首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
Angiogenesis requires the development of a hierarchically branched network of vessels, which undergoes radial expansion and anastomosis to form a close circuit. Branching is achieved by coordinated behavior of endothelial cells that organize into leading “tip” cells and trailing “stalk” cells. Such organization is under control of the Dll4-Notch signaling pathway, which sets a hierarchy in receptiveness of cells to VEGF-A. Recent studies have shed light on a control of the Notch pathway by basement membrane proteins and integrin signaling, disclosing that extracellular matrix exerts active control on vascular branching morphogenesis. We will survey in the present review how extracellular matrix is a multifaceted substrate, which behind a classical structural role hides a powerful conductor function to shape the branching pattern of vessels.  相似文献   

2.
Within the epidermis and dermis of the skin, cells secrete and are surrounded by the extracellular matrix(ECM), which provides structural and biochemical support. The ECM of the epidermis is the basement membrane, and collagen and other dermal components constitute the ECM of the dermis. There is significant variation in the composition of the ECM of the epidermis and dermis, which can affect "cell to cell" and "cell to ECM" interactions. These interactions, in turn, can influence biological responses, aging, and wound healing; abnormal ECM signaling likely contributes toskin diseases. Thus, strategies for manipulating cellECM interactions are critical for treating wounds and a variety of skin diseases. Many of these strategies focus on epidermal stem cells, which reside in a unique niche in which the ECM is the most important component; interactions between the ECM and epidermal stem cells play a major role in regulating stem cell fate. As they constitute a major portion of the ECM, it is likely that integrins and type Ⅳ collagens are important in stem cell regulation and maintenance. In this review, we highlight recent research-including our previous work-exploring the role that the ECM and its associated components play in shaping the epidermal stem cell niche.  相似文献   

3.
We performed a high-throughput whole-genome RNAi screen to identify novel inhibitors of ciliogenesis in normal and basal breast cancer cells. Our screen uncovered a previously undisclosed, extensive network of genes linking integrin signaling and cellular adhesion to the extracellular matrix (ECM) with inhibition of ciliation in both normal and cancer cells. Surprisingly, a cohort of genes encoding ECM proteins was also identified. We characterized several ciliation inhibitory genes and showed that their silencing was accompanied by altered cytoskeletal organization and induction of ciliation, which restricts cell growth and migration in normal and breast cancer cells. Conversely, supplying an integrin ligand, vitronectin, to the ECM rescued the enhanced ciliation observed on silencing this gene. Aberrant ciliation could also be suppressed through hyperactivation of the YAP/TAZ pathway, indicating a potential mechanistic basis for our findings. Our findings suggest an unanticipated reciprocal relationship between ciliation and cellular adhesion to the ECM and provide a resource that could vastly expand our understanding of controls involving “outside-in” and “inside-out” signaling that restrain cilium assembly.  相似文献   

4.
Xi C  Wu J 《PloS one》2010,5(10):e13355

Background

Signaling by extracellular adenosine 5′-triphosphase (eATP) is very common for cell-to-cell communication in many basic patho-physiological development processes. Rapid release of ATP into the extracellular environment from distressed or injured eukaryotic cells due to pathogens or other etiological factors can serve as a “danger signal”, activating host innate immunity. However, little is known about how or whether pathogenic bacteria respond to this “danger signal”.

Methods and Principal Findings

Here we report that extracellular dATP/ATP can stimulate bacterial adhesion and biofilm formation via increased cell lysis and extracellular DNA (eDNA) release. We demonstrate that extracellular dATP/ATP also stimulates bacterial adherence in vitro to human bronchial epithelial cells.

Conclusions and Significance

These data suggest that bacteria may sense extracellular dATP/ATP as a signal of “danger” and form biofilms to protect them from host innate immunity. This study reveals a very important and unrecognized phenomenon that both bacteria and host cells could respond to a common important signal molecule in a race to adapt to the presence of one another. We propose that extracellular dATP/ATP functions as an “inter-domain” warning signal that serves to induce protective measures in both Bacterial and Eukaryotic cells.  相似文献   

