首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
The effect of the local anesthetic dibucaine on the membrane ultrastructure of sterol-manipulated Tetrahymena pyriformis (NT-1 strain) was studied by freeze-fracture electron microscopy. Dibucaine-treated, ergosterol-replaced Tetrahymena cells had marked alterations in their plasma membranes. IMP-free small depressions (exoplasmic fracture face) and protrusions (protoplasmic fracture face) were formed on the plasma membranes which was in contact with the outer alveolar membrane. In addition, large IMP-free surface "blebs" covered with hexagonally-arranged depressions and protrusions appeared on both the plasma and outer alveolar membranes. These "blebs" were pinched off when the membranes were severely affected. Our previous study (28) demonstrated that the plasma membrane of dibucaine-treated native Tetrahymena cells that contain tetrahymanol showed vertical displacement of its intramembranous particles and that subsequently a smooth, flat surface appeared. Therefore, the structural changes in ergosterol-replaced membranes produced by dibucaine differ strikingly from changes in the native membranes. The remarkable difference in the ultrastructural deformation of the plasma membrane probably is due to a difference in the membrane lipid composition induced by sterol-manipulation.  相似文献   

2.
During oogenesis in the fern Paesia the plastid envelopes become progressively less distinct following aldehyde fixation and osmication, but react normally to permanganate. Consideration of the formation of the membrane image by osmium and by permanganate leads to the conclusion that the lipids of the envelope membranes become less unsaturated as the egg matures. This may increase permeability of the envelope and facilitate metabolic interchange with the ground cytoplasm. The mitochondrial envelopes remain unchanged throughout oogenesis. Similar behaviour of the plastid envelope has been observed during the differentiation of other reproductive cells, both spores and gametes.  相似文献   

3.
In murine C1300 neuroblastoma cells, clone Neuro 2A, the major fraction of the necessary increase in cell surface area during the cell cycle occurs within a short period around mitosis. During this period cell cycle-related modulations in a number of structural, dynamic and transport properties are most prominent. In this study we have examined the mechanism of rapid plasma membrane growth during mitosis, and the resulting changes in the ultrastructural features of the plasma membrane, by scanning and freeze-fracture electron microscopy as well as by electron microscopy of ultrathin sections. Our observations show that plasma membrane growth occurs by the fusion with and the incorporation into the plasma membrane of cytoplasmic multilamellar, lipidic membrane vesicles. Such vesicles are not observed at other times in the cell cycle. As a consequence, IMP-free domains appear transiently in the mitotic and early post-mitotic plasma membrane. Comparison of replicas prepared from glutaraldehyde-fixed cells and unfixed, ultrarapidly frozen cells showed that aldehyde fixation artefactually induces a bleb-like appearance of these domains. The IMP-free domains disappear in the G1-phase as a result of the mobilization and lateral redistribution of membrane components. It is argued that mitotic membrane growth by preferential incorporation of membrane lipids not only serves to accomodate for the necessary increase in cell surface area, but also provides a mechanism for plasma membrane-mediated regulation of the cell cycle.  相似文献   

4.
Examination of variables of aldehyde fixation that may affect the shape of agranular synaptic vesicles has revealed that even brief storage of aldehyde-perfused nervous tissue pieces in cacodylate buffer, prior to hardening in osmium tetroxide, has an unusually severe flattening effect on agranular vesicles of a particular type. These are the vesicles of peripheral cholinergic axon endings, and of certain central synaptic bulbs. Types of synaptic bulbs can now be further defined on the basis of shape of agranular synaptic vesicles under controlled conditions of aldehyde fixation. Previously described "S" bulbs in the spinal cord contain uniformly spheroid vesicles, which are wholly resistant to flattening. Previously described "F" bulbs contain somewhat smaller agranular vesicles that are flattened after aldehyde fixation, even when this is followed by prompt hardening in osmium tetroxide solution. A third type, previously characterized as having irregularly round agranular vesicles after the above treatment, contains only severely flattened vesicles when the osmium tetroxide hardening is preceded by even a brief wash with sodium cacodylate buffer containing sucrose. Moreover, the "third" type is characteristic of all cholinergic peripheral axon endings examined, as well as the large axosomatic ("L") synaptic bulbs of the spinal cord.  相似文献   

