首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Key message

Diploid strawberry and potato transformed with a transposon tagging construct exhibited either global (strawberry) or local transposition (potato). An activation tagged, compact-sized strawberry mutant overexpressed the gene adjacent to Ds.

Abstract

As major fruit and vegetable crops, respectively, strawberry and potato are among the first horticultural crops with draft genome sequences. To study gene function, we examined transposon-tagged mutant strategies in model populations for both species, Fragaria vesca and Solanum tuberosum Group Phureja, using the same Activation/Dissociation (Ac/Ds) construct. Early somatic transposition during tissue culture occurred at a frequency of 18.5 % in strawberry but not in potato transformants. Green fluorescent protein under a monocot promoter was a more reliable selectable marker in strawberry compared to potato. BASTA (gluphosinate herbicide) resistance served as an effective selectable marker for both species (80 and 85 % reliable in strawberry and potato, respectively), although the effective concentration differed (0.5 % for strawberry and 0.03 % for potato). Transposons preferentially reinserted within genes (exons and introns) in both species. Real-time quantitative PCR revealed enhanced gene expression (670 and 298-fold expression compared to wild type in petiole and leaf tissue, respectively) for an activation tagged strawberry mutant with Ds inserted about 0.6 kb upstream from a gene coding for an epidermis-specific secreted glycoprotein EP1. Our data also suggested that endopolyploid (diploid) cells occurring in leaf explants of monoploid potato were the favored targets of T-DNA integration during transformation. Mutants obtained in these studies provide a useful resource for future genetic studies.  相似文献   

2.

Key message

This study established an efficient method of regenerating plants of Ficus lyrata and producing purple-leaved F. lyrata plants through genetic transformation using a VvMybA1 gene of grapevine.

Abstract

Ficus lyrata, a species with unique violin- or guitar-shaped leaves, was regenerated from leaf-derived calli cultured on Murashige and Skoog (MS) basal medium supplemented with 4.5 μM N-phenyl-N’-1, 2, 3-thiadiazol-5-yl urea (TDZ) and 0.5 μM α-naphthalene acetic acid (NAA). Leaf discs were inoculated with Agrobacterium tumefaciens strain EHA 105 harboring a binary vector DEAT that contains the VvMybA1 gene and neomycin phosphotransferase (npt II) gene and subsequently cultured on the established regeneration medium supplemented with 100 mg l?1 kanamycin. Results showed that 87.5 % of the leaf discs produced kanamycin-resistant callus, and 68.8 % of them produced adventitious shoots. Transgenic plants with three leaf colors including green, green-purple, and purple were produced. Regular and quantitative real-time PCR analyses confirmed the integration of transgenes into the host genome. Semi-quantitative RT-PCR analysis indicated that the VvMybA1 gene was responsible for the purple-colored phenotype. Purple-leaved plants with strong color stability grew vigorously in a greenhouse. This study illustrated the feasibility of using a genetically engineered VvMybA1 gene for drastic modification of leaf color of an important woody ornamental plant.  相似文献   

3.
4.

Key message

Simple sequence repeat motifs were mined from the genome and EST sequences of Morus notabilis and archived in MulSatDB. Bioinformatics tools were integrated with the database for the analysis of genomic datasets.

Abstract

Mulberry is a crop of economic importance in sericulture, which shapes the lives of millions of rural people among different Eurasian and Latin American countries. Limited availability of genomic resources has constrained the molecular breeding efforts in mulberry, a poorly studied crop. Microsatellite or simple sequence repeat (SSR) has revolutionized the plant breeding and is used in linkage mapping, association studies, diversity, and parentage analysis, etc. Recent availability of mulberry whole genome assembly provided an opportunity for the development of mulberry-specific DNA markers. In this study, we mined a total of 217,312 microsatellites from whole genome and 961 microsatellites from EST sequences of Morus notabilis. Mono-repeats were predominant among both whole genome and EST sequences. The SSR containing EST sequences were functionally annotated, and SSRs mined from whole genome were mapped on chromosomes of the phylogenetically related genus—Fragaria vesca, to aid the selection of markers based on the function and location. All the mined markers were archived in the mulberry microsatellite database (MulSatDB), and the markers can be retrieved based on different criteria like marker location, repeat kind, motif type and size. Primer3plus and CMap tools are integrated with the database to design primers for PCR amplification and to visualize markers on F. vesca chromosomes, respectively. A blast tool is also integrated to collate new markers with the database. MulSatDB is the first and complete destination for mulberry researchers to browse SSR markers, design primers, and locate markers on strawberry chromosomes. MulSatDB is freely accessible at http://btismysore.in/mulsatdb.  相似文献   

