首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Amyloid fibrils are stable aggregates of misfolded proteins and polypeptides that are insoluble and resistant to protease activity. Abnormal formation of amyloid fibrils in vivo may lead to neurodegenerative disorders and other systemic amyloidosis, such as Alzheimer’s, Parkinson’s, and atherosclerosis. Because of their clinical importance, amyloids are under intense scientific research. It is believed that short polypeptide segments within proteins are responsible for the transformation of correctly folded proteins into parts of larger amyloid fibrils and that this transition is modulated by environmental factors, such as pH, salt concentration, interaction with the cell membrane, and interaction with metal ions. Most studies on amyloids focus on the amyloidogenic sequences. The focus of this study is on the structure of the amyloidogenic α-helical segments because the α-helical secondary structure has been recognized to be a key player in different stages of the amyloidogenesis process. We have previously shown that the α-helical conformation may be expressed by two parameters (θ and ρ) that form orthogonal coordinates based on the Ramachandran dihedrals (φ and ψ) and provide an illuminating interpretation of the α-helical conformation. By performing statistical analysis on α-helical conformations found in the Protein Data Bank, an apparent relation between α-helical conformation, as expressed by θ and ρ, and amyloidogenicity is revealed. Remarkably, random amino acid sequences, whose helical structures were obtained from the most probable dihedral angles, revealed the same dependency of amyloidogenicity, suggesting the importance of α-helical structure as opposed to sequence.  相似文献   

2.
Extracellular deposition as amyloids of immunoglobulin light chains causes light chain amyloidosis. Among the light chain families, lambda 6a is one of the most frequent in light chain amyloidosis patients. Its germline protein, 6aJL2, and point mutants, R24G and P7S, are good models to study fibrillogenesis, because their stability and fibril formation characteristics have been described. Both mutations make the germline protein unstable and speed up its ability to aggregate. To date, there is no molecular mechanism that explains how these differences in amyloidogenesis can arise from a single mutation. To look into the structural and dynamical differences in the native state of these proteins, we carried out molecular dynamics simulations at room temperature. Despite the structural similarity of the germline protein and the mutants, we found differences in their dynamical signatures that explain the mutants’ increased tendency to form amyloids. The contact network alterations caused by the mutations, though different, converge in affecting two anti‐aggregation motifs present in light chain variable domains, suggesting a different starting point for aggregation in lambda chains compared to kappa chains.  相似文献   

3.
The discovery of intrinsic disorderness in proteins and peptide regions has given a new and useful insight into the working of biological systems. Due to enormous plasticity and heterogeneity, intrinsically disordered proteins or regions in proteins can perform myriad of functions. The flexibility in disordered proteins allows them to undergo conformation transition to form homopolymers of proteins called amyloids. Amyloids are highly structured protein aggregates associated with many neurodegenerative diseases. However, amyloids have gained much appreciation in recent years due to their functional roles. A functional amyloid fiber called curli is assembled on the bacterial cell surface as a part of the extracellular matrix during biofilm formation. The extracellular matrix that encases cells in a biofilm protects the cells and provides resistance against many environmental stresses. Several of the Csg (curli specific genes) proteins that are required for curli amyloid assembly are predicted to be intrinsically disordered. Therefore, curli amyloid formation is highly orchestrated so that these intrinsically disordered proteins do not inappropriately aggregate at the wrong time or place. The curli proteins are compartmentalized and there are chaperone-like proteins that prevent inappropriate aggregation and allow the controlled assembly of curli amyloids. Here we review the biogenesis of curli amyloids and the role that intrinsically disordered proteins play in the process.  相似文献   

4.
《朊病毒》2013,7(4):206-212
Amyloid formation is a hallmark of several systemic and neurodegenerative diseases. Extracellular amyloid deposits or intracellular inclusions arise from the conformational transition of normally soluble proteins into highly ordered fibrillar aggregates. Amyloid fibrils are formed by nucleated polymerization, a process also shared by prions, proteinaceous infectious agents identified in mammals and fungi. Unlike so called non-infectious amyloids, the aggregation phenotype of prion proteins can be efficiently transmitted between cells and organisms. Recent discoveries in vivo now implicate that even disease-associated intracellular protein aggregates consisting of α-synuclein or Tau have the capacity to seed aggregation of homotypic native proteins and might propagate their amyloid states in a prion-like manner. Studies in tissue culture demonstrate that aggregation of diverse intracellular amyloidogenic proteins can be induced by exogenous fibrillar seeds. Still, a prerequisite for prion-like propagation is the fragmentation of proteinaceous aggregates into smaller seeds that can be transmitted to daughter cells. So far efficient propagation of the aggregation phenotype in the absence of exogenous seeds was only observed for a yeast prion domain expressed in tissue culture. Intrinsic properties of amyloidogenic protein aggregates and a suitable host environment likely determine if a protein polymer can propagate in a prion-like manner in the mammalian cytosol.  相似文献   

