首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

The frequency of epizoans (cornulitids, inarticulate brachiopods, bryozoans, solitary and colonial rugosan corals) on over 8000 specimens of articulate brachiopods (four strophomenids, five orthids, one rhynchonellid) was calculated for four stratigraphic horizons in the Dillsboro Formation of southeastern Indiana. Frequency of shells encrusted correlates significantly with the surface area of the valves. Punctae in brachiopod shells (Onniella meeki) may have deterred larval settlement of epizoans. Coarse ribbing on articulates deterred encrustation by the inarticulate brachiopod. The horn coral shows a preference for attachment to the anterior of Hiscobeccus capax. Bryozoans show a preference for the incurrent lateral margins of inferred living hosts, suggesting rheotropic behavior by settling larvae. Inarticulate brachiopods are concentrated around the sloping commissure of the brachial valve of strophomenids, suggesting geotropic behavior and/or selective survival of settling larvae. Inarticulates deterred overgrowth by bryozoans. High frequencies of encrustations of the medial region of pedicle valves of orthids and strophomenids probably reflect post‐mortem encrustations. Alternating intervals of slow sediment accumulation punctuated by tropical storms and rapid shell burial may account for the high frequency of shells with either their entire surface veneered or only a very small area encrusted by bryozoans.  相似文献   

2.
In contrast to the Palaeozoic to Jurassic fossil record, modern tropical and subtropical shallow-water brachiopods are typically small-sized and mostly restricted to cryptic habitats in coral reefs, but information on microhabitat-composition is scant. At Dahab, northern Red Sea, living brachiopods of the genus Argyrotheca were only detected on massively encrusted coral colonies attached to encrusting foraminifers and coralline red algae. Three samples from autochthonous sediments underneath coral colonies are comparatively rich in the brachiopod genera Megerlia and Argyrotheca, and additionally show low numbers of Novocrania and Thecidellina. Based on a coarse-grain analysis including more than 16,000 components >1 mm, these brachiopod shells co-occur with skeletal components of 11 higher taxa. Decapods, fixosessile foraminifers, molluscs, scleractinians, and coralline red algae clearly dominate the assemblages. Brachiopods in this study always contribute less than 2% to the sediment composition. This confirms previous results that even in brachiopod habitats the contribution of brachiopod shells to the total sediment composition is almost negligible. Our study indicates that brachiopods co-occur with pteriomorph bivalves and other epifauna in the cryptic habitats with limited space for encrusters or epibionts on the undersides of scleractinians and it tentatively supports the hypothesis of brachiopods preferring habitats with low grazing pressure, because shelly components of grazers (polyplacophorans and regular echinoids) are rare in our samples.  相似文献   

3.
本文对贵州募役剖面长兴期腕足动物群进行了系统分类鉴定和古生态分