5.
Cu(I)-mediated [3+2]cycloaddition between azides and alkynes has evolved into a valuable bioconjugation tool in radiopharmaceutical chemistry. We have developed a simple, convenient and reliable radiosynthesis of 4-[18F]fluoro-N-methyl-N-(propyl-2-yn-1-yl)benzenesulfonamide ([ 18 F]F-SA) as a novel aromatic sulfonamide-based click chemistry building block. [ 18 F]F-SA could be prepared in a remotely controlled synthesis unit in 32 ± 5 % decay-corrected radiochemical yield in a total synthesis time of 80 min. The determined lipophilicity of [ 18 F]F-SA (logP = 1.7) allows handling of the radiotracer in aqueous solutions. The versatility of [ 18 F]F-SA as click chemistry building block was demonstrated by the labeling of a model peptide (phosphopeptide), protein (HSA), and oligonucleotide (L-RNA). The obtained radiochemical yields were 77 % (phosphopeptide), 55–60 % (HSA), and 25 % (L-RNA), respectively. Despite the recent emergence of a multitude of highly innovative novel bioconjugation methods for 18F labeling of biopolymers, Cu(I)-mediated click chemistry with [ 18 F]F-SA represents a reliable, robust and efficient radiolabeling technique for peptides, proteins, and oligonucleotides with the short-lived positron emitter 18F.  相似文献   

6.

Key message

Agrobacterium -mediated transformation system for okra using embryos was devised and the transgenic Bt plants showed resistance to the target pest, okra shoot, and fruit borer ( Earias vittella ).

Abstract

Okra is an important vegetable crop and progress in genetic improvement via genetic transformation has been impeded by its recalcitrant nature. In this paper, we describe a procedure using embryo explants for Agrobacterium-mediated transformation and tissue culture-based plant regeneration for efficient genetic transformation of okra. Twenty-one transgenic okra lines expressing the Bacillus thuringiensis gene cry1Ac were generated from five transformation experiments. Molecular analysis (PCR and Southern) confirmed the presence of the transgene and double-antibody sandwich ELISA analysis revealed Cry1Ac protein expression in the transgenic plants. All 21 transgenic plants were phenotypically normal and fertile. T1 generation plants from these lines were used in segregation analysis of the transgene. Ten transgenic lines were selected randomly for Southern hybridization and the results confirmed the presence of transgene integration into the genome. Normal Mendelian inheritance (3:1) of cry1Ac gene was observed in 12 lines out of the 21 T0 lines. We selected 11 transgenic lines segregating in a 3:1 ratio for the presence of one transgene for insect bioassays using larvae of fruit and shoot borer (Earias vittella). Fruit from seven transgenic lines caused 100 % larval mortality. We demonstrate an efficient transformation system for okra which will accelerate the development of transgenic okra with novel agronomically useful traits.  相似文献   

7.
8.

Key message

Agrobacterium tumefaciens mediates high frequency of germline transformation of cotton meristem explants. The meristem transformation system we developed is rapid, high throughput and genotype-flexible.

