首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Systemic acquired resistance (SAR) is an inducible defence mechanism which plays a central role in protecting plants from microbial pathogen attack. Guided by bioassays, a new chemical inducer of SAR was isolated from the extracts of Strobilanthes cusia and identified to be 3-acetonyl-3-hydroxyoxindole (AHO), a derivative of isatin. Tobacco plants treated with AHO exhibited enhanced resistance to tobacco mosaic virus (TMV) and to the fungal pathogen Erysiphe cichoracearum (powdery mildew), accompanied by increased levels of pathogenesis-related gene 1 ( PR-1 ) expression, salicylic acid (SA) accumulation and phenylalanine ammonia-lyase activity. To study the mode of action of AHO, its ability to induce PR-1 expression and TMV resistance in nahG transgenic plants expressing salicylate hydroxylase, which prevents the accumulation of SA, was analysed. AHO treatment did not induce TMV resistance or PR-1 expression in nahG transgenic plants, suggesting that AHO acts upstream of SA in the SAR signalling pathway. In addition, using two-dimensional gel electrophoresis combined with mass spectrometry, five AHO-induced plant proteins were identified which were homologous to the effector proteins with which SA interacts. Our data suggest that AHO may represent a novel class of inducer that stimulates SA-mediated defence responses.  相似文献   

2.
Zhang W  Yang X  Qiu D  Guo L  Zeng H  Mao J  Gao Q 《Molecular biology reports》2011,38(4):2549-2556
Systemic acquired resistance (SAR) is an inducible defense mechanism which plays a central role in protecting plants from pathogen attack. A new elicitor, PeaT1 from Alternaria tenuissima, was expressed in Escherichia coil and characterized with systemic acquired resistance to tobacco mosaic virus (TMV). PeaT1-treated plants exhibited enhanced systemic resistance with a significant reduction in number and size of TMV lesions on wild tobacco leaves as compared with control. The quantitative analysis of TMV CP gene expression with real-time quantitative PCR showed there was reduction in TMV virus concentration after PeaT1 treatment. Similarly, peroxidase (POD) activity and lignin increased significantly after PeaT1 treatment. The real-time quantitative PCR revealed that PeaT1 also induced the systemic accumulation of pathogenesis-related gene, PR-1a and PR-1b which are the markers of systemic acquired resistance (SAR), NPR1 gene for salicylic acid (SA) signal transduction pathway and PAL gene for SA synthesis. The accumulation of SA and the failure in development of similar level of resistance as in wild type tobacco plants in PeaT1 treated nahG transgenic tobacco plants indicated that PeaT1-induced resistance depended on SA accumulation. The present work suggested that the molecular mechanism of PeaT1 inducing disease resistance in tobacco was likely through the systemic acquired resistance pathway mediated by salicylic acid and the NPR1 gene.  相似文献   

3.
4.
5.
A benzothiadiazole derivative induces systemic acquired resistance in tobacco   总被引:23,自引:2,他引:21  
Systemic acquired resistance (SAR) is a pathogen-induced disease resistance response in plants that is characterized by broad spectrum disease control and an associated coordinate expression of a set of SAR genes. Benzo(1,2,3)-thiadiazole-7-carbothioic acid S-methyl ester (BTH) is a novel synthetic chemical capable of inducing disease resistance in a number of dicotyledenous and monocotyledenous plant species. In this report, the response of tobacco plants to BTH treatment is characterized and the fact that it controls disease by activating SAR is demonstrated. BTH does not cause an accumulation of salicylic acid (SA), an intermediate in the SAR signal transduction pathway. As BTH also induces disease resistance and gene expression in transgenic plants expressing the nahG gene, it appears to activate the SAR signal transduction pathway at the site of or downstream of SA accumulation. BTH, SA and TMV induce the PR-1a promoter using similar cis-acting elements and gene expression is blocked by cycloheximide treatment. Thus, BTH induces SAR based on all of the physiological and biochemical criteria that define SAR in tobacco.  相似文献   

6.
J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1998,10(4):557-569
In Arabidopsis, NPR1 mediates the salicylic acid (SA)-induced expression of pathogenesis-related (PR) genes and systemic acquired resistance (SAR). Here, we report the identification of another component, CPR 6, that may function with NPR1 in regulating PR gene expression. The dominant CPR 6-1 mutant expresses the SA/NPR1-regulated PR genes (PR-1, BGL 2, and PR-5) and displays enhanced resistance to Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2 in the absence of SAR induction. cpr 6-1-induced PR gene expression is not suppressed in the cpr 6-1 npr1-1 double mutant but is suppressed when SA is removed by salicylate hydroxylase. Thus, constitutive PR gene expression in cpr 6-1 requires SA but not NPR1. In addition, resistance to P. s. maculicola ES4326 is suppressed in the cpr 6-1 npr1-1 double mutant, despite expression of PR-1, BGL 2, and PR-5. Resistance to P. s. maculicola ES4326 must therefore be accomplished through unidentified antibacterial gene products that are regulated through NPR1. These results show that CPR 6 is an important regulator of multiple signal transduction pathways involved in plant defense.  相似文献   