5.
The reported absence of a cell wall in halobacteria cannot be confirmed. Improved fixation techniques clearly show a cell wall-like structure on the surface of these cells. A stepwise reduction of the salt concentration causes the release of cell wall material before the cell membrane begins to disintegrate. The cell membrane breaks up into fragments of variable but rather small size, which are clearly different from a 4S component reported by others to be the major breakdown product of the cell membrane. It appears more likely that the 4S component arises from the dissolution of the cell wall. A residue of large membranous sheets remains even after prolonged exposure of halobacteria envelopes to distilled water. The lipids in these sheets do not differ significantly from the lipids in the lysed part of the cell membrane. The sheets, however, contain a purple-colored substance, which is not present in the lysed part. The easily sedimentable residue that remains after lysis of the cells or envelopes in distilled water also contains "intracytoplasmic membranes" with unusual structural characteristics. They can also be identified in sections through intact bacteria or envelope preparations. Their function is at present unknown but seems to be related to the formation of gas vacuoles in these organisms.  相似文献   

6.
We tested various cationic dyes chemically related to ruthenium hexaammine trichloride (RHT) [i.e., the RHT-cyclohexanedione complex (RHT-CC), pentaamine ruthenium N-dimethylphenylenediimine trichloride (PRT), tris-(bipyridyl)ruthenium (II) chloride (TRC), tris (bipyridyl) iron (II) chloride (TIC), and cobalt hexaammine trichloride (CHT)] for their effectiveness in precipitating cartilage matrix proteoglycans in situ. Dyes were introduced into media at the onset of processing and were present throughout both aldehyde fixation and osmium tetroxide post-fixation. Contrary to expectation, most of the dye-proteoglycan complexes generated and stable under aldehyde fixation conditions were found to be unstable during post-fixation despite the continuing presence of the dye. A similar phenomenon was also found for the cationic dyes commonly used for precipitation of proteoglycans in cartilage tissue sections (such as Acridine Orange, Alcian Blue, Azure A, Methylene Blue, and Ruthenium Red). Only two dyes, i.e., RHT and the newly tested RHT-CC, formed proteoglycan precipitates sufficiently stable to resist disruption and extraction during osmium tetroxide post-fixation. The latter may be particularly useful in semiquantitative analyses of proteoglycan content in unstained tissue sections owing to its intense brown-black color. For applications in which the osmium tetroxide post-fixation step may be omitted, TRC and PRT may also be valuable for semiquantitative histochemistry by virtue of their stable fluorescence and intense violet color signals, respectively.  相似文献   

7.
Synopsis The effect of fixation and processing upon the morphological appearance of glycogen within the outer hair cells of the guinea-pig was investigated using two methods. In each method, tissue was fixed for 12 h in cold phosphate-buffered 4% paraformaldehyde and eventually dehydrated in ethanol, embedded in Epon 812, and cut into 4 m sections. In procedure A, after complete processing, the sections were tained using the periodic acid-Schiff reaction (PAS) or the periodic acid-thiocarbo-hydrazide-osmium tetroxide (PATCO) reaction which resulted in the appearance of listinct, coarse granules in the cytoplasm of the outer hair cells. Diastase digestion on one of the two matched sections after Epon removal and prior to staining, confirmed the granules to be glycogen. In procedure B, after primary fixation, the tissue was post-fixed in 1% osmium tetroxide and then processed exactly as in procedure A. Here, unless the Epon and osmium was remoyed, there was no staining of the outer hair cell cytoplasm. However, after Epon removal there was diffuse, grainy appearance of the outer hair cell cytoplasm which we considered to be due to glycogen although diastase confirmation was not possible. We have concluded that osmium tetroxide (1) inhibits PAS or PATCO staining, (2) prevents diastase digestion, and (3) prevents the appearance by light microscopy of distinct granules of glycogen.  相似文献   