Abstract

We have developed a high throughput cotton transformation system based on direct Agrobacterium inoculation of mechanically isolated meristem explants of cotton (Gossypium hirsutum L.). The explants were inoculated with a disarmed A. tumefaciens strain, AB33 harboring a 2 T-DNA binary vector pMON114908. This vector contained a gene of interest, an intron-disrupted β-glucuronidase gene in one T-DNA, and a selectable marker gene, aadA in the other T-DNA. Critical factors, such as method of co-culture, culture temperature during selection, composition of selection medium, and selection scheme were found to influence transformation frequency. The cycle time from initial inoculation to the transplanting of transgenic plants to soil was 7–8 weeks. Stable integration of transgenes and their transmission to progeny were confirmed by molecular and genetic analyses. Transgenes segregated in the expected Mendelian fashion in the T1 generation for most of the transgenic events. It was possible to recover marker-free events in the T1 generation when utilizing a binary vector that contained the selectable marker and gene of interest expression cassettes on independent T-DNAs. The procedure presented here has been used to regenerate thousands of independent transgenic events from multiple varieties with numerous constructs, and we believe it represents a major step forward in cotton transformation technology.  相似文献   

9.
10.
11.

Key message

An efficient mannose selection system was established for transformation of Indica cultivar IR58025B . Different selection pressures were required to achieve optimum transformation frequency for different PMI selectable marker cassettes.

Abstract

This study was conducted to establish an efficient transformation system for Indica rice, cultivar IR58025B. Four combinations of two promoters, rice Actin 1 and maize Ubiquitin 1, and two manA genes, native gene from E. coli (PMI-01) and synthetic maize codon-optimized gene (PMI-09) were compared under various concentrations of mannose. Different selection pressures were required for different gene cassettes to achieve corresponding optimum transformation frequency (TF). Higher TFs as 54 and 53 % were obtained when 5 g/L mannose was used for selection of prActin-PMI-01 cassette and 7.5 g/L mannose used for selection of prActin-PMI-09, respectively. TFs as 67 and 56 % were obtained when 7.5 and 15 g/L mannose were used for selection of prUbi-PMI-01 and prUbi-PMI-09, respectively. We conclude that higher TFs can be achieved for different gene cassettes when an optimum selection pressure is applied. By investigating the PMI expression level in transgenic calli and leaves, we found there was a significant positive correlation between the protein expression level and the optimal selection pressure. Higher optimal selection pressure is required for those constructs which confer higher expression of PMI protein. The single copy rate of those transgenic events for prActin-PMI-01 cassette is lower than that for other three cassettes. We speculate some of low copy events with low protein expression levels might not have been able to survive in the mannose selection.  相似文献   

12.
13.

Key message

Phytophthora infestans resistant somatic hybrids of S. × michoacanum (+) S. tuberosum and autofused 4 x S. × michoacanum were obtained. Our material is promising to introgress resistance from S. × michoacanum into cultivated potato background.

Abstract

Solanum × michoacanum (Bitter.) Rydb. (mch) is a wild diploid (2n = 2x = 24) potato species derived from spontaneous cross of S. bulbocastanum and S. pinnatisectum. This hybrid is a 1 EBN (endosperm balance number) species and can cross effectively only with other 1 EBN species. Plants of mch are resistant to Phytophthora infestans (Mont) de Bary. To introgress late blight resistance genes from mch into S. tuberosum (tbr), genepool somatic hybridization between mch and susceptible diploid potato clones (2n = 2x = 24) or potato cultivar Rywal (2n = 4x = 48) was performed. In total 18,775 calli were obtained from postfusion products from which 1,482 formed shoots. The Simple Sequence Repeat (SSR), Cleaved Amplified Polymorphic Sequences (CAPS) and Random Amplified Polymorphic DNA (RAPD) analyses confirmed hybrid nature of 228 plants and 116 autofused 4x mch. After evaluation of morphological features, flowering, pollen stainability, tuberization and ploidy level, 118 somatic hybrids and 116 autofused 4x mch were tested for late blight resistance using the detached leaf assay. After two seasons of testing three somatic hybrids and 109 4x mch were resistant. Resistant forms have adequate pollen stainability for use in crossing programme and are a promising material useful for introgression resistance from mch into the cultivated potato background.  相似文献   

