order is S1 > S2 > S4 > S3. Following a more in-depth analyses of each site, it was determined that the S1 site is the most possible binding site mainly located between layers of L1 and L3. The hydrophobic interaction is the driving force for the binding of C30 to PHF6 oligomer. In addition, L1P4_Y310, L1P5_Y310, L3P1_V309, and L3P2_V309 are key residues for C30 binding to oligomer. Moreover, π-π interaction formed by L1P4_Y310 and L1P5_Y310 with C30 and the hydrogen bonding interaction formed by C30 with L3P3_Q307 are beneficial to the combination of C30 and oligomer. The fully understanding disrupt the mechanism of 2,4-thiazolidinedione derivative on PHF6 oligomer and the identification of binding sites will help design and discover new AD inhibitors in the future.  相似文献   

17.
Physical properties, including amyloid morphology, FTIR and CD spectra, enhancement of Congo red absorbance, polymerization rate, critical monomer concentration, free energy of stabilization, hydrophobicity, and the partition coefficient between soluble and amyloid states, were measured for the tau-related peptide Ac-VQIVYK amide (AcPHF6) and its single site mutants Ac-VQIVXK amide (X not equal Cys). Transmission electron microscopy showed that 15 out of the 19 peptides formed amyloid in buffer, with morphologies ranging from straight and twisted filaments to sheets and rolled sheets. Using principal component analysis (PCA), measured properties were treated in a comprehensive manner, and scores along the most significant principal components were used to define individual amino acid amyloidogenic propensities. Quantitative structure-activity modeling (QSAM) showed that residues with greater size and hydrophobicity made the largest contributions to the propensity of peptides to form amyloid. Using individual amino acid propensities, sequences within tau with high amyloid-forming potential were estimated and found to include 226VAVVR230 in the proline-rich region, 275VQIINK280 (PHF6) and 306VQIVYK311 (PHF6) within the microtubule binding region, and 392IVYK395 in the C-tail region of the protein. The results suggest that regions outside the microtubule-binding region may play important roles in tau aggregation kinetics or paired helical filament structure.  相似文献   

18.
Because tau aggregation likely plays a role in a number of neurodegenerative diseases, understanding the processes that affect tau aggregation is of considerable importance. One factor that has been shown to influence the aggregation propensity is the oxidation state of the protein itself. Tau protein, which contains two naturally occurring cysteine residues, can form both intermolecular disulfide bonds and intramolecular disulfide bonds. Several studies suggest that intermolecular disulfide bonds can promote tau aggregation in vitro. By contrast, although there are data to suggest that intramolecular disulfide bond formation retards tau aggregation in vitro, the precise mechanism underlying this observation remains unclear. While it has been hypothesized that a single intramolecular disulfide bond in tau leads to compact conformations that cannot form extended structure consistent with tau fibrils, there are few data to support this conjecture. In the present study we generate oxidized forms of the truncation mutant, K18, which contains all four microtubule binding repeats, and isolate the monomeric fraction, which corresponds to K18 monomers that have a single intramolecular disulfide bond. We study the aggregation propensity of the oxidized monomeric fraction and relate these data to an atomistic model of the K18 unfolded ensemble. Our results argue that the main effect of intramolecular disulfide bond formation is to preferentially stabilize conformers within the unfolded ensemble that place the aggregation-prone tau subsequences, PHF6* and PHF6, in conformations that are inconsistent with the formation of cross-β-structure. These data further our understanding of the precise structural features that retard tau aggregation.  相似文献   

19.
By using tryptophan scanning mutagenesis, we observed the kinetics and structure of the polymerization of tau into paired helical filaments (PHFs) independently of exogenous reporter dyes. The fluorescence exhibits pronounced blue shifts due to burial of the residue inside PHFs, depending on Trp position. The effect is greatest near the center of the repeat domain, showing that the packing is tightest near the beta-structure inducing hexapeptide motifs. The tryptophan response allows measurement of PHF stability made by different tau isoforms and mutants. Unexpectedly, the stability of PHFs is quite low (denaturation half-points approximately 1.0 m GdnHCl), implying that incipient aggregation should be reversible and that the observed high stability of Alzheimer PHFs is due to other factors. The stability increases with the number of repeats and with tau mutants promoting beta-structure, arguing for a gain of toxic function in frontotemporal dementias. Fluorescence resonance energy transfer (FRET) was used to analyze the distances of Tyr(310) to tryptophans in different positions. The degree of FRET in the soluble protein was position-dependent, with highest signals within the second and third repeats but low or no signals further away. In PHFs most mutants showed FRET, indicating that tight packing results from assembly of tau into PHFs.  相似文献   

20.
Tau, a neuronal microtubule-associated protein that aggregates in Alzheimer disease is a natively unfolded protein. In solution, Tau adopts a "paperclip" conformation, whereby the N- and C-terminal domains approach each other and the repeat domain ( Jeganathan, S., von Bergen, M., Brutlach, H., Steinhoff, H. J., and Mandelkow, E. (2006) Biochemistry 45, 2283-2293 ). In AD, Tau is in a hyperphosphorylated state. The consequences for microtubule binding or aggregation are a matter of debate. We therefore tested whether phosphorylation alters the conformation of Tau. To avoid the ambiguities of heterogeneous phosphorylation we cloned "pseudo-phosphorylation" mutants of Tau where combinations of Ser or Thr residues were converted into Glu. These mutations were combined with FRET pairs inserted in different locations to allow distance measurements. The results show that the paperclip conformation becomes tighter or looser, depending on the pseudo-phosphorylation state. In particular, pseudo-phosphorylation at the epitope of the diagnostic antibody AT8* (S199E + S202E + T205E) moves the N-terminal domain away from the C-terminal domain. Pseudo-phosphorylation at the PHF1 epitope (S396E + S404E) moves the C-terminal domain away from the repeat domain. In both cases the paperclip conformation is opened up. By contrast, the combination of AT8* and PHF1 sites leads to compaction of the paperclip, such that the N-terminus approaches the repeat domain. The compaction becomes even stronger by combining pseudo-phosphorylated AT8*, AT100, and PHF1 epitopes. This is accompanied by a strong increase in the reaction with conformation-dependent antibody MC1, suggesting the generation of a pathological conformation characteristic for Tau in AD. Furthermore, the compact paperclip conformation enhances the aggregation to paired helical filaments but has little influence on microtubule interactions. The data provide a framework for the global folding of Tau dependent on proline-directed phosphorylation in the domains flanking the repeats and the consequences for pathological properties of Tau.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号