7.
Shulaev V  Leon J  Raskin I 《The Plant cell》1995,7(10):1691-1701
Salicylic acid (SA) is a likely endogenous signal in the development of systemic acquired resistance (SAR) in some dicotyledonous plants. In tobacco mosaic virus (TMV)-resistant Xanthi-nc tobacco, SA levels increase systemically following the inoculation of a single leaf with TMV. To determine the extent to which systemic increases in SA result from SA export from the inoculated leaf, SA produced in TMV-inoculated or healthy leaves was noninvasively labeled with 18O2. Spatial and temporal distribution of 18O-SA indicated that most of the SA detected in the healthy tissues was synthesized in the inoculated leaf. No significant increase in the activity of benzoic acid 2-hydroxylase, the last enzyme involved in SA biosynthesis, was detected in upper uninoculated leaves, although the basal level of enzyme activity was relatively high. No increases in SA level, pathogenesis-related PR-1 gene expression, or TMV resistance in the upper uninoculated leaf were observed if the TMV-inoculated leaf was detached up to 60 hr after inoculation. Apart from the inoculated tissues, the highest increase in SA was observed in the leaf located directly above the inoculated leaf. The systemic SA increase observed during SAR may be explained by phloem transport of SA from the inoculation sites.  相似文献   

8.
Pathogenesis-related proteins of group 1 (PR-1) are strongly induced in plants by pathogen attack, exposure of the plants to (acetyl)salicylic acid (ASA, SA), and by developmental cues. Functional analysis of the PR-1a promoter identified a region of 139 bp (from -691 to -553) mediating expression of the GUS reporter gene in response to ASA. Inspection of this region revealed two TGACG elements reminiscent of activation sequence-1 (as-1). Recently, as-1 has been reported to be responsive to SA in the context of the CaMV 35S RNA promoter. To address the question of whether the as-1-like sequence may be of functional significance for the expression of the PR-1a gene, gel shift assays were performed with TGA1a, a protein been shown to interact with as-1 in vitro. TGA1a was found to bind to the PR-1a as-1-like sequence with similar specificity and affinity as to as-1. Furthermore, mutations were introduced in the as-1-like sequence in the context of the inducible 906 bp PR-1a promoter which are impaired in binding TGA1a in vitro. Significantly reduced levels of GUS reporter gene activity were obtained with the mutant promoter regions as compared to the wild-type PR-1a promoter in response to all stimuli in transgenic tobacco plants. Yet, mutation of the as-1-like sequence did not abolish induction of reporter gene expression. Taken together, these results suggest that the level of expression of the tobacco PR-1a gene is controlled by an as-1-like sequence motif in the PR-1a upstream region, possibly interacting with a factor related to TGA1a.  相似文献   

9.
10.
Intercellular spaces are often the first sites invaded by pathogens. In the spaces of tobacco mosaic virus (TMV)-infected and necrotic lesion-forming tobacco (Nicotiana tabacum L.) leaves, we found that an inducer for acidic pathogenesis-related (PR) proteins was accumulated. The induction activity was recovered in gel-filtrated fractions of low molecular mass with a basic nature, into which authentic spermine (Spm) was eluted. We quantified polyamines in the intercellular spaces of the necrotic lesion-forming leaves and found 20-fold higher levels of free Spm than in healthy leaves. Among several polyamines tested, exogenously supplied Spm induced acidic PR-1 gene expression. Immunoblot analysis showed that Spm treatment increased not only acidic PR-1 but also acidic PR-2, PR-3, and PR-5 protein accumulation. Treatment of healthy tobacco leaves with salicylic acid (SA) caused no significant increase in the level of endogenous Spm, and Spm did not increase the level of endogenous SA, suggesting that induction of acidic PR proteins by Spm is independent of SA. The size of TMV-induced local lesions was reduced by Spm treatment. These results indicate that Spm accumulates outside of cells after lesion formation and induces both acidic PR proteins and resistance against TMV via a SA-independent signaling pathway.  相似文献   

11.
12.
Harpin, the product of the hrpN gene of Erwinia amylovora, elicits the hypersensitive response and disease resistance in many plants. Harpin and known inducers of systemic acquired resistance (SAR) were tested on five genotypes of Arabidopsis thaliana to assess the role of SAR in harpin-induced resistance. In wild-type plants, harpin elicited systemic resistance to Peronospora parasitica and Pseudomonas syringae pv. tomato, accompanied by induction of the SAR genes PR-1 and PR-2. However, in experiments with transgenic Arabidopsis plants containing the nahG gene which prevents accumulation of salicylic acid (SA), harpin neither elicited resistance nor activated SAR gene expression. Harpin also failed to activate SAR when applied to nim1 (non-inducible immunity) mutants, which are defective in responding to SA and regulation of SAR. In contrast, mutants compromised in responsiveness to methyl jasmonate and ethylene developed the same resistance as did wild-type plants. Thus, harpin elicits disease resistance through the NIM1-mediated SAR signal transduction pathway in an SA-dependent fashion. The site of action of harpin in the SAR regulatory pathway is upstream of SA.  相似文献   