5.
The paper reveals the types of amino acid sequences of polypeptide chain regions of globular protein which form a regular (α or β) or irregular conformation in the native globule. The study was made taking into account general “architectural” principles of packing of polypeptide chains in globular proteins and considering the interactions of proteins with water molecules. An a priori theory is developed which permits the identification, in good agreement with experiment, of α-helical and β-structural regions in globular proteins from their primary structure.  相似文献   

6.
The molecular mechanisms underlying pressure-induced protein denaturation can be analyzed based on the pressure-dependent differences in the apparent volume occupied by amino acids inside the protein and when they are exposed to water in an unfolded conformation. We present here an analysis for the peptide group and the 20 naturally occurring amino acid side chains based on volumetric parameters for the amino acids in the interior of the native state, the micelle-like interior of the pressure-induced denatured state, and the unfolded conformation modeled by N-acetyl amino acid amides. The transfer of peptide groups from the protein interior to water becomes increasingly favorable as pressure increases. Thus, solvation of peptide groups represents a major driving force in pressure-induced protein denaturation. Polar side chains do not appear to exhibit significant pressure-dependent changes in their preference for the protein interior or solvent. The transfer of nonpolar side chains from the protein interior to water becomes more unfavorable as pressure increases. We conclude that a sizeable population of nonpolar side chains remains buried inside a solvent-inaccessible core of the pressure-induced denatured state. At elevated pressures, this core may become packed almost as tightly as the interior of the native state. The presence and partial disappearance of large intraglobular voids is another driving force facilitating pressure-induced denaturation of individual proteins. Our data also have implications for the kinetics of protein folding and shed light on the nature of the folding transition state ensemble.  相似文献   

7.
Amyloids are non-branching fibrils that are composed of stacked monomers stabilized by intermolecular β-sheets. Some amyloids are associated with incurable diseases, whereas others, functional amyloids, regulate different vital processes. The prevalence and significance of functional amyloids in wildlife are still poorly understood. In recent years, by applying new approach of large-scale proteome screening, a number of novel candidate amyloids were identified in the yeast Saccharomyces cerevisiae, many of which are localized in the yeast cell wall. In this work, we showed that one of these proteins, Toh1, possess amyloid properties. The Toh1-YFP hybrid protein forms detergent-resistant aggregates in the yeast cells while being expressed under its own PTOH1 or inducible PCUP1 promoter. Using bacterial system for generation of extracellular amyloid aggregates C-DAG, we demonstrated that the N-terminal Toh1 fragment, containing amyloidogenic regions predicted in silico, binds Congo Red dye, manifests ‘apple-green’ birefringence when examined between crossed polarizers, and forms amyloid-like fibrillar aggregates visualized by TEM. We have established that the Toh1(20–365)-YFP hybrid protein fluorescent aggregates are co-localized with a high frequency with Rnq1C-CFP and Sup35NM-CFP aggregates in the yeast cells containing [PIN+] and [PSI+] prions, and physical interaction of these aggregated proteins was confirmed by FRET. This is one of a few known cases of physical interaction of non-Q/N-rich amyloid-like protein and Q/N-rich amyloids, suggesting that interaction of different amyloid proteins may be determined not only by similarity of their primary structures but also by similarity of their secondary structures and of conformational folds.  相似文献   