5.
Integrins are large, membrane-spanning, heterodimeric proteins that are essential for a metazoan existence. All members of the integrin family adopt a shape that resembles a large “head” on two “legs,” with the head containing the sites for ligand binding and subunit association. Most of the receptor dimer is extracellular, but both subunits traverse the plasma membrane and terminate in short cytoplasmic domains. These domains initiate the assembly of large signaling complexes and thereby bridge the extracellular matrix to the intracellular cytoskeleton. To allow cells to sample and respond to a dynamic pericellular environment, integrins have evolved a highly responsive receptor activation mechanism that is regulated primarily by changes in tertiary and quaternary structure. This review summarizes recent progress in the structural and molecular functional studies of this important class of adhesion receptor.The name “integrin” was suggested for an integral membrane protein complex first characterized in 1986 (Tamkun et al. 1986). The name was devised because the protein identified linked the extracellular matrix to the cytoskeleton (early developments in this field have been well described [Hynes 2004]). In the 25 years since that first characterization, a vast amount of work has been performed, with consequent increased understanding. The essential role of integrins in tissue organization and cell development, their signal transduction mechanisms (from outside to in and inside to out!), and their potential as therapeutic targets is now established. In this article, we provide an overview of the structure of integrins, the conformational changes that determine activation state, and the mechanisms of ligand binding.  相似文献   

6.
Nodal Morphogens     
Nodal signals belong to the TGF-β superfamily and are essential for the induction of mesoderm and endoderm and the determination of the left–right axis. Nodal signals can act as morphogens—they have concentration-dependent effects and can act at a distance from their source of production. Nodal and its feedback inhibitor Lefty form an activator/inhibitor pair that behaves similarly to postulated reaction–diffusion models of tissue patterning. Nodal morphogen activity is also regulated by microRNAs, convertases, TGF-β signals, coreceptors, and trafficking factors. This article describes how Nodal morphogens pattern embryonic fields and discusses how Nodal morphogen signaling is modulated.In his 1901 book “Regeneration,” Thomas Hunt Morgan speculated that “if we suppose the materials or structures that are characteristic of the vegetative half are gradually distributed from the vegetative to the animal half in decreasing amounts, then any piece of the egg will contain more of these things at one pole than the other” and “gastrulation depends on the relative amounts of the materials in the different parts of the blastula” (Morgan 1901). Although Morgan’s speculations referred to the sea urchin embryo, they foretold our current understanding of morphogen gradients in frog and fish development. Morgan’s “materials,” “structures,” and “things” are the Nodal signals that create a vegetal-to-animal activity gradient to regulate germ layer formation and patterning. This article discusses how Nodal signaling provides positional information to fields of cells. I first portray the components of the signaling pathway and describe the role of Nodal signals in mesendoderm induction and left–right axis specification. I then discuss how Nodal morphogen gradients are thought to be generated, modulated, and interpreted.  相似文献   

7.
Huang T  Chen L  Cai YD  Chou KC 《PloS one》2011,6(9):e25297
Given a regulatory pathway system consisting of a set of proteins, can we predict which pathway class it belongs to? Such a problem is closely related to the biological function of the pathway in cells and hence is quite fundamental and essential in systems biology and proteomics. This is also an extremely difficult and challenging problem due to its complexity. To address this problem, a novel approach was developed that can be used to predict query pathways among the following six functional categories: (i) “Metabolism”, (ii) “Genetic Information Processing”, (iii) “Environmental Information Processing”, (iv) “Cellular Processes”, (v) “Organismal Systems”, and (vi) “Human Diseases”. The prediction method was established trough the following procedures: (i) according to the general form of pseudo amino acid composition (PseAAC), each of the pathways concerned is formulated as a 5570-D (dimensional) vector; (ii) each of components in the 5570-D vector was derived by a series of feature extractions from the pathway system according to its graphic property, biochemical and physicochemical property, as well as functional property; (iii) the minimum redundancy maximum relevance (mRMR) method was adopted to operate the prediction. A cross-validation by the jackknife test on a benchmark dataset consisting of 146 regulatory pathways indicated that an overall success rate of 78.8% was achieved by our method in identifying query pathways among the above six classes, indicating the outcome is quite promising and encouraging. To the best of our knowledge, the current study represents the first effort in attempting to identity the type of a pathway system or its biological function. It is anticipated that our report may stimulate a series of follow-up investigations in this new and challenging area.  相似文献   