8.
THE FINE STRUCTURE OF THE ELECTRIC ORGAN OF TORPEDO MARMORATA   总被引:6,自引:4,他引:2       下载免费PDF全文
The fine structure of the electric organ of the fish Torpedo marmorata has been examined after osmium tetroxide or potassium permanganate fixation, acetone dehydration, and Araldite embedment. This organ consists of stacks of electroplaques which possess a dorsal noninnervated and a ventral richly innervated surface. Both surfaces are covered with a thin basement membrane. A tubular membranous network whose lumen is continuous with the extracellular space occupies the dorsal third of the electroplaque. Nerve endings, separated from the ventral surface of the electroplaque by a thin basement membrane, contain synaptic vesicles (diameter 300 to 1200 A), mitochondria, and electron-opaque granules (diameter 300 A). Projections from the nerve endings occupy the lumina of the finger-like invaginations of the ventral surface. The cytoplasm of the electroplaques contains the usual organelles. A "cellular cuff" surrounds most of the nerve fibers in the intercellular space, and is separated from the nerve fibre and its Schwann cell by a space containing connective tissue fibrils. The connective tissue fibrils and fibroblasts in the intercellular space are primarily associated with the dorsal surface of the electroplaque.  相似文献   

9.
The human epidermis has been studied by electron microscopy following osmium tetroxide and potassium permanganate fixation. An anatomically distinct cell in the human epidermis has been demonstrated with features similar to the melanocyte of the hair bulb described by Barnicot, Birbeck and Cuckow (3). It is dendritic in form and does not contain tonofilaments. "Intercellular bridges" are not formed. The mitochondria are larger and more numerous than those of other epidermal cells and the endoplasmic reticulum is more complex. Some of these cells contain melanin but others are melanin-free. The cell has been interpreted as being identical with the dopa-positive, clear cell of Masson (dendritic cell of Bloch or melanocyte). We have found that many membranous structures in the human epidermis are better preserved by permanganate fixation than by osmium tetroxide fixation.  相似文献   

10.
The human epidermis has been studied by electron microscopy following osmium tetroxide and potassium permanganate fixation. An anatomically distinct cell in the human epidermis has been demonstrated with features similar to the melanocyte of the hair bulb described by Barnicot, Birbeck and Cuckow (3). It is dendritic in form and does not contain tonofilaments. "Intercellular bridges" are not formed. The mitochondria are larger and more numerous than those of other epidermal cells and the endoplasmic reticulum is more complex. Some of these cells contain melanin but others are melanin-free. The cell has been interpreted as being identical with the dopa-positive, clear cell of Masson (dendritic cell of Bloch or melanocyte). We have found that many membranous structures in the human epidermis are better preserved by permanganate fixation than by osmium tetroxide fixation.  相似文献   

11.
Microwave irradiation (MWIr) of tissues immersed in aldehydes has been used to preserve fine structure in seconds. The purpose of this study was to extend these findings to include rapid primary osmium fixation in a microwave (MW) device with a high volume exhaust. Blocks of rat heart and liver were trimmed to approximately 4 mm3 and exposed to 0.2 M symcollidine-buffered 2% osmium tetroxide for a period of 6-7 sec during MWIr (final solution temperature approximately 45 degrees C). We also evaluated rapid fixation of tissues exposed to MWIr simultaneously with immersion in dilute Karnovsky's fixative (6-7 sec to approximately 50 degrees C) followed by MWIr of specimens immersed in osmium (7 sec to approximately 45 degrees C). Tissues were stored in 0.1 M sodium cacodylate buffer (pH 7.3, 4 degrees C) up to 2 weeks and were stained en bloc in uranyl acetate, dehydrated in a graded series of alcohols, and embedded in propylene oxide-Epon sequence. Thin sections were stained with lead citrate and examined by transmission electron microscopy. We demonstrate that fine structural preservation of tissue blocks can be achieved by MWIr in aldehyde and/or osmium in seconds.  相似文献   