8.
Protein refolding/misfolding to an alternative form plays an aetiologic role in many diseases in humans, including Alzheimer's disease, the systemic amyloidoses, and the prion diseases. Here we have discovered that such refolding can occur readily for a simple lattice model of proteins in a propagatable manner without designing for any particular alternative native state. The model uses a simple contact energy function for interactions between residues and does not consider the peculiarities of polypeptide geometry. In this model, under conditions where the normal (N) native state is marginally stable or unstable, two chains refold from the N native state to an alternative multimeric energetic minimum comprising a single refolded conformation that can then propagate itself to other protein chains. The only requirement for efficient propagation is that a two-faced mode of packing must be in the ground state as a dimer (a higher-energy state for this packing leads to less efficient propagation). For random sequences, these ground-state dimeric configurations tend to have more beta-sheet-like extended structure than almost any other sort of dimeric ground-state assembly. This implies that propagating states (such as for prions) are beta-sheet rich because the only likely propagating forms are beta-sheet rich. We examine the details of our simulations to see to what extent the observed properties of prion propagation can be predicted by a simple protein folding model. The formation of the alternative state in the present model shows several distinct features of amyloidogenesis and of prion propagation. For example, an analog of the phenomenon of conformationally distinct strains in prions is observed. We find a parallel between 'glassy' behavior in liquids and the formation of a propagatable state in proteins. This is the first report of simulation of conformational propagation using any heteropolymer model. The results imply that some (but not most) small protein sequences must maintain a sequence signal that resists refolding to propagatable alternative native states and that the ability to form such states is not limited to polypeptides (or reliant on regular hydrogen bonding per se) but can occur for other protein-like heteropolymers.  相似文献   

9.
In response to stress small organic compounds termed osmolytes are ubiquitously accumulated in all cell types to regulate the intracellular solvent quality and to counteract the deleterious effect on the stability and function of cellular proteins. Given the evidence that destabilization of the native state of a protein either by mutation or by environmental changes triggers the aggregation in the neurodegenerative pathologies, the modulation of the intracellular solute composition with osmolytes is an attractive strategy to stabilize an aggregating protein. Here we report the effect of three natural osmolytes on the in vivo and in vitro aggregation landscape of huntingtin exon 1 implicated in the Huntington's disease. Trimethylamine N-oxide (TMAO) and proline redirect amyloid fibrillogenesis of the pathological huntingtin exon 1 to nonamyloidogenic amorphous assemblies via two dissimilar molecular mechanisms. TMAO causes a rapid formation of bulky amorphous aggregates with minimally exposed surface area, whereas proline solubilizes the monomer and suppresses the accumulation of early transient aggregates. Conversely, glycine-betaine enhances fibrillization in a fashion reminiscent of the genesis of functional amyloids. Strikingly, none of the natural osmolytes can completely abrogate the aggregate formation; however, they redirect the amyloidogenesis into alternative, nontoxic aggregate species. Our study reveals new insights into the complex interactions of osmoprotectants with polyQ aggregates.  相似文献   

10.
Amyloid fibres are proteinaceous aggregates associated with several human diseases, including Alzheimer's, Huntington's and Creutzfeldt Jakob's. Disease-associated amyloid formation is the result of proteins that misfold and aggregate into β sheet-rich fibre polymers. Cellular toxicity is readily associated with amyloidogenesis, although the molecular mechanism of toxicity remains unknown. Recently, a new class of 'functional' amyloid fibres was discovered that demonstrates that amyloids can be utilized as a productive part of cellular biology. These functional amyloids will provide unique insights into how amyloid formation can be controlled and made less cytotoxic. Bacteria produce some of the best-characterized functional amyloids, including a surface amyloid fibre called curli. Assembled by enteric bacteria, curli fibres mediate attachment to surfaces and host tissues. Some bacterial amyloids, like harpins and microcinE492, have exploited amyloid toxicity in a directed and functional manner. Here, we review and discuss the functional amyloids assembled by bacteria. Special emphasis will be paid to the biology of functional amyloid synthesis and the connections between bacterial physiology and pathology.  相似文献   

11.
Temperature-sensitive folding mutations (tsf) of the thermostable P22 tailspike protein prevent the mutant polypeptide chain from reaching the native state at the higher end of the temperature range of bacterial growth (37-42 degrees C). At lower temperatures the mutant polypeptide chains fold and associate into native proteins. The melting temperatures of the purified native forms of seven different tsf mutant proteins have been determined by differential scanning calorimetry. Under conditions in which the wild type protein had a melting temperature of 88.4 degrees C, the melting temperatures of the mutant proteins were all above 82 degrees C, more than 40 degrees C higher than the temperature for expression of the folding defect. Because the folding defects were observed in vivo, the thermostability of the native protein was also examined with infected cells. Once matured at 28 degrees C, intracellular tsf mutant tailspikes remained native when the cells were transferred to 42 degrees C, a temperature that prevents newly synthesized tsf chains from folding correctly. These results confirm that the failure of tsf polypeptide chains to reach their native state is not due to a lowered stability of the native state. Such mutants differ from the class of ts mutations which render the native state thermolabile. The intracellular folding defects must reflect decreased stabilities of folding intermediates or alteration in the off-pathway steps leading to aggregation and inclusion body formation. These results indicate that the stability of a native protein within the cells is not sufficient to insure the successful folding of the newly synthesized chains into the native state.  相似文献   