8.
9.
Platelet-derived growth factor (PDGF), a potent chemoattractant, induces cell migration via the MAPK and PI3K/Akt pathways. However, the downstream mediators are still elusive. In particular, the role of extracellular mediators is largely unknown. In this study, we identified the matricellular protein Cyr61, which is de novo synthesized in response to PDGF stimulation, as the key downstream mediator of the ERK and JNK pathways, independent of the p38 MAPK and AKT pathways, and, thereby, it mediates PDGF-induced smooth muscle cell migration but not proliferation. Our results revealed that, when Cyr61 was newly synthesized by PDGF, it was promptly translocated to the extracellular matrix and physically interacted with the plasma membrane integrins α6β1 and αvβ3. We further demonstrate that Cyr61 and integrins are integral components of the PDGF signaling pathway via an “outside-in” signaling route to activate intracellular focal adhesion kinase (FAK), leading to cell migration. Therefore, this study provides the first evidence that the PDGF-induced endogenous extracellular matrix component Cyr61 is a key mediator in modulating cell migration by connecting intracellular PDGF-ERK and JNK signals with integrin/FAK signaling. Therefore, extracellular Cyr61 convergence with growth factor signaling and integrin/FAK signaling is a new concept of growth factor-induced cell migration. The discovered signaling pathway may represent an important therapeutic target in growth factor-mediated cell migration/invasion-related vascular diseases and tumorigenesis.  相似文献   

10.
11.
The physical properties of the extracellular matrix (ECM) regulate the behavior of several cell types; yet, mechanisms by which cells recognize and respond to changes in these properties are not clear. For example, breast epithelial cells undergo ductal morphogenesis only when cultured in a compliant collagen matrix, but not when the tension of the matrix is increased by loading collagen gels or by increasing collagen density. We report that the actin-binding protein filamin A (FLNa) is necessary for cells to contract collagen gels, and pull on collagen fibrils, which leads to collagen remodeling and morphogenesis in compliant, low-density gels. In stiffer, high-density gels, cells are not able to contract and remodel the matrix, and morphogenesis does not occur. However, increased FLNa-β1 integrin interactions rescue gel contraction and remodeling in high-density gels, resulting in branching morphogenesis. These results suggest morphogenesis can be “tuned” by the balance between cell-generated contractility and opposing matrix stiffness. Our findings support a role for FLNa-β1 integrin as a mechanosensitive complex that bidirectionally senses the tension of the matrix and, in turn, regulates cellular contractility and response to this matrix tension.  相似文献   

12.
Finding unique peptides to target specific biological surfaces is crucial to basic research and technology development, though methods based on biological arrays or large libraries limit the speed and ease with which these necessary compounds can be found. We reasoned that because biological surfaces, such as cell surfaces, mineralized tissues, and various extracellular matrices have unique molecular compositions, they present unique physicochemical signatures to the surrounding medium which could be probed by peptides with appropriately corresponding physicochemical properties. To test this hypothesis, a naïve pilot library of 36 peptides, varying in their hydrophobicity and charge, was arranged in a two-dimensional matrix and screened against various biological surfaces. While the number of peptides in the matrix library was very small, we obtained “hits” against all biological surfaces probed. Sequence refinement of the “hits” led to peptides with markedly higher specificity and binding activity against screened biological surfaces. Genetic studies revealed that peptide binding to bacteria was mediated, at least in some cases, by specific cell-surface molecules, while examination of human tooth sections showed that this method can be used to derive peptides with highly specific binding to human tissue.  相似文献   

13.
Toll-like receptor (TLR) signaling induces a rapid reorganization of the actin cytoskeleton in cultured mouse dendritic cells (DC), leading to enhanced antigen endocytosis and a concomitant loss of filamentous actin–rich podosomes. We show that as podosomes are lost, TLR signaling induces prominent focal contacts and a transient reduction in DC migratory capacity in vitro. We further show that podosomes in mouse DC are foci of pronounced gelatinase activity, dependent on the enzyme membrane type I matrix metalloprotease (MT1-MMP), and that DC transiently lose the ability to degrade the extracellular matrix after TLR signaling. Surprisingly, MMP inhibitors block TLR signaling–induced podosome disassembly, although stimulated endocytosis is unaffected, which demonstrates that the two phenomena are not obligatorily coupled. Podosome disassembly caused by TLR signaling occurs normally in DC lacking MT1-MMP, and instead requires the tumor necrosis factor α–converting enzyme ADAM17 (a disintegrin and metalloprotease 17), which demonstrates a novel role for this “sheddase” in regulating an actin-based structure.  相似文献   

