首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cytoplasmic free Ca2+ ([Ca2+]cyt) is essential for the contraction and relaxation of blood vessels. The role of plasma membrane Na+/Ca2+ exchange (NCX) activity in the regulation of vascular Ca2+ homeostasis was previously ascribed to the NCX1 protein. However, recent studies suggest that a relatively newly discovered K+-dependent Na+/Ca2+ exchanger, NCKX (gene family SLC24), is also present in vascular smooth muscle. The purpose of the present study was to identify the expression and function of NCKX in arteries. mRNA encoding NCKX3 and NCKX4 was demonstrated by RT-PCR and Northern blot in both rat mesenteric and aortic smooth muscle. NCXK3 and NCKX4 proteins were also demonstrated by immunoblot and immunofluorescence. After voltage-gated Ca2+ channels, store-operated Ca2+ channels, and Na+ pump were pharmacologically blocked, when the extracellular Na+ was replaced with Li+ (0 Na+) to induce reverse mode (Ca2+ entry) activity of Na+/Ca2+ exchangers, a large increase in [Ca2+]cyt signal was observed in primary cultured aortic smooth muscle cells. About one-half of this [Ca2+]cyt signal depended on the extracellular K+. In addition, after the activity of NCX was inhibited by KB-R7943, Na+ replacement-induced Ca2+ entry was absolutely dependent on extracellular K+. In arterial rings denuded of endothelium, a significant fraction of the phenylephrine-induced and nifedipine-resistant aortic or mesenteric contraction could be prevented by removal of extracellular K+. Taken together, these data provide strong evidence for the expression of NCKX proteins in the vascular smooth muscle and their novel role in mediating agonist-stimulated [Ca2+]cyt and thereby vascular tone.  相似文献   

2.
The superfamily of cation/Ca(2+) exchangers includes both Na(+)/Ca(2+) exchangers (NCXs) and Na(+)/Ca(2+),K(+) exchangers (NCKX) as the families characterized in most detail. These Ca(2+) transporters have prominent physiological roles. For example, NCX and NCKX are important in regulation of cardiac contractility and visual processes, respectively. The superfamily also has a large number of members of the YrbG family expressed in prokaryotes. However, no members of this family have been functionally expressed, and their transport properties are unknown. We have expressed, purified, and characterized a member of the YrbG family, MaX1 from Methanosarcina acetivorans. MaX1 catalyzes Ca(2+) uptake into membrane vesicles. The Ca(2+) uptake requires intravesicular Na(+) and is stimulated by an inside positive membrane potential. Despite very limited sequence similarity, MaX1 is a Na(+)/Ca(2+) exchanger with kinetic properties similar to those of NCX. The availability of a prokaryotic Na(+)/Ca(2+) exchanger should facilitate structural and mechanistic investigations.  相似文献   

3.
The Na(+)/Ca(2+)-K(+) exchanger (NCKX) is a polytopic membrane protein that uses both the inward Na(+) gradient and the outward K(+) gradient to drive Ca(2+) extrusion across the plasma membrane. NCKX1 is found in retinal rod photoreceptors, while NCKX2 is found in retinal cone photoreceptors and is also widely expressed in the brain. Here, we have identified a single residue (out of >100 tested) for which substitution removed the K(+) dependence of NCKX-mediated Ca(2+) transport. Charge-removing replacement of Asp(575) by either asparagine or cysteine rendered the mutant NCKX2 proteins independent of K(+), whereas the charge-conservative substitution of Asp(575) to glutamate resulted in a nonfunctional mutant NCKX2 protein, accentuating the critical nature of this residue. Asp(575) is conserved in the NCKX1-5 genes, while an asparagine is found in this position in the three NCX genes, coding for the K(+)-independent Na(+)/Ca(2+) exchanger.  相似文献   

4.
The most numerous Ca2+ extrusion protein family, in terms of distinct genes, is the SLC24 gene family of Na+/Ca2+-K+ exchangers (NCKX). Five distinct gene products have been identified, mostly from specific animal excitable tissues such as neurons and smooth muscle, but also in places like skin pigment epithelium, signifying that NCKX proteins may play very specific roles, related to Ca2+ homeostasis, in these tissues. However, progress in elucidating the specific physiological roles of NCKX proteins has been slow in coming, largely because of challenges relating to isolating the activity of these proteins in their native tissues. Herein, we provide an overview of NCKX protein functional characteristics, highlighting properties that are unique and useful as distinguishing features over other Ca2+ handling mechanisms. We also present the first comprehensive review of the literature concerning physiological roles of NCKX proteins.  相似文献   