12.
We propose that the way in which some proteins fold is affected by the rates at which regions of their polypeptide chains are translated in vivo. Furthermore, we suggest that their gene sequences have evolved to control the rate of translational elongation such that the synthesis of defined portions of their polypeptide chains is separated temporally. We stress that many proteins are capable of folding efficiently into their native conformations without the help of differential translation rates. For these proteins the amino acid sequence does indeed contain all the information needed for the polypeptide chain to fold correctly (even in vitro, after denaturation). However, other proteins clearly do not fold efficiently into their native conformation in vitro. We argue that the efficiency of folding of these problematic proteins in vivo may be improved by controlled synthesis of the nascent polypeptide.  相似文献   

13.
《Journal of molecular biology》2013,425(15):2722-2736
The transition of proteins from their soluble functional state to amyloid fibrils and aggregates is associated with the onset of several human diseases. Protein aggregation often requires some structural reshaping and the subsequent formation of intermolecular contacts. Therefore, the study of the conformation of excited protein states and their ability to form oligomers is of primary importance for understanding the molecular basis of amyloid fibril formation. Here, we investigated the oligomerization processes that occur along the folding of the amyloidogenic human protein β2-microglobulin. The combination of real-time two-dimensional NMR data with real-time small-angle X-ray scattering measurements allowed us to derive thermodynamic and kinetic information on protein oligomerization of different conformational states populated along the folding pathways. In particular, we could demonstrate that a long-lived folding intermediate (I-state) has a higher propensity to oligomerize compared to the native state. Our data agree well with a simple five-state kinetic model that involves only monomeric and dimeric species. The dimers have an elongated shape with the dimerization interface located at the apical side of β2-microglobulin close to Pro32, the residue that has a trans conformation in the I-state and a cis conformation in the native (N) state. Our experimental data suggest that partial unfolding in the apical half of the protein close to Pro32 leads to an excited state conformation with enhanced propensity for oligomerization. This excited state becomes more populated in the transient I-state due to the destabilization of the native conformation by the trans-Pro32 configuration.  相似文献   

14.
Amyloids are highly organized protein aggregates that arise from inappropriately folded versions of proteins or polypeptides under both physiological as well as simulated ambiences. Once thought to be irreversible assemblies, amyloids have begun to expose their more dynamic and reversible attributes depending upon the intrinsic properties of the precursor protein/peptide and experimental conditions such as temperature, pressure, structural modifications in proteins, or presence of chemicals in the reaction mixture. It has been repeatedly proposed that amyloids undergo transformation to the bioactive peptide/protein forms under specific conditions. In the present study, amyloids assembled from the model protein ovalbumin (OVA) were found to release the precursor protein in a slow and steady manner over an extended time period. Interestingly, the released OVA from amyloid depot was found to exhibit biophysical characteristics of native protein and reacted with native-OVA specific monoclonal as well as polyclonal antibodies. Moreover, antibodies generated upon immunization of OVA amyloidal aggregates or fibrils were found to recognize the native form of OVA. The study suggests that amyloids may act as depots for the native form of the protein and therefore can be exploited as vaccine candidates, where slow antigen release over extended time periods is a pre-requisite for the development of desired immune response.  相似文献   

15.
Amyloid formation is associated with structural changes of native polypeptides to monomeric intermediate states and their self-assembly into insoluble aggregates. Characterizations of the amyloidogenic intermediate state are, therefore, of great importance in understanding the early stage of amyloidogenesis. Here, we present NMR investigations of the structural and dynamic properties of the acid-unfolded amyloidogenic intermediate state of the phosphatidylinositol 3-kinase (PI3K) SH3 domain--a model peptide. The monomeric amyloidogenic state of the SH3 domain studied at pH 2.0 (35 degrees C) was shown to be substantially disordered with no secondary structural preferences. (15)N NMR relaxation experiments indicated that the unfolded polypeptide is highly flexible on a subnanosecond timescale when observed under the amyloidogenic condition (pH 2.0, 35 degrees C). However, more restricted motions were detected in residues located primarily in the beta-strands as well as in a loop in the native fold. In addition, nonnative long-range interactions were observed between the residues with the reduced flexibility by paramagnetic relaxation enhancement (PRE) experiments. These indicate that the acid-unfolded state of the SH3 domain adopts a partly folded conformation through nonnative long-range contacts between the dynamically restricted residues at the amyloid-forming condition.  相似文献   