14.
本文以“中农一号”、“华杂13”、“中农翅鲍”和“CCMSSC 00488”4个白灵侧耳菌株为材料,通过测定高温胁迫下菌丝体内硫代巴比妥酸反应物(thiobarbituric acid-reactive substances,TBARS)和蛋白质羰基(protein carbonyl,PCO)含量,观察适温培养和高温胁迫后恢复培养时菌落的生长速率、生长势和菌丝形态特征,研究不同白灵侧耳栽培种质对高温胁迫的反应。研究表明,白灵侧耳不同栽培种质对高温胁迫的反应在氧化损伤程度、菌落形态和菌丝形态特征上都有变化,不同材料的高温伤害程度有着较显著的差异。4个材料高温胁迫条件下TBARS和PCO含量均显著升高,但是升高程度不同,按照TBARS和PCO含量多少排序,依次为CCMSSC 00488>华杂13>中农翅鲍>中农一号。高温胁迫处理后恢复生长需要的时间依次为:CCMSSC 00488>华杂13>中农翅鲍、中农一号;菌落生长势:中农一号>中农翅鲍=华杂13>CCMSSC 00488;菌丝形态特征:菌丝表面增长率、菌丝顶端细胞表面积、菌丝直径和菌丝体分支频率均显著降低,但降低程度以中农一号为最大。菌丝体分支频率与菌落生长势相对应。  相似文献   

15.
Many plants release airborne volatile compounds in response to wounding due to pathogenic assault. These compounds serve as plant defenses and are involved in plant signaling. Here, we study the effects of pectin methylesterase (PME)-generated methanol release from wounded plants (“emitters”) on the defensive reactions of neighboring “receiver” plants. Plant leaf wounding resulted in the synthesis of PME and a spike in methanol released into the air. Gaseous methanol or vapors from wounded PME-transgenic plants induced resistance to the bacterial pathogen Ralstonia solanacearum in the leaves of non-wounded neighboring “receiver” plants. In experiments with different volatile organic compounds, gaseous methanol was the only airborne factor that could induce antibacterial resistance in neighboring plants. In an effort to understand the mechanisms by which methanol stimulates the antibacterial resistance of “receiver” plants, we constructed forward and reverse suppression subtractive hybridization cDNA libraries from Nicotiana benthamiana plants exposed to methanol. We identified multiple methanol-inducible genes (MIGs), most of which are involved in defense or cell-to-cell trafficking. We then isolated the most affected genes for further analysis: β-1,3-glucanase (BG), a previously unidentified gene (MIG-21), and non-cell-autonomous pathway protein (NCAPP). Experiments with Tobacco mosaic virus (TMV) and a vector encoding two tandem copies of green fluorescent protein as a tracer of cell-to-cell movement showed the increased gating capacity of plasmodesmata in the presence of BG, MIG-21, and NCAPP. The increased gating capacity is accompanied by enhanced TMV reproduction in the “receivers”. Overall, our data indicate that methanol emitted by a wounded plant acts as a signal that enhances antibacterial resistance and facilitates viral spread in neighboring plants.  相似文献   

16.
The amphibian embryo provides a powerful model system to study morphogen gradients because of the ease with which it is possible to manipulate the early embryo. In particular, it is possible to introduce exogenous sources of morphogen, to follow the progression of the signal, to monitor the cellular response to induction, and to up- or down-regulate molecules that are involved in all aspects of long-range signaling. In this article, I discuss the evidence that gradients exist in the early amphibian embryo, the way in which morphogens might traverse a field of cells, and the way in which different concentrations of morphogens might be interpreted to activate the expression of different genes.The idea that a morphogen gradient activates the expression of different genes at different concentrations was perhaps stated most clearly by Wolpert''s French flag model, in which a graded signal activates the expression of “blue,” “white,” and “red” genes at high, intermediate, and low concentrations (Wolpert 1969). Since that original work, great progress has been made in identifying morphogens and their target genes and it is now clear that the spatial pattern of gene expression in the developing embryo is frequently established by graded signals of this sort. But many questions remain, and in particular little is known about how gradients are established in the embryo with the necessary precision and how cells interpret different concentrations of morphogen to activate different genes. I discuss these issues with respect to mesoderm induction in the developing amphibian embryo.  相似文献   