5.
The different roles of Na+/Ca2+ (NCX) exchangers and Na+/Ca2+/K+ (NCKX) exchangers in regulation of the ionic homeostasis in neurones are poorly understood. We have previously shown that serotonin excites histaminergic tuberomamillary (TM) neurones by activation of 5-HT2C-receptors and Na+/Ca2+ exchange. With the help of single-cell RT-PCR (sc-RT-PCR) we have now determined the coexpression pattern of different subtypes of NCX and NCKX with serotonin receptors. The majority of TM neurones express NCX1, NCX2 and NCKX3. Serotonin 2C receptor-mRNA was detected in 70% while 5-HT2A mRNA was found in only 10% of TM neurones. In all neurones expressing the 5-HT2C receptor NCX1-mRNA was present. Double immunostaining revealed the presence of the NCX1 protein in histidine decarboxylase-positive neurones. In the majority of TM neurones one or two out of five isoforms, NCX1.4, NCX1.5, NCX1.7, NCX1.14, NCX1.15, were detected by cDNA sequencing and/or by restriction analysis. The alternative splicing region is important for the Ca2+ sensitivity and presumably for the modulation of NCX1 function by second messengers. We conclude that several exchanger-subtypes can be coexpressed in single neurones and that TM cells are heterogeneous with respect to their calcium homeostasis regulation.  相似文献   

6.
7.
8.
9.
Cerebellar granule cells (CGCs) express K+-dependent (NCKX) and K+-independent (NCX) plasmalemmal Na+/Ca2+ exchangers which, under plasma membrane-depolarizing conditions and high cytosolic [Na+], may reverse and mediate potentially toxic Ca2+ influx. To examine this possibility, we inhibited NCX or NCKX with KB-R7943 or K+-free medium, respectively, and studied how gramicidin affects cytosolic [Ca2+] and 45Ca2+ accumulation. Gramicidin forms pores permeable to alkali cations but not Ca2+. Therefore, gramicidin-induced Ca2+ influx is indirect; it results from fluxes of monovalent cations. In the presence of Na+, but not Li+ or Cs+, gramicidin induced Ca2+ influx that was inhibited by simultaneous application of KB-R7943 and K+-free medium. The data indicate that gramicidin-induced Na+ influx reverses NCX and NCKX. To test the role of NCX and/or NCKX in excitotoxicity, we studied how NMDA affects the viability of glucose-deprived and depolarized CGCs. To assure depolarization of the plasma membrane, we inhibited Na+,K+-ATPase with ouabain. Although inhibition of NCX or NCKX reversal failed to significantly limit 45Ca2+ accumulation and excitotoxicity, simultaneously inhibiting NCX and NCKX reversal was neuroprotective and significantly decreased NMDA-induced 45Ca2+ accumulation. Our data suggest that NMDA-induced Na+ influx reverses NCX and NCKX and leads to the death of depolarized and glucose-deprived neurons.  相似文献   

10.
Mammalian Na+/Ca2+ (NCX) and Na+/Ca2+-K+ exchangers (NCKX) are polytopic membrane proteins that play critical roles in calcium homeostasis in many cells. Although hydropathy plots for NCX and NCKX are very similar, reported topological models for NCX1 and NCKX2 differ in the orientation of the three C-terminal transmembrane segments (TMS). NCX1 is thought to have 9 TMS and a re-entrant loop, whereas NCKX2 is thought to have 10 TMS. The current topological model of NCKX2 is very similar to the 10 membrane spanning helices seen in the recently reported crystal structure of NCX_MJ, a distantly related archaebacterial Na+/Ca2+ exchanger. Here we reinvestigate the orientation of the three C-terminal TMS of NCX1 and NCKX2 using mass-tagging experiments of substituted cysteine residues. Our results suggest that NCX1, NCKX2 and NCX_MJ all share the same 10 TMS topology.  相似文献   