12.
Aldehyde-fixed rat tissues were variously dehydrated and impregnated in water-miscible 2-hydroxypropyl methacrylate (HPMA) containing 3 to 20 per cent water and 0.1 per cent α,α-azobisisobutyronitrile as catalyst for subsequent polymerization with ultraviolet light. Heat polymerization was also effective. Blocks of embedded tissue readily gave ultrathin sections, which required staining by uranyl acetate and/or lead stains to give adequate contrast for electron microscopy. The ultrastructure of pancreas, kidney, muscle, and intestine was well preserved by aldehyde fixation alone. Use of postfixation in osmium tetroxide or direct osmium tetroxide fixation was unsatisfactory. The fine structure of aldehyde-fixed liver from fasted rats was well preserved, whereas that from normal rats showed considerable disorganization and collapse, apparently because of extraction of glycogen during the embedding procedure. Enzymatic extraction of proteins by pepsin and of ribonucleic acid by ribonuclease after either formaldehyde or glutaraldehyde fixation was rapidly effected by direct treatment of ultrathin sections with solutions of the enzymes. In contrast, no digestion of chromatin by deoxyribonuclease could be detected. In spite of this present limitation, HPMA appears to have several advantages over earlier water-miscible embedding media for electron microscopy and to be particularly suitable for ultrastructural cytochemistry.  相似文献   

13.
Cells of Chondrococcus columnaris were sectioned and examined in the electron microscope after fixation by two different methods. After fixation with osmium tetroxide alone, the surface layers of the cells consisted of a plasma membrane, a dense layer (mucopeptide layer), and an outer unit membrane. The outer membrane appeared distorted and was widely separated from the rest of the cell. The intracytoplasmic membranes (mesosomes) appeared as convoluted tubules packaged up within the cytoplasm by a unit membrane. The unit membrane surrounding the tubules was continuous with the plasma membrane. When the cells were fixed with glutaraldehyde prior to fixation with osmium tetroxide, the outer membrane was not distorted and separated from the rest of the cell, structural elements (peripheral fibrils) were seen situated between the outer membrane and dense layer, and the mesosomes appeared as highly organized structures produced by the invagination and proliferation of the plasma membrane. The mesosomes were made up of a series of compound membranes bounded by unit membranes. The compound membranes were formed by the union of two unit membranes along their cytoplasmic surfaces.  相似文献   

14.
Further evidence for fibrillar organization of the ground cytoplasm of Chaos chaos is presented. Fixations with osmium tetroxide at pH 6 or 8 and with glutaraldehyde at pH 6 or 7 were used on two preparations: (a) single actively streaming cells; (b) prechilled cells treated with 0.05% Alcian blue in the cold and returned to room temperature for 5–10 min. In addition, a 50,000 g pellet of homogenized cells was examined after fixation with glutaraldehyde-formaldehyde alone. In sections from actively streaming cells considerable numbers of filaments were observed in the uroid regions after glutaraldehyde fixation, whereas only traces of filaments were seen after osmium tetroxide fixation at either pH 6 or 8. Microtubules were not seen. In sections from dye-treated cells, filaments (4–6 mµ) and fibrils (12–15 mµ) were found with all three fixatives. The 50,000 g pellet was heterogeneous but contained both clumps of fibrils and single thick fibrils like those seen in the cytoplasm of dye-treated cells. Many fibrils of the same dimensions (12–15 mµ wide, 0.5 µ long) were also seen in the supernatant above the pellet. Negative staining showed that some fibrils separated into at least three strands of 4–6 mµ filaments.  相似文献   

15.
The configuration of brain mitochondria was compared in situ, after aldehyde perfusion and/or osmium immersion fixation and in isolated fractions of different functional performance. After combined aldehyde perfusion osmium immersion fixation in situ, mitochondria were condensed having a dark matrix. Fractions capable of controlled respiration also consisted of condensed mitochondria. On the contrary, expanded mitochondria with light matrix were brought about by immersion fixation. Fractions consisting predominantly of light mitochondria displayed no controlled respiration. Light matrix and expanded form are therefore regarded as a functionally impaired state of brain mitochondria. The condensed form is thought to be a landmark of good fixation.  相似文献   