17.
18.
Positive feedback plays a key role in the ability of signaling molecules to form highly localized clusters in the membrane or cytosol of cells. Such clustering can occur in the absence of localizing mechanisms such as pre-existing spatial cues, diffusional barriers, or molecular cross-linking. What prevents positive feedback from amplifying inevitable biological noise when an un-clustered “off” state is desired? And, what limits the spread of clusters when an “on” state is desired? Here, we show that a minimal positive feedback circuit provides the general principle for both suppressing and amplifying noise: below a critical density of signaling molecules, clustering switches off; above this threshold, highly localized clusters are recurrently generated. Clustering occurs only in the stochastic regime, suggesting that finite sizes of molecular populations cannot be ignored in signal transduction networks. The emergence of a dominant cluster for finite numbers of molecules is partly a phenomenon of random sampling, analogous to the fixation or loss of neutral mutations in finite populations. We refer to our model as the “neutral drift polarity model.” Regulating the density of signaling molecules provides a simple mechanism for a positive feedback circuit to robustly switch between clustered and un-clustered states. The intrinsic ability of positive feedback both to create and suppress clustering is a general mechanism that could operate within diverse biological networks to create dynamic spatial organization.  相似文献   

19.
We have previously demonstrated that loss of stromal caveolin-1 (Cav-1) in cancer-associated fibroblasts is a strong and independent predictor of poor clinical outcome in human breast cancer patients. However, the signaling mechanism(s) by which Cav-1 downregulation leads to this tumor-promoting microenvironment are not well understood. To address this issue, we performed an unbiased comparative proteomic analysis of wild-type (WT) and Cav-1-/- null mammary stromal fibroblasts (MSFs). Our results show that plasminogen activator inhibitor type 1 and type 2 (PAI-1 and PAI-2) expression is significantly increased in Cav-1-/- MSFs. To establish a direct cause-effect relationship, we next generated immortalized human fibroblast lines stably overexpressing either PAI-1 or PAI-2. Importantly, PAI-1/2(+) fibroblasts promote the growth of MDA-MB-231 tumors (a human breast cancer cell line) in a murine xenograft model, without any increases in angiogenesis. Similarly, PAI-1/2(+) fibroblasts stimulate experimental metastasis of MDA-MB-231 cells using an in vivo lung colonization assay. Further mechanistic studies revealed that fibroblasts overexpressing PAI-1 or PAI-2 display increased autophagy (“self-eating”) and are sufficient to induce mitochondrial biogenesis/activity in adjacent cancer cells, in co-culture experiments. In xenografts, PAI-1/2(+) fibroblasts significantly reduce the apoptosis of MDA-MB-231 tumor cells. The current study provides further support for the “Autophagic Tumor Stroma Model of Cancer” and identifies a novel “extracellular matrix”-based signaling mechanism, by which a loss of stromal Cav-1 generates a metastatic phenotype. Thus, the secretion and remodeling of extracellular matrix components (such as PAI-1/2) can directly regulate both (1) autophagy in stromal fibroblasts and (2) epithelial tumor cell mitochondrial metabolism.  相似文献   

20.

Purpose

Microglia represent the primary resident immune cells in the CNS, and have been implicated in the pathology of neurodegenerative diseases. Under basal or “resting” conditions, microglia possess ramified morphologies and exhibit dynamic surveying movements in their processes. Despite the prominence of this phenomenon, the function and regulation of microglial morphology and dynamic behavior are incompletely understood. We investigate here whether and how neurotransmission regulates “resting” microglial morphology and behavior.

Methods

We employed an ex vivo mouse retinal explant system in which endogenous neurotransmission and dynamic microglial behavior are present. We utilized live-cell time-lapse confocal imaging to study the morphology and behavior of GFP-labeled retinal microglia in response to neurotransmitter agonists and antagonists. Patch clamp electrophysiology and immunohistochemical localization of glutamate receptors were also used to investigate direct-versus-indirect effects of neurotransmission by microglia.

Results

Retinal microglial morphology and dynamic behavior were not cell-autonomously regulated but are instead modulated by endogenous neurotransmission. Morphological parameters and process motility were differentially regulated by different modes of neurotransmission and were increased by ionotropic glutamatergic neurotransmission and decreased by ionotropic GABAergic neurotransmission. These neurotransmitter influences on retinal microglia were however unlikely to be directly mediated; local applications of neurotransmitters were unable to elicit electrical responses on microglia patch-clamp recordings and ionotropic glutamatergic receptors were not located on microglial cell bodies or processes by immunofluorescent labeling. Instead, these influences were mediated indirectly via extracellular ATP, released in response to glutamatergic neurotransmission through probenecid-sensitive pannexin hemichannels.

Conclusions

Our results demonstrate that neurotransmission plays an endogenous role in regulating the morphology and behavior of “resting” microglia in the retina. These findings illustrate a mode of constitutive signaling between the neural and immune compartments of the CNS through which immune cells may be regulated in concert with levels of neural activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号