首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Aim To relate variation in the migration capacity and colonization ability of island communities to island geography and species island occupancy. Location Islands off mainland Britain and Ireland. Methods Mean migration (transfer) capacity and colonization (establishment) ability (ecological indices), indexed from 12 ecological variables for 56 butterfly species living on 103 islands, were related to species nestedness, island and mainland source geography and indices using linear regression models, RLQ analysis and fourth‐corner analysis. Random creation of faunas from source species, rank correlation and rank regression were used to examine differences between island and source ecological indices, and relationships to island geography. Results Island butterfly faunas are highly nested. The two ecological indices related closely to island occupancy, nestedness rank of species, island richness and geography. The key variables related to migration capacity were island area and isolation; for colonization ability they were area, isolation and longitude. Compared with colonization ability, migration capacity was found to correlate more strongly with island species occupancy and species richness. For island faunas, the means for both ecological indices decreased, and variation increased, with increasing island species richness. Mean colonization ability and migration capacity values were significantly higher for island faunas than for mainland source faunas, but these differences decreased with island latitude. Main conclusions The nested pattern of butterfly species on islands off mainland Britain and Ireland relates strongly to colonization ability but especially to migration capacity. Differences in colonization ability among species are most obvious for large, topographically varied islands. Generalists with abundant multiple resources and greater migration capacity are found on all islands, whereas specialists are restricted to large islands with varied and long‐lived biotopes, and islands close to shore. The inference is that source–sink dynamics dominate butterfly distributions on British and Irish islands; species are capable of dispersing to new areas, but, with the exception of large and northern islands, facilities (resources) for permanent colonization are limited. The pattern of colonization ability and migration capacity is likely to be repeated for mainland areas, where such indices should provide useful independent measures for assessing the conservation status of faunas within spatial units.  相似文献   

2.
We quantified patterns of species richness and species composition of frogs and reptiles (lizards and snakes) among three habitats (continuous forest, forest islands, and a seasonally flooded savannah) and between forest island size and isolation classes in a floristic transition zone in northeastern Santa Cruz Department, Bolivia. Species richness was similar across macrohabitats, as was faunal composition of forested habitats, although savannah harbored a distinct herpetofauna. On forest islands, richness and composition of forest frogs was largely related to isolation, whereas reptiles were affected by both isolation and habitat. The observation that isolation rather than area was the primary driver of distribution patterns on forest islands stands in contrast to many studies, and may be a function of (1) the greater range in forest island isolation values compared to area or (2) the long history of isolation in this landscape.  相似文献   

3.
Records of Hipparchia semele on British and Irish islands have been modelled against island area, isolation (sea and land distance) and the size of the nearest potential source populations. All three variables have been found to contribute significantly to the presence or absence of H. semele on the islands. Isolation is a more significant predictor than island area. This result differs from the multiple species case where area was found to be a more important influence than isolation. Records on islands are also shown to depend on the size of populations at the nearest sources; this underpins the relationships identified for the multiple species case, first, between the number of species on islands and at nearest sources and, second, between the incidence of species on islands and at nearest sources. There are clear indications that smaller islands may become increasingly marginalized for H.semele; with ongoing habitat loss, because isolation increases and source populations become sparser, the probability of H. semele recolonizing islands also decreases.  相似文献   

4.
Isolation is a driving factor of species richness and other island community attributes. Most empirical studies have investigated the effect of isolation measured as distance to the nearest continent. Here we expanded this perspective by comparing the explanatory power of seventeen isolation metrics in sixty‐eight variations for vascular plant species richness on 453 islands worldwide. Our objectives were to identify ecologically meaningful metrics and to quantify their relative importance for species richness in a globally representative data set. We considered the distances to the nearest mainland and to other islands, stepping stone distances, the area of surrounding landmasses, prevailing wind and ocean currents and climatic similarity between source and target areas. These factors are closely linked to colonization and maintenance of plant species richness on islands. We tested the metrics in spatial multi‐predictor models accounting for area, climate, topography and island geology. Besides area, isolation was the second most important factor determining species richness on the studied islands. A model including the proportion of surrounding land area as the isolation metric had the highest predictive power, explaining 86.1% of the variation. Distances to large islands, stepping stone distances and distances to climatically similar landmasses performed slightly better than distance to the nearest mainland. The effect of isolation was weaker for large islands suggesting that speciation counteracts the negative effect of isolation on immigration on large islands. Continental islands were less affected by isolation than oceanic islands. Our results suggest that a variety of immigration mechanisms influence plant species richness on islands and we show that this can be detected at macro‐scales. Although the distance to the nearest mainland is an adequate and easy‐to‐calculate measure of isolation, accounting for stepping stones, large islands as source landmasses, climatic similarity and the area of surrounding landmasses increases the explanatory power of isolation for species richness.  相似文献   