16.
H G Heumann 《Histochemistry》1992,97(4):341-347
Microwave-enhanced fixation of animal tissues for electron microscopy has gained in interest in recent years. Attempts to use microwave irradiation for the preparation of plant tissues are rare. In this study; I report on microwave conditions which allow a high quality preservation of plant cell structure. Tissues used were: internodes of Chara vulgaris, leaves of Hordeum vulgare, root tips of Lepidium sativum. Microwave irradiation was done with a commercial microwave oven (Sharp R-5975). Fixatives used were: 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer, pH 7.2 and 1% osmium tetroxide in veronal/acetate buffer, pH 7.2. Conventional fixations with glutaraldehyde/osmium were compared with microwave fixations. Examinations of thin sections showed that microwave fixation (glutaraldehyde or sequential aldehyde/osmium) is an attractive and rapid alternative method for processing plant tissues for electron microscopy. The optimal conditions found were: microwave oven at power level 50 W, 6.5 ml of fixative solution, irradiation times between 32-34 s, final temperature between 40 degrees C and 47 degrees C.  相似文献   

17.
N. J. Chaffey  N. Harris 《Planta》1985,165(2):185-190
Plasmatubules are tubular evaginations of the plasmalemma associated with sites where high solute flux occurs between apoplast and symplast. Plasmatubules of the scutellar epithelial cells of germinating barley (Hordeum vulgare L.) have been examined following a variety of fixation methods. Of the aqueous fixations, primary aldehyde fixation with osmium post-fixation and osmium as the primary fixative gave comparable images, whilst potassium permanganate resulted in some distortion of the tissue in general including dilation of the tubular evaginations of the plasmalemma. Freeze-fixation and substitution with acetone and acetone-osmium gave images of the plasmalemma comparable to those obtained by the aqueous aldehyde and osmium methods. The similarity of structure with aldehyde or osmium and freezing as the primary fixation is taken to indicate that plasmatubules are real and not artefacts resulting from the fixation procedure.  相似文献   

18.
Three types of membrane interactions were studied in three exocrine systems (the acinar cells of the rat parotid, rat lacrimal gland, and guinea pig pancrease) by freeze- fracture and thin-section electron microscopy: exocytosis, induced in vivo by specific pharmacological stimulations; the mutual apposition of secretory granule membranes in the intact cell; membrane appositions induced in vitro by centrifugation of the isolated granules. In all three glandular cells, the distribution of intramembrane particles (IMP) on the fracture faces of the luminal plasmagranule membrane particles (IMP) on the fracture faces of the lumenal plasmalemma appeared random before stimulation. However, after injection of secretagogues, IMP were rapidly clearly from the areas of granule- plasmalemma apposition in the parotid cells and, especially, in lacrimocytes. In the latter, the cleared areas appeared as large bulges toward the lumen, whereas in the parotid they were less pronounced. Exocytotic openings were usually large and the fracture faces of their rims were covered with IMP. In contrast, in stimulated pancreatic acinar cells, the IMP distribution remained apparently random after stimulation. Exocytoses were established through the formation of narrown necks, and no images which might correspond to early stages of membrane fusion were revealed. Within the cytoplasm of parotid and lacrimal cells (but not in the pancreas), both at rest and after stimulation, secretion granules were often closely apposed by means of flat, circular areas, also devoid of IMP. In thin sections, the images corresponding to IMP-free areas were close granule-granule and granule-plasmalemma appositions, sometimes with focal merging of the membrane outer layers to yield pentalaminar structures. Isolated secretion granules were forced together in vitro by centrifugation. Under these conditions, increasing the centrifugal force from 1,600 to 50,000 g for 10 min resulted in a progressive, statistically significant increase of the frequency of IMP-free flat appositions between parotid granules. In contrast, no such areas were seen between freeze-fractured pancreatic granules, although some focal pentalaminar appositions appeared in section after centrifugation at 50 and 100,000 g for 10 min. On the basis of the observation that, in secretory cells, IMP clearing always develops in deformed membrane areas (bulges, depressions, flat areas), it is suggested that it might result from the forced mechanical apposition of the interacting membranes. This might be a preliminary process not sufficient to initiate fusion. In the pancreas, IMP clearing could occur over surface areas too small to be detected. In stimulated parotid and lacrimal glands they were exceptional. These structures were either attached at the sites of continuity between granule and plasma membranes, or free in the acinar lumen, with a preferential location within exocytotic pockets or in their proximity. Experiments designed to investigate the nature of these blisters and vesicles revealed that they probably arise artifactually during glutaraldehyde fixation. In fact, (a) they were large and numerous in poorly fixed samples but were never observed in thin sections of specimens fixed in one step with glutaraldehyde and OsO(4); and (b) no increase in concentration of phospholipids was observed in the parotid saliva and pancreatic juice after stimulation of protein discharge, as was to be expected if release of membrane material were occurring after exocytosis.  相似文献   