11.
Plasma membrane Na+/Ca2+-exchangers play a predominant role in Ca2+ extrusion in brain. Neurons express several different Na+/Ca2+-exchangers belonging to both the K+-independent NCX family and the K+-dependent NCKX family. The unique contributions of each of these proteins to neuronal Ca2+ homeostasis and/or physiology remain largely unexplored. To address this question, we generated mice in which the gene encoding the abundant neuronal K+ -dependent Na+/Ca2+-exchanger protein, NCKX2, was knocked out. Analysis of these animals revealed a significant reduction in Ca2+ flux in cortical neurons, a profound loss of long term potentiation and an increase in long term depression at hippocampal Schaffer/CA1 synapses, and clear deficits in specific tests of motor learning and spatial working memory. Surprisingly, there was no obvious loss of photoreceptor function in cones, where expression of the NCKX2 protein had been reported previously. These data emphasize the critical and non-redundant role of NCKX2 in the local control of neuronal [Ca2+] that is essential for the development of synaptic plasticity associated with learning and memory.  相似文献   

12.
We have previously shown that there is high Na(+)/Ca(2+) exchange (NCX) activity in bovine adrenal chromaffin cells. In this study, by monitoring the [Ca(2+)](i) change in single cells and in a population of chromaffin cells, when the reverse mode of exchanger activity has been initiated, we have shown that the NCX activity is enhanced by K(+). The K(+)-enhanced activity accounted for a significant proportion of the Na(+)-dependent Ca(2+) uptake activity in the chromaffin cells. The results support the hypothesis that both NCX and Na(+)/Ca(2+)-K(+) exchanger (NCKX) are co-present in chromaffin cells. The expression of NCKX in chromaffin cells was further confirmed using PCR and northern blotting. In addition to the plasma membrane, the exchanger activity, measured by Na(+)-dependent (45)Ca(2+) uptake, was also present in membrane isolated from the chromaffin granules enriched fraction and the mitochondria enriched fraction. The results support that both NCX and NCKX are present in bovine chromaffin cells and that the regulation of [Ca(2+)](i) is probably more efficient with the participation of NCKX.  相似文献   

13.
K+-dependent Na+/Ca2+ exchanger proteins (NCKX1-5) of the SLC24 gene family play important roles in a wide range of biological processes including but not limited to rod and cone photoreceptor vision, olfaction, enamel formation and skin pigmentation. NCKX proteins are also widely expressed throughout the brain and NCKX2 and NCKX4 knockouts in mice have specific phenotypes. Here we review our work on structure-function relationships of NCKX proteins. We discuss membrane topology, domains critical to transport function, and residues critical to cation binding and transport function, all in the context of crystal structures that were obtained for the archaeal Na+/Ca2+ exchanger NCX_Mj.  相似文献   

14.
The Na(+)-Ca2+ exchanger from Drosophila was expressed in Xenopus and characterized electrophysiologically using the giant excised patch technique. This protein, termed Calx, shares 49% amino acid identity to the canine cardiac Na(+)-Ca2+ exchanger, NCX1. Calx exhibits properties similar to previously characterized Na(+)-Ca2+ exchangers including intracellular Na+ affinities, current-voltage relationships, and sensitivity to the peptide inhibitor, XIP. However, the Drosophila Na(+)-Ca2+ exchanger shows a completely opposite response to cytoplasmic Ca2+. Previously cloned Na(+)-Ca2+ exchangers (NCX1 and NCX2) are stimulated by cytoplasmic Ca2+ in the micromolar range (0.1- 10 microM). This stimulation of exchange current is mediated by occupancy of a regulatory Ca2+ binding site separate from the Ca2+ transport site. In contrast, Calx is inhibited by cytoplasmic Ca2+ over this same concentration range. The inhibition of exchange current is evident for both forward and reverse modes of transport. The characteristics of the inhibition are consistent with the binding of Ca2+ at a regulatory site distinct from the transport site. These data provide a rational basis for subsequent structure-function studies targeting the intracellular Ca2+ regulatory mechanism.  相似文献   