14.
Meredith A. Lane 《Brittonia》1996,48(4):532-541
Gundlachia, a genus of shrubs occurring in the Caribbean islands, is treated as comprising two species, one of which has six varieties. Five new combinations are made: Gundlachia corymbosa var. apiculata (Britton & S. F. Blake) M. A. Lane, G. corymbosa var. compacta (Urb. & Ekman) M. A. Lane, G. corymbosa var. cubana (Britton & S. F. Blake) M. A. Lane, G. corymbosa var. foliosa (Britton & S. F. Blake) M. A. Lane, and G. corymbosa var. ocoana (Urb. & Ekman) M. A. Lane. Gundlachia is probably most closely related to Gymnosperma.  相似文献   

15.

Background and Aims

It was previously demonstrated that stolons of Fragaria vesca respond to patches of varying nutrient quality; however, the mechanism of patch-detection remained unknown. Here we provide support for a process by which F. vesca perceives nutrient-rich patches, consistent with nutrient foraging prior to rooting.

Methods

Volatile organic compounds (VOCs) emitted from unsterilized and sterilized field substrates were collected and analyzed by stir-bar headspace extraction gas chromatography-mass spectrometry using a method modified for soil and litter systems. Selected compounds were chosen to represent unsterilized and sterilized field substrates. These synthetic volatile compound mixtures were then applied to neutral substrate to test the ability of F. vesca to choose between unsterilized versus sterilized substrates.

Results

Primary stolons exhibited chemotropism towards unsterilized (natural) substrates and grew away from the sterilized volatile substrates when the alternate choice was a negative control. We conclude that the presence of carboxylic acids tends to stimulate stolon elongation and chemotropism while aldehydes, ketones and monoterpenes tend to suppress it.

Conclusions

We provide evidence that developing stolons of F. vesca forage for nutrient-rich patches via volatile cues similar to those emitted from the soil through microflora activity.
  相似文献   

16.

Key Message

The critical level for SO 2 susceptibility of Populus × canescens is approximately 1.2 μL L ?1 SO 2 . Both sulfite oxidation and sulfite reduction and assimilation contribute to SO 2 detoxification.

Abstract

In the present study, uptake, susceptibility and metabolism of SO2 were analyzed in the deciduous tree species poplar (Populus × canescens). A particular focus was on the significance of sulfite oxidase (SO) for sulfite detoxification, as SO has been characterized as a safety valve for SO2 detoxification in herbaceous plants. For this purpose, poplar plants were exposed to different levels of SO2 (0.65, 0.8, 1.0, 1.2 μL L?1) and were characterized by visible injuries and at the physiological level. Gas exchange parameters (stomatal conductance for water vapor, CO2 assimilation, SO2 uptake) of the shoots were compared with metabolite levels (sulfate, thiols) and enzyme activities [SO, adenosine 5′-phosphosulfate reductase (APR)] in expanding leaves (80–90 % expanded). The critical dosage of SO2 that confers injury to the leaves was 1.2 μL L?1 SO2. The observed increase in sulfur containing compounds (sulfate and thiols) in the expanding leaves strongly correlated with total SO2 uptake of the plant shoot, whereas SO2 uptake rate was strongly correlated with stomatal conductance for water vapor. Furthermore, exposure to high concentration of SO2 revealed channeling of sulfite through assimilatory sulfate reduction that contributes in addition to SO-mediated sulfite oxidation to sulfite detoxification in expanding leaves of this woody plant species.  相似文献   

17.

Key message

Ten QTL underlying the accumulation of Zn and Fe in the grain were mapped in a set of RILs bred from the cross Triticum spelta × T. aestivum . Five of these loci (two for Zn and three for Fe) were consistently detected across seven environments.