19.
This paper deals with the application of the osmium tetroxide fixation followed by p-phenylenediamine treatment to salivary gland cells from Chironomus larvae. After this procedure, cytoplasm, nucleoli and Balbiani rings show a high degree of staining both in light and electron microscopy, while chromatin remains unstained. Ethanol fixation followed by osmium tetroxide/p-phenylenediamine does not modify the above mentioned staining pattern. Under these conditions, extractive procedures for lipids do not affect the osmiophilia of nucleoli and Balbiani rings, while RNase or trichloroacetic acid treatment decreaes the staining degree of these structures. In osmium tetroxide/p-phenylenediamine treated salivary glands, the highest contrast within nuclei is seen to occur in the pars granulosa from normal or segregated nucleoli, as well as in Balbiani ring granules, which appear either as hollow granules or with a bipartite or horseshoe-like structure.  相似文献   

20.
Seedlings of Triticum aestivum L. cv. Lennox were grown in different environments to obtain different hardiness. Pieces of laminae and leaf bases were slowly cooled to sub-zero temperatures and the damage caused was assessed by an ion-leakage method. Comparable pieces of tissue were slowly cooled to temperatures between 2° and-14°C and were then freeze-fixed and freeze-etched. Membranes generally retained their lamellar structures indicated by the abundance of typical membrane fracture faces in all treatments, and some membrane fracture faces had patches which lacked the usual scattering of intramembranous particles (IMP). These IMP-free areas were present in the plasma membrane of tissues given a damaging freezing treatment, but were absent from the plasma membrane of room-temperature controls, of supercooled tissues, and of tissues given a non-damaging freezing treatment. The frequency of IMP-free areas and the proportion of the plasma membrane affected increased with increasing damage. In the most damaged tissue (79% damage; leaf bases exposed to-8°C), 20% of the plasma membrane was IMP-free. The frequencies of IMP at a distance from the IMP-free areas were unaffected by freezing treatments. There was a patchy distribution of IMP in other membranes (nuclear envelope, tonoplast, thylakoids, chloroplast envelope), but only in the nuclear envelope did it appear possible that their occurrence coincided with damage. The IMP-free areas of several membranes were sometimes associated together in stacks. Such membranes lay both to the outside and inside of the plasma membrane, indicating that at least some of the adjacent membrane fragments arose as a result of membrane reorganization induced by the damaging treatment. Occasional views of folded IMP-free plasma membrane tended to confirm this conclusion. The following hypothesis is advanced to explain the damage induced by extracellular freezing. Areas of plasma membrane become free of IMP, probably as a result of the freezing-induced cellular dehydration. The lipids in these IMP-free patches may be in the fluid rather than the gel phase. The formation of these IMP-free patches, especially in the plasma membrane, initiates or involves proliferation and possibly fusion of membranes, and during or following this process, the cells become leaky.Abbreviations EF exoplasmatic fracture face - IMP intramembranous particles - PF protoplasmatic fracture face  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号