13.
The hypersensitive interaction between Tobacco mosaic virus (TMV) and tobacco results in accumulation of salicylic acid (SA), defense gene expression, and development of systemic acquired resistance (SAR) in uninfected leaves. The plant hormones SA and ethylene have been implicated in SAR. From a study with ethylene-insensitive (Tetr) tobacco, we concluded that ethylene perception is required to generate the systemic signal molecules in TMV-infected leaves that trigger SA accumulation, defense gene expression, and SAR development in uninfected leaves. Ethylene perception was not required for the responses of the plant to the systemic signal that leads to SAR development.  相似文献   

14.
S A Bowling  J D Clarke  Y Liu  D F Klessig    X Dong 《The Plant cell》1997,9(9):1573-1584
The cpr5 mutant was identified from a screen for constitutive expression of systemic acquired resistance (SAR). This single recessive mutation also leads to spontaneous expression of chlorotic lesions and reduced trichome development. The cpr5 plants were found to be constitutively resistant to two virulent pathogens, Pseudomonas syringae pv maculicola ES4326 and Peronospora parasitica Noco2; to have endogenous expression of the pathogenesis-related gene 1 (PR-1); and to have an elevated level of salicylic acid (SA). Lines homozygous for cpr5 and either the SA-degrading bacterial gene nahG or the SA-insensitive mutation npr1 do not express PR-1 or exhibit resistance to P. s. maculicola ES4326. Therefore, we conclude that cpr5 acts upstream of SA in inducing SAR. However, the cpr5 npr1 plants retained heightened resistance to P. parasitica Noco2 and elevated expression of the defensin gene PDF1.2, implying that NPR1-independent resistance signaling also occurs. We conclude that the cpr5 mutation leads to constitutive expression of both an NPR1-dependent and an NPR1-independent SAR pathway. Identification of this mutation indicates that these pathways are connected in early signal transduction steps and that they have overlapping functions in providing resistance.  相似文献   

15.
16.
17.
18.
19.
Plant secondary metabolites of the terpenoid indole alkaloid (TIA) class comprise several compounds with pharmaceutical applications. A key step in the TIA biosynthetic pathway is catalysed by the enzyme tryptophan decarboxylase (TDC), which channels the primary metabolite tryptophan into TIA metabolism. In Catharanthus roseus (Madagascar periwinkle), the Tdc gene is expressed throughout plant development. Moreover, Tdc gene expression is induced by external stress signals, such as fungal elicitor and UV light. In a previous study of Tdc promoter architecture in transgenic tobacco it was shown that the ?538 to ?112 region is a quantitative determinant for the expression level in different plant organs. Within this sequence one particular region (?160 to ?99) was identified as the major contributor to basal expression and another region (?99 to ?37) was shown to be required for induction by fungal elicitor. Here, the in vitro binding of nuclear factors to the ?572 to ?37 region is described. In extracts from tobacco and C. roseus, two binding activities were detected that could be identified as the previously described nuclear factors GT-1 and 3AF1, based on their mobility and binding characteristics. Both factors appeared to interact with multiple regions in the Tdc promoter. Mutagenesis of GT-1 binding sites in the Tdc promoter did not affect the basal or elicitor-induced expression levels. However, induction of the Tdc promoter constructs by UV light was significantly lower, thereby demonstrating a functional role for GT-1 in the induction of Tdc expression by UV light.  相似文献   

20.
Systemic induction of pathogenesis-related (PR) proteins in tobacco, which occurs during the hypersensitive response to tobacco mosaic virus (TMV), may be caused by a minimum 10-fold systemic increase in endogenous levels of salicylic acid (SA). This rise in SA parallels PR-1 protein induction and occurs in TMV-resistant Xanthi-nc tobacco carrying the N gene, but not in TMV-susceptible (nn) tobacco. By feeding SA to excised leaves of Xanthi-nc (NN) tobacco, we have shown that the observed increase in endogenous SA levels is sufficient for the systemic induction of PR-1 proteins. TMV infection became systemic and Xanthi-nc plants failed to accumulate PR-1 proteins at 32 degrees C. This loss of hypersensitive response at high temperature was associated with an inability to accumulate SA. However, spraying leaves with SA induced PR-1 proteins at both 24 and 32 degrees C. SA is most likely exported from the primary site of infection to the uninfected tissues. A computer model predicts that SA should move rapidly in phloem. When leaves of Xanthi-nc tobacco were excised 24 hr after TMV inoculation and exudates from the cut petioles were collected, the increase in endogenous SA in TMV-inoculated leaves paralleled SA levels in exudates. Exudation and leaf accumulation of SA were proportional to TMV concentration and were higher in light than in darkness. Different components of TMV were compared for their ability to induce SA accumulation and exudation: three different aggregation states of coat protein failed to induce SA, but unencapsidated viral RNA elicited SA accumulation in leaves and phloem. These results further support the hypothesis that SA acts as an endogenous signal that triggers local and systemic induction of PR-1 proteins and, possibly, some components of systemic acquired resistance in NN tobacco.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号