Abstract

The genetic basis of accumulation in the grain of Zn and Fe was investigated via QTL mapping in a recombinant inbred line (RIL) population bred from a cross between Triticum spelta and T. aestivum. The concentration of the two elements was measured from grain produced in three locations over two consecutive cropping seasons and from a greenhouse trial. The range in Zn and Fe concentration across the RILs was, respectively, 18.8–73.5 and 25.3–59.5 ppm, and the concentrations of the two elements were positively correlated with one another (rp =+0.79). Ten QTL (five each for Zn and Fe accumulation) were detected, mapping to seven different chromosomes. The chromosome 2B and 6A grain Zn QTL were consistently expressed across environments. The proportion of the phenotype explained (PVE) by QZn.bhu-2B was >16 %, and the locus was closely linked to the SNP marker 1101425|F|0, while QZn.bhu-6A (7.0 % PVE) was closely linked to DArT marker 3026160|F|0. Of the five Fe QTL detected, three, all mapping to chromosome 1A were detected in all seven environments. The PVE for QFe.bhu-3B was 26.0 %.  相似文献   

18.

Key message

The P SAG12 -ipt gene was transferred to miniature rose, as the first woody species, resulting in increased ethylene resistance due to specific up-regulation of the ipt gene under senescence promoting conditions.

Abstract

Transgenic plants of Rosa hybrida ‘Linda’ were obtained via transformation with Agrobacterium tumefaciens strain harboring the binary vector pSG529(+) containing the P SAG12 -ipt construct. A. tumefaciens strains AGL1, GV3850 and LBA4404 (containing P35S-INTGUS gene) were used for transformation of embryogenic callus, but transgenic shoots were obtained only when AGL1 was applied. The highest transformation frequency was 10 % and it was achieved when half MS medium was used for the dilution of overnight culture of Agrobacterium. Southern blot confirmed integration of 1–6 copies of the nptII gene into the rose genome in the tested lines. Four transgenic lines were obtained which were morphologically true-to-type and indistinguishable from Wt shoots while they were in in vitro cultures. Adventitious root induction was more difficult in transgenic shoots compared to the Wt shoots, however, one of the transgenic lines (line 6) was rooted and subsequently analyzed phenotypically. The ipt expression levels were determined in this line after exposure to exogenous ethylene (3.5 μl l?1) and/or darkness. Darkness resulted in twofold up-regulation of ipt expression, whereas darkness combined with ethylene caused eightfold up-regulation in line 6 compared to Wt plants. The transgenic line had significantly higher content of chlorophyll at the end of the treatment period compared to Wt plants.  相似文献   

19.
Five novel macrocyclic monoterpene O-glycosides, parkinsenes A–E (15), and eleven known phenolic metabolites including three 3-O-glycosylflavonols (68), five C-glycosylflavones (913), p-hydroxybenzoic acid (14), esculetin (15), and diosmetin (16) were isolated from the leaves and small twigs of Parkinsonia aculeata L. (Fabaceae). Their structures were established by chemical and spectroscopic analyses (UV, ESI–MS, and 1D/2D NMR). The investigated 80 % aqueous methanol extract (AME) showed significant analgesic, antipyretic, anti-inflammatory, hepatoprotective, hypoglycemic, hypocholesterolemic, and antioxidant activities in a dose-dependent manner using two different doses 250 and 500 mg/kg b. wt.  相似文献   

20.
Microbial transformation of 20(S)-protopanaxadiol (1) by Mucor racemosus AS 3.205 yielded two novel hydroperoxylated metabolites and three known hydroxylated metabolites. The structures of the metabolites were identified as 26-hydroxyl-20(S)-protopanaxadiol (2), 23,24-en-25-hydroxyl-20(S)-protopanaxadiol (3), 25,26-en-24(R)-hydroperoxyl-20(S)-protopanaxadiol (4), 23,24-en-25-hydroperoxyl-20(S)-protopanaxadiol (5), and 25-hydroxyl-20(S)-protopanaxadiol (6). 4 and 5 are new compounds. Metabolites 2, 4, and 5 showed the more potent inhibitory effects against DU-145 and PC-3 cell lines than the substrate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号