15.
Asterosap, a group of equally active isoforms of sperm-activating peptides from the egg jelly of the starfish Asterias amurensis, functions as a chemotactic factor for sperm. It transiently increases the intracellular cGMP level of sperm, which in turn induces a transient elevation of intracellular Ca(2+) concentration ([Ca(2+)](i)). Using a fluorescent Ca(2+)-sensitive dye, Fluo-4 AM, we measured the changes in sperm [Ca(2+)](i) in response to asterosap. KB-R7943 (KB), a selective inhibitor of Na(+)/Ca(2+) exchanger (NCX), significantly inhibited the asterosap-induced transient elevation of [Ca(2+)](i), suggesting that asterosap influences [Ca(2+)](i) through activation of a K+-dependent NCX (NCKX). An NCKX activity of starfish sperm also shows K(+) dependency like other NCKXs. Therefore, we cloned an NCKX from the starfish testes and predicted that it codes for a 616 amino acid protein that is a member of the NCKX family. Pharmacological evidence suggests that this exchanger participates in the asterosap-induced Ca(2+) entry into sperm.  相似文献   

16.
We examined inhibitory effects of external multivalent cations Ni(2+), Co(2+), Cd(2+), La(3+), Mg(2+), and Mn(2+) on reverse-mode exchange of the K(+)-dependent Na(+)/Ca(2+) exchanger NCKX2 and the K(+)-independent exchanger NCX1 expressed in CCL-39 cells by measuring the rate of Ca(2+) uptake with radioisotope tracer and electrophysiological techniques. The apparent affinities for block of Ca(2+) uptake by multivalent cations was higher in NCKX2 than NCX1, and the rank order of inhibitory potencies among these cations was different. Additional experiments also showed that external Li(+) stimulated reverse-mode exchange by NCX1, but not NCKX2 in the presence of 5 mM K(+). Thus, both exchangers exhibited differential sensitivities to not only K(+) but also many other external cations. We attempted to locate the putative binding sites within the alpha motifs for multivalent cations by site-directed mutagenesis experiments. The cation affinities of NCKX2 were altered by mutations of amino acid residues in the alpha-1 motif, but not by mutations in the alpha-2 motif. These results contrast with those for NCX1 where mutations in both alpha-1 and alpha-2 motifs have been shown previously to affect cation affinities. Susceptibility tests with sulfhydryl alkylating agents suggested that the alpha-1 and alpha-2 motifs are situated extracellularly and intracellularly, respectively, in both exchangers. A topological model is proposed in which the extracellular-facing alpha-1 motif forms an external cation binding site that includes key residues N203, G207C, and I209 in NCKX2, while both alpha-1 and alpha-2 motifs together form the binding sites in NCX1.  相似文献   

17.
Inhibition of Na(+),K(+)-ATPase during NMDA applications greatly increased NMDA-induced excitotoxicity in primary cultures of forebrain neurons (FNs), but not in cerebellar granule cells (CGCs). Because Na(+),K(+)-ATPase inhibition promotes reversal of plasmalemmal Na(+)/Ca(2+) exchangers, we compared the activities of reversed K(+)-independent (NCX) and K(+)-dependent (NCKX) Na(+)/Ca(2+) exchangers in these cultures. To this end, we measured gramicidin-induced and Na(+)-dependent elevation in cytosolic [Ca(2+)] ([Ca(2+)](c)) that represents Ca(2+) influx via reversed NCX and NCKX; NCX activity was dissected out by removing external K(+). The [Ca(2+)](c) elevations mediated by NCX alone, and NCX plus NCKX combined, were 17 and 6 times more rapid in FNs than in CGCs, respectively. Northern blot analysis showed that FNs preferentially express NCX1 whereas CGCs expressed NCX3. Differences in expression of other isoforms (NCX2, NCKX2, NCKX3 and NCKX4) were less pronounced. We tested whether the NCX or NCKX family of exchangers contributes most to the toxic NMDA-induced Ca(2+) influx in depolarized neurons. We found that in FNs, inhibition of NCX alone was sufficient to significantly limit NMDA excitotoxicity, whereas in CGCs, inhibition of both NCX and NCKX was required. The data suggest that the high activity of NCX isoforms expressed in FNs, possibly NCX1, sensitizes these neurons to NMDA excitotoxicity.  相似文献   