16.
Many proteins can form amyloid-like fibrils in vitro, but only about 30 amyloids are linked to disease, whereas some proteins form physiological amyloid-like assemblies. This raises questions of how the formation of toxic protein species during amyloidogenesis is prevented or contained in vivo. Intrinsic chaperoning or regulatory factors can control the aggregation in different protein systems, thereby preventing unwanted aggregation and enabling the biological use of amyloidogenic proteins. The molecular actions of these chaperones and regulators provide clues to the prevention of amyloid disease, as well as to the harnessing of amyloidogenic proteins in medicine and biotechnology.  相似文献   

17.
Optical rotation data indicate that xanthan can exist both in an ordered and a disordered conformation. Using molecular weights obtained from light scattering measurements and contour length distributions obtained from electron micrographs, we find that a native, filtered xanthan exposed to low salinity (< 10?4M NaCl) and subsequently returned to 0.1M NaCl has a highly elongated structure with a mass per unit length of 1950 ± 200 Dalton/nm. Our data thus suggest that the ordered conformation of this xanthan is double stranded. We find that native, filtered xanthan in 0.1M NH4Ac has a nearly similar structure, but exists in part as aggregates of varying shape and size. Electron micrographs of these xanthans in 10?4M NH4Ac (the disordered conformation) display a mixture of species ranging from unaggregated single- or perfectly matched double-stranded species, to double-stranded chains branching into its two subunits as well as double-stranded chains with different degrees of mismatching. This study suggests that the perfectly matched antiparallel or parallel double-stranded chain constitutes the lowest free energy state of the ordered conformation of xanthan in dilute aqueous solution.  相似文献   

18.
19.
Hsp104: a weapon to combat diverse neurodegenerative disorders   总被引:1,自引:0,他引:1  
Shorter J 《Neuro-Signals》2008,16(1):63-74
Many of the fatal neurodegenerative disorders that plague humankind, including Alzheimer's and Parkinson's disease, are connected with the misfolding of specific proteins into a surprisingly generic fibrous conformation termed amyloid. Prior to amyloid fiber assembly, many proteins populate a common oligomeric conformation, which may be severely cytotoxic. Therapeutic innovations are desperately sought to safely reverse this aberrant protein aggregation and return proteins to normal function. Whether mammalian cells possess any such endogenous activity remains unclear. By contrast, fungi, plants and bacteria all express Hsp104, a protein-remodeling factor, which synergizes with the Hsp70 chaperone system to resolve aggregated proteins and restore their functionality. Surprisingly, amyloids can also be adaptive. In yeast, Hsp104 directly regulates the amyloidogenesis of several prion proteins, which can confer selective advantages. Here, I review the modus operandi of Hsp104 and showcase efforts to unleash Hsp104 on the protein-misfolding events connected to disparate neurodegenerative amyloidoses.  相似文献   

20.
It was shown for the first time that skeletal muscle sarcomeric proteins of the titin family (X-, C- and H-proteins) are able to form in vitro amyloid aggregates of different types: granular aggregates, protofibrils, helically twisted ribbons, linear fibrils, and bundles of linear fibrils. Their amyloid nature was confirmed by electron, polarization, and fluorescence microscopy and by spectral methods. As opposed to other amyloidogenic proteins, X-, C-, and H-proteins easily form amyloids under mild conditions close to physiological ones (pH, ionic strength, temperature). Like amyloid fibrils of Abeta-peptide and tau protein in Alzheimer's disease, amyloid aggregates formed by X-, C-, and H-proteins are destroyed by the antibiotic tetracycline. Thus, new proteins-precursors of amyloids and possible participants of amyloidoses in muscles were discovered. Further study of in vitro amyloidogenesis of these proteins would help to find approaches to controlling this process in organs and tissues.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号