5.
Aims To investigate the relative explanatory power of source faunas and geographical variables for butterfly incidence, frequency, richness, rarity, and endemicity on offshore islands. Location The western Italian offshore islands (Italy and Malta). Methods Thirty‐one islands were examined. Data were taken from our own field surveys and from the literature. Two approaches were undertaken, described as island‐focused and species‐focused, respectively. Offshore islands were allocated to their neighbouring source landmasses (Italian Peninsula, Sicily and Sardinia–Corsica) and compared with each other for faunal attributes, source and island geography. Generalized linear and stepwise multiple regression models were then used to determine the relationships of island species richness, rarity and endemicity with potential geographical predictors and source richness, rarity, and endemicity (island‐focused). Species frequency and incidence were assessed in relation to geographical and source predictors using stepwise linear and logistic regression, and inter‐island associations were examined using K‐Means clustering and non‐metric scaling (species‐focused). Results The analysis reveals firm evidence for the influence of the nearest large landmass sources on island species assemblages, richness, rarity and endemicity. A clear distinction in faunal affinities occurs between the Sardinian islands and islands lying offshore from the Italian mainland and Sicily. Islands neighbouring these three distinct sources differ significantly in richness, rarity and endemicity. Source richness, rarity, and endemicity have explanatory power for island richness, rarity, and endemicity, respectively, and together with island geography account for a substantial part of the variation in island faunas (richness 59%, rarity 60% and endemicity 64%). Source dominates the logistic regression parameters predicting the incidence of island species [13 (38%) of 34 species that could be analysed]; three ecological factors (source frequency, flight period and maximal altitude at which species live) explained 75% of the variation in the occurrence of species on the islands. Species found more frequently on islands occurred more frequently at sources, had longer flight periods, and occurred at lower altitudes at the sources. The incidence of most species on islands (84%) is correctly predicted by the same three variables. Main conclusions The Italian region of the Mediterranean Sea has a rich butterfly fauna comprising endemics and rare species as well as more cosmopolitan species. Analysis of island records benefited from the use of two distinct approaches, namely island‐focused and species‐focused, that sift distinct elements in island and source faunas. Clear contemporary signals appear in island–source relationships as well as historical signals. Differences among faunas relating to sources within the same region caution against assuming that contemporary (ecological) and historical (evolutionary) influences affect faunas of islands in different parts of the same region to the same extent. The implications of source–island relationships for the conservation of butterflies within the Italian region are considered, particularly for the long‐term persistence of species.  相似文献   

6.
Frick WF  Hayes JP  Heady PA 《Oecologia》2009,158(4):687-697
Nested patterns of community composition exist when species at depauperate sites are subsets of those occurring at sites with more species. Nested subset analysis provides a framework for analyzing species occurrences to determine non-random patterns in community composition and potentially identify mechanisms that may shape faunal assemblages. We examined nested subset structure of desert bat assemblages on 20 islands in the southern Gulf of California and at 27 sites along the Baja California peninsula coast, the presumable source pool for the insular faunas. Nested structure was analyzed using a conservative null model that accounts for expected variation in species richness and species incidence across sites (fixed row and column totals). Associations of nestedness and island traits, such as size and isolation, as well as species traits related to mobility, were assessed to determine the potential role of differential extinction and immigration abilities as mechanisms of nestedness. Bat faunas were significantly nested in both the insular and terrestrial landscape and island size was significantly correlated with nested structure, such that species on smaller islands tended to be subsets of species on larger islands, suggesting that differential extinction vulnerabilities may be important in shaping insular bat faunas. The role of species mobility and immigration abilities is less clearly associated with nestedness in this system. Nestedness in the terrestrial landscape is likely due to stochastic processes related to random placement of individuals and this may also influence nested patterns on islands, but additional data on abundances will be necessary to distinguish among these potential mechanisms.  相似文献   

7.
Over the past half century, ecologists have tried to unravel the factors that drive species richness patterns in ecological communities. One influential theory is island biogeography theory (IBT), which predicts that island or habitat area and isolation are drivers of species richness. However, relatively few studies testing IBT have considered invertebrate or belowground communities, and it is unclear as to whether the predictions made by IBT hold for these communities. Other theories predict that habitat characteristics such as vegetation diversity may be important drivers of invertebrate species richness. To investigate patterns of invertebrate density and species richness across gradients of area, isolation, and vegetation diversity, we used a system of 30 lake islands in the boreal zone of northern Sweden. We assessed density and taxonomic richness of ground‐dwelling spiders, web‐building spiders, beetles, collembolans, mites, and nematodes, for all islands during two consecutive summers. For all invertebrate groups, both density and taxonomic richness were either neutrally or negatively related to island size, and either neutrally or positively related to island isolation. Meanwhile the density and taxonomic richness for several groups was positively related to vegetation diversity (i.e. habitat heterogeneity). In multiple regression analyses, island size was often the single best predictor for both invertebrate density and taxonomic richness, but in some cases island size and isolation in combination explained more variation than each factor considered singly. Contrary to IBT predictions, invertebrate density and richness was never positively related to island size or negatively related to island isolation. Instead, our results suggest that plant diversity (and thus habitat heterogeneity) was the main driver of the patterns that we found, although other factors could have some influence. We conclude that several factors, but not necessarily those predicted as important by IBT, are important in determining invertebrate abundance and species richness in island systems.  相似文献   

8.
Aim This study aims to explain the patterns of species richness and nestedness of a terrestrial bird community in a poorly studied region. Location Twenty‐six islands in the Dahlak Archipelago, Southern Red Sea, Eritrea. Methods The islands and five mainland areas were censused in summer 1999 and winter 2001. To study the importance of island size, isolation from the mainland and inter‐island distance, I used constrained null models for the nestedness temperature calculator and a cluster analysis. Results Species richness depended on island area and isolation from the mainland. Nestedness was detected, even when passive sampling was accounted for. The nested rank of islands was correlated with area and species richness, but not with isolation. Idiosyncrasies appeared among species‐poor and species‐rich islands, and among common and rare species. Cluster analysis showed differences among species‐rich islands, close similarity among species‐poor and idiosyncratic islands, and that the compositional similarity among islands decreased with increasing inter‐island distance. Thus, faunas of species‐poor, smaller islands were more likely to be subsets of faunas of species‐rich, larger islands if the distance between the islands was short. Main conclusions Species richness and nestedness were related to island area, and nestedness also to inter‐island distances but not to isolation from the mainland. Thus, nestedness and species richness are not affected in the same way by area and distance. Moreover, idiosyncrasies may have been the outcome of species distributions among islands being influenced also by non‐nested distributions of habitats, inter–specific interactions, and differences in species distributions across the mainland. Idiosyncrasies in nested patterns may be as important as the nested pattern itself for conservation – and conservation strategies based on nestedness and strong area effects (e.g. protection of only larger islands) may fail to preserve idiosyncratic species/habitats.  相似文献   

9.
Aim We studied the relationship between the size and isolation of islands and bat species richness in a near‐shore archipelago to determine whether communities of vagile mammals conform to predictions of island biogeography theory. We compared patterns of species richness in two subarchipelagos to determine whether area per se or differences in habitat diversity explain variations in bat species richness. Location Islands in the Gulf of California and adjacent coastal habitats on the Baja California peninsula in northwest Mexico. Methods Presence–absence surveys for bats were conducted on 32 islands in the Gulf of California using acoustic and mist‐net surveys. We sampled for bats in coastal habitats of four regions of the Baja peninsula to characterize the source pool of potential colonizing species. We fitted a semi‐log model of species richness and multiple linear regression and used Akaike information criterion model selection to assess the possible influence of log10 area, isolation, and island group (two subarchipelagos) on the species richness of bats. We compared the species richness of bats on islands with greater vegetation densities in the southern gulf (n = 20) with that on drier islands with less vegetation in the northern gulf (n = 12) to investigate the relationship between habitat diversity and the species richness of bats. Results Twelve species of bats were detected on islands in the Gulf of California, and 15 species were detected in coastal habitats on the Baja peninsula. Bat species richness was related to both area and isolation of islands, and was higher in the southern subarchipelago, which has denser vegetation. Log10 area was positively related to bat species richness, which increased by one species for every 5.4‐fold increase in island area. On average, richness declined by one species per 6.25 km increase in isolation from the Baja peninsula. Main conclusions Our results demonstrate that patterns of bat species richness in a near‐shore archipelago are consistent with patterns predicted by the equilibrium theory of island biogeography. Despite their vagility, bats may be more sensitive to moderate levels of isolation than previously expected in near‐shore archipelagos. Differences in vegetation and habitat xericity appear to be associated with richness of bat communities in this desert ecosystem. Although observed patterns of species richness were consistent with those predicted by the equilibrium theory, similar relationships between species richness and size and isolation of islands may arise from patch‐use decision making by individuals (optimal foraging strategies).  相似文献   

10.
Aim To study the effects of isolation and size of small tropical islands on species assemblages of bees (superfamily Apoidea) and wasps (superfamily Vespoidea). Location Twenty islands in the Kepulauan Seribu Archipelago off the coast of west Java, Indonesia. The size of surveyed islands ranges between 0.75 and 41.32 ha; their distance from the coast of Java varies between 3 and 62 km. Methods Field work was conducted from February to May 2005. Bees and wasps were caught with a sweep net during sampling units of 15 min, continuing until four consecutive samples revealed no new species. Total species richness was quantified by the estimators Chao 2, first‐order jackknife and Michaelis–Menten. The software binmatnest was used to test for nestedness of species assemblages. Similarities of species composition between islands were quantified by Sørensen’s similarity index. Results Eighty‐two species were recorded on the 20 surveyed islands. Species richness declined with increasing isolation of islands from the source area, Java. Although the size of the largest island exceeded that of the smallest island by a factor of almost 60, island size only very weakly affected species richness of bees; no effect of island size was found for wasps. Mean body size of species decreased with increasing island isolation. Nestedness of island faunas was only weakly developed. Species composition of both superfamilies was affected by island isolation, but not by island size. Main conclusions While the species–isolation relationship on the very small islands of Kepulauan Seribu followed the prediction of MacArthur and Wilson’s equilibrium theory, the absence of a species–area relationship indicated a weak ‘small‐island effect’, at least in wasps. The combination of an only weakly developed pattern of nested species subsets, the shift in species compositions and the decline of mean body size with increasing island isolation from the source area indicates that biotic interactions and different species traits contribute to the shaping of communities of bees and wasps within the archipelago. The potential of biotic interactions for generating distribution patterns of species within the archipelago is also emphasized by the observed restriction of some species with apparently high dispersal abilities to outer islands.  相似文献   

11.
Aim The influence of physiographic and historical factors on species richness of native and non‐native vascular plants on 22 coastal islands was examined. Location Islands off the coast of north‐eastern USA and south‐eastern Canada between 41° and 45° N latitude were studied. Island size ranges from 3 to 26,668 ha. All islands were deglaciated between 15,000 and 11,000 yr bp ; all but the four New Brunswick islands were attached to the mainland until rising sea level isolated them between 14,000 and 3800 yr bp . Methods Island species richness was determined from floras compiled or revised since 1969. Simple and multiple regression and rank correlation analysis were employed to assess the relative influence of independent variables on species richness. Potential predictors included island area, latitude, elevation, distance from the mainland, distance from the nearest larger island, number of soil types, years since isolation, years since deglaciation, and human population density. Results Native vascular plant species richness for the 22 islands in this study is influenced most strongly by island area, latitude, and distance from the nearest larger island; richness increases with island area, but decreases with latitude and distance from the nearest larger island as hypothesized. That a similar model employing distance from the mainland does not meet the critical value of P confirms the importance of the stepping‐stone effect. Habitat diversity as measured by number of soil types is also an important predictor of native plant species richness, but at least half of its influence can be attributed to island area, with which it is correlated. Two historical factors, years since deglaciation and years since isolation, also appear to be highly correlated with native species richness, but their influence cannot be separated from that of latitude for the present sample size. Non‐native vascular plant species richness is influenced primarily by island area and present‐day human population density, although human population density may be a surrogate for the cumulative effect of several centuries of anthropogenic impacts related to agriculture, hunting, fishing, whaling, tourism, and residential development. Very high densities of ground‐nesting pelagic birds may account for the high percentage of non‐native species on several small northern islands. Main conclusions Many of the principles of island biogeography that have been applied to oceanic islands apply equally to the 22 islands in this study. Native vascular plant species richness for these islands is strongly influenced by physiographic factors. Influence of two historical factors, years since deglaciation and years since isolation, cannot be assessed with the present sample size. Non‐native vascular plant species richness is influenced by island area as well as by human population density; human population density may be a surrogate for other anthropogenic impacts.  相似文献   

12.
Depending on their faunal content islands can function as important ‘vehicles’ for conservation. In this study, we examine data on 440 butterfly species over 564 European islands in 10 island groups. To determine the status of the butterfly fauna, we have adopted two approaches, island-focused and species-focused, examined using principal components analysis and regression modelling. In the former, we relate species richness, rarity and endemicity to island geography (area, elevation, isolation and location in latitude and longitude); in the latter, species occurrence on islands is examined in relation to distribution, range, range boundaries, and altitudinal limits on the continent as well as species’ ecology (number of host plants) and morphology (wing expanse). Species on islands are also assessed for their status on the continental mainland, their distributional dynamics (extinctions, distribution changes) and conservation status (Red Data Book, European Habitat Directive, Species of European Conservation Concern and Bern Convention listing. Unexpectedly, we find that a large fraction of the European butterfly species is found on the islands (63.4%; 59% on small islands) comprising some 6.2% of the land area of Europe. Although species occurring on the islands tend, on the whole, to have lower conservation status and are not declining over Europe, 45 species are endemics restricted to the islands. Species richness shows only a weak locational pattern and is related as expected to isolation from the continental source and island area; but, both rarity and endemicity have distinctive geographical bias to southern Europe, on islands now under increasing pressure from climate change and increasingly intensive human exploitation. The vulnerability of species on islands is emphasised in the relationship of island occurrence (% occurrence and presence/absence of species on any island) with continental distributions. A large proportion of the variation (84%) is accounted by continental distribution, the southern range limit and lower altitudinal limit. Most species (69%) occur on very few islands (<5%). In view of ongoing species dynamics on islands, migrations and extinctions of species, island repositories of species depend in large part on conservation of butterflies at continental sources. The unique faunas and rare species on islands also depend on appropriate concern being given to the island faunas. Conservation of European islands is thus a two-way process, sustaining sources and conserving island refuges. Residuals from the regressions (islands with more or fewer species, rare and endemic species; species occurring more or less frequently than expected on islands) provide warning signals of regions and islands deserving immediate attention.  相似文献   

13.
Aim To assess how ant species richness and structure of ant communities are influenced by island age (disturbance history) in a dynamic archipelago. Location Cabra Corral dam, Salta Province, north‐west Argentina (25°08′ S, 65°20′ W). Methods Ant species richness on remaining fragments (islands) of a flooded forest was determined, as well as island area, isolation and age. Simple linear regressions were performed to assess relationships between ant species richness and those insular variables. Furthermore, a stepwise multiple linear regression analysis was conducted in order to determine the relative influence of each insular variable on ant species richness. Islands were categorized in two age classes (old and young) and co‐occurrence analyses were applied within each class to evaluate changes in community structure because of interspecific competition. Results Simple regression analyses indicated a moderate, positive effect of island area on ant species richness. Weak, marginally non‐significant relationships were found between ant species richness and both island isolation and island age, showing the tendency for there to be a decrease in ant species richness with island isolation and that ant species richness might be higher in old islands. The multiple regression analysis indicated that island isolation and age had no significant effects on the number of ant species, island area being the only independent variable retained in the analysis. On the contrary, whereas a random pattern of species co‐occurrence was found on young islands, ant communities in old islands showed a significantly negative pattern of species co‐occurrence, suggesting that the effect of competition on community structure was stronger on older islands than on younger islands. Main conclusions Island area was the most important variable explaining ant species richness on the islands of Cabra Corral dam. However, both island isolation and island age (or disturbance history) might also contribute to shape the observed community patterns. The present study also shows that island age significantly affects the strength with which interspecific interactions structure ant communities on islands.  相似文献   

14.
15.
Aim A large number of studies have analysed the distribution of mammals within archipelagos, yet few have focused on islands that were heavily glaciated and subsequently colonized following deglaciation. Location We explored the relative effects of island area and isolation on faunal composition based on twenty-three mammalian taxa of twenty-four islands of the Alexander Archipelago, Southeast Alaska. Methods We used regression of log-transformed variables and several indices of nestedness. Results These faunas showed significant nested structure using tests of nestedness and regression models. Unlike most landbridge and mainland archipelagos studied previously, isolation appears to be the primary factor determining patterns of species richness. Main conclusions Colonization ability of particular taxa, rather than extinction, has determined this nested structure. We suggest that other higher latitude archipelagos may show similar historical patterns.  相似文献   

16.
A qualitative survey of the terrestrial bird community (sixty-five species) and a quantitative analysis of the five-diurnal raptor assemblage were earned out on 33 islands of the oceanic Andaman archipelago in the Bay of Bengal Among seven geographical parameters, island area was the main determinant of species richness for both the whole bird community and each category of species associated with four habitat types Species richness decreased most markedly with island size in the smallest islands and in open habitat species The rarest forest species were the most extinction prone with decreasing island size Specific habitat selection was the most prominent ecological correlate of inter island species distribution Observed species distribution patterns did not fit the random species placement or equprobable occurrence hypotheses Raptors were primarily forest species, two of them restricted to forest interior, two more tolerant of fragmentation and one naturally associated with mangroves Unexpectedly, the two rarest and most area sensitive raptors were the two smallest species with a strong active flight, whereas the most abundant and widespread species was the most forest interior and endemic taxon Both raptor species richness, species frequency of occurrence and abundance indices decreased with island area, which was consistently the most significant determinant of every species' occurrence and abundance There was a significant correlation between abundance or frequency of occurrence of every raptor species and the proportion of their preferred habitat type No relationship was found between habitat niche breadth or local abundance of any species and their distribution range among islands The hypothesis of random composition of species assemblages on islands was not supported because of species specific habitat selection Any evidence of interspecific competitive exclusion was limited to the striking habitat segregation of the two congeneric serpent eagles A metapopulation structure was suggested by small population distribution patterns, observed sea crossing and the circumstances of an apparent extinction  相似文献   

17.
Aim Using dung beetles (Coleoptera: Scarabaeidae: Scarabaeinae) in a tropical land‐bridge island system, we test for the small island effect (SIE) in the species–area relationship and evaluate its effects on species richness and community composition. We also examine the determinants of species richness across island size and investigate the traits of dung beetle species in relation to their local extinction vulnerability following forest fragmentation. Location Lake Kenyir, a hydroelectric reservoir in north‐eastern Peninsular Malaysia. Methods We sampled dung beetles using human dung baited pitfall traps on 24 land‐bridge islands and three mainland sites. We used regression tree analyses to test for the SIE, as well as species traits related to local rarity, as an indication of extinction vulnerability. We employed generalized linear models (GLMs) to examine determinants for species richness at different scales and compared the results with those from conventional linear and breakpoint regressions. Community analyses included non‐metric multidimensional scaling, partial Mantel tests, nestedness analysis and abundance spectra. Results Regression tree analysis revealed an area threshold at 35.8 ha indicating an SIE. Tree basal area was the most important predictor of species richness on small islands (<35.8 ha). Results from GLMs supported these findings, with isolation and edge index also being important for small islands. The SIE also manifested in patterns of dung beetle community composition where communities on small islands (<35.8 ha) departed from those on the mainland and larger islands, and were highly variable with no significant nestedness, probably as a result of unexpected species occurrences on several small islands. The communities exhibited a low degree of spatial autocorrelation, suggesting that dispersal limitation plays a part in structuring dung beetle assemblages. Species with lower baseline density and an inability to forage on the forest edge were found to be rarer among sites and hence more prone to local extinction. Main conclusions We highlight the stochastic nature of dung beetle community composition on small islands and argue that this results in reduced ecosystem functionality. A better understanding of the minimum fragment size required for retaining functional ecological communities will be important for effective conservation management and the maintenance of tropical forest ecosystem stability.  相似文献   

18.
Understanding how species diversity is related to sampling area and spatial scale is central to ecology and biogeography. Small islands and small sampling units support fewer species than larger ones. However, the factors influencing species richness may not be consistent across scales. Richness at local scales is primarily affected by small‐scale environmental factors, stochasticity and the richness at the island scale. Richness at whole‐island scale, however, is usually strongly related to island area, isolation and habitat diversity. Despite these contrasting drivers at local and island scales, island species–area relationships (SARs) are often constructed based on richness sampled at the local scale. Whether local scale samples adequately predict richness at the island scale and how local scale samples influence the island SAR remains poorly understood. We investigated the effects of different sampling scales on the SAR of trees on 60 small islands in the Raja Ampat archipelago (Indonesia) using standardised transects and a hierarchically nested sampling design. We compared species richness at different grain sizes ranging from single (sub)transects to whole islands and tested whether the shape of the SAR changed with sampling scale. We then determined the importance of island area, isolation, shape and habitat quality at each scale on species richness. We found strong support for scale dependency of the SAR. The SAR changed from exponential shape at local sampling scales to sigmoidal shape at the island scale indicating variation of species richness independent of area for small islands and hence the presence of a small‐island effect. Island area was the most important variable explaining species richness at all scales, but habitat quality was also important at local scales. We conclude that the SAR and drivers of species richness are influenced by sampling scale, and that the sampling design for assessing the island SARs therefore requires careful consideration.  相似文献   

19.
Forty-four species of terrestrial reptiles and eight species of frogs were recorded from 60 continental islands of the Wessel and English Company groups off northeastern Arnhem Land, Northern Territory. Two gecko species, Oedura rhombifer and Heteronotia binoei, were present on the most islands (34 and 31, respectively), and occurred on islands < 5 ha. In contrast, agamids, pygopodids and varanids were absent from islands < 18 ha, and snakes and frogs were not reported from islands < 240 ha. Island size explained 82% of the variation in species richness for terrestrial reptiles, and 84% of that for lizards. The relationship was less good for (i) groups with generally uncommon species (notably snakes), for which sampling effort explained more variation, and (ii) groups with species which had relatively specific habitat requirements (notably frogs), for which island size and isolation factors were not especially relevant. For most taxonomic groups considered, isolation factors added little to the relationship between species richness and island size. Across all reptiles, larger species were found on fewer islands, and had larger island size thresholds. This relationship broke down with analysis restricted to the single most species-rich family, Scincidae. Only 6 of the 20 most frequently recorded species showed significant variation in abundance among 8 vegetation types sampled by 226 quadrats across 40 islands. The number of species (alpha-diversity) and total abundance of herpetofauna within quadrats was generally unrelated to island size; however, (with analysis restricted to islands on which they occurred) six individual species were significantly more abundant on smaller islands than on larger islands, with no species showing the opposite pattern. The islands’ herpetofauna is largely a relatively depauperate subset of that of the far more complex sandstone massif and escarpment of western Arnhem Land, especially missing species associated with rugged sandstone gorges, riparian areas, open forests, swamps and clay soils. Patterns in species richness and composition are explained by greater range of environments on larger islands allowing better retention of species since isolation and/or richer tallies at the time of isolation. The evidence suggests that there has been relatively little colonization, although at least two gecko species and one varanid may have moved reasonably frequently.  相似文献   

20.
Natural polyploidy is often related to a longer life span, vegetative reproduction and higher competitive ability. In this paper, we test the possibility that these characteristics may favour the survival of polyploid taxa under conditions of long-term habitat fragmentation. In islands of natural vegetation isolated in extensive vineyards located in the South of France and in a large neighbouring area of natural vegetation, plant species richness and the relative abundance of polyploid taxa were assessed according to island size, isolation and vegetation structure. High species richness was observed, with numerous species restricted to the islands, suggesting that these may constitute refugia. However, species richness was not related to island size or to degree of isolation except for the flora of the woody areas. A very positive effect of area fragmentation on plant richness was observed, which is probably attributable to relatively low species overlap among the islands. Particularly high species richness was observed in open areas, provided that these were not extensively colonized by shrubs which seem to be responsible for local extinction of many annual taxa. Polyploids, which comprised mostly perennial herbs and woody species, were predominant in all the islands and in the large reference area. In open habitats invaded by shrubby species, a higher relative frequency of polyploids was observed in islands than in the reference area. Moreover, polyploid taxa were present in a larger number of islands than the diploid taxa, which were often restricted to a single island, suggesting that, after a long period of isolation, the polyploids may still have a lower probability of extinction. Evidence was obtained from vegetation structure analysis that diploid and polyploid annual herbs were restricted to open habitats and were both eliminated by shrubby species. Conversely, the diploid perennial herbs were also significantly affected by shrub colonization whereas the polyploids were mostly present in shrubby areas. This suggests that the higher competitive ability of polyploid perennial herbs may constitute a critical factor responsible for their wider distribution over the islands. We report the implications of our findings on conservation strategies, more particularly for a Mediterranean flora.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号