18.
Dong H  Dunn J  Lytton J 《Biophysical journal》2002,82(4):1943-1952
The stoichiometry with which the Na+/Ca2+ exchanger, NCX1, binds and transports Na+ and Ca2+ has dramatic consequences for ionic homeostasis and cellular function of heart mycocytes and brain neurons, where the exchanger is highly expressed. Previous studies have examined this question using native NCX1 in its endogenous environment. We describe here whole-cell voltage clamp studies using recombinant rat heart NCX1.1 expressed heterologously in HEK-293 cells. This system provides the advantages of a high level of NCX1 protein expression, very low background ion transport levels, and excellent control over clamped voltage and ionic composition. Using ionic conditions that allowed bi-directional currents, voltage ramps were employed to determine the reversal potential for NCX1.1-mediated currents. Analysis of the relation between reversal potential and external [Na+] or [Ca2+], under a variety of intracellular conditions, yielded coupling ratios for Na+ of 1.9-2.3 ions per net charge and for Ca2+ of 0.45 +/- 0.03 ions per net charge. These data are consistent with a stoichiometry for the NCX1.1 protein of 4 Na+ to 1 Ca2+ to 2 charges moved per transport cycle.  相似文献   

19.
Cardiomyocytes derived from mouse embryonic stem (mES) cells have been demonstrated to exhibit a time-dependent expression of ion channels and signal transduction pathways in electrophysiological studies. However, ion transporters, such as Na+/K+ ATPase (Na+ pump) or Na+/Ca2+ exchanger, which play crucial roles for cardiac function, have not been well studied in this system. In this study, we investigated the functional expression of Na+/K+ ATPase and Na+/Ca2+ exchanger in mES cells during in vitro differentiation into cardiomyocytes, as well as the functional coupling between the two transporters. By measuring [Na+]i and Na+ pump current (Ip), it was shown that an ouabain-high sensitive Na+/K+ ATPase was expressed functionally in undifferentiated mES cells and these activities increased during a time course of differentiation. Using RT-PCR, the expression of mRNA for alpha1-subunit and alpha3-subunit of the Na+/K+ ATPase could be detected in both undifferentiated mES cells and derived cardiomyocytes. In contrast alpha2-subunit mRNA could be detected only in derived cardiomyocytes but not in undifferentiated mES cells. mRNA for the Na+/Ca2+ exchanger 1 isoform (NCX1) could be detected in undifferentiated mES cells and its expression levels seemed to gradually increase throughout the differentiation accompanied by increasing its Ca2+ extrusion function. At the middle stages of differentiation (after 10-day induction), more than 75% derived cardiomyocytes exhibited [Ca2+]i oscillations by blocking of Na+/K+ ATPase, suggesting the functional coupling with Na+/Ca2+ exchanger. From these results and RT-PCR analysis, we conclude that alpha2-subunit Na+/K+ ATPase mainly contributes to establish the functional coupling with NCX1 at the middle stages of differentiation of cardiomyocytes.  相似文献   

20.
Na+/Ca2+ exchangers are low affinity, high capacity transporters that rapidly transport calcium at the plasma membrane, mitochondrion, endoplasmic (and sarcoplasmic) reticulum, and the nucleus. Na+/Ca2+ exchangers are widely expressed in diverse cell types where they contribute homeostatic balance to calcium levels. In animals, Na+/Ca2+ exchangers are divided into three groups based upon stoichiometry: Na+/Ca2+ exchangers (NCX), Na+/Ca2+/K+ exchangers (NCKX), and Ca2+/Cation exchangers (CCX). In mammals there are three NCX genes, five NCKX genes and one CCX (NCLX) gene. The genome of the nematode Caenorhabditis elegans contains ten Na+/Ca2+ exchanger genes: three NCX; five CCX; and two NCKX genes. Here we set out to characterize structural and taxonomic specializations within the family of Na+/Ca2+ exchangers across the phylum Nematoda. In this analysis we identify Na+/Ca2+ exchanger genes from twelve species of nematodes and reconstruct their phylogenetic and evolutionary relationships. The most notable feature of the resulting phylogenies was the heterogeneous evolution observed within exchanger subtypes. Specifically, in the case of the CCX exchangers we did not detect members of this class in three Clade III nematodes. Within the Caenorhabditis and Pristionchus lineages we identify between three and five CCX representatives, whereas in other Clade V and also Clade IV nematode taxa we only observed a single CCX gene in each species, and in the Clade III nematode taxa that we sampled we identify NCX and NCKX encoding genes but no evidence of CCX representatives using our mining approach. We also provided re-annotation for predicted CCX gene structures from Heterorhabditis bacteriophora and Caenorhabditis japonica by RT-PCR and sequencing. Together, these findings reveal a complex picture of Na+/Ca2+ transporters in nematodes that suggest an incongruent evolutionary history of proteins that provide central control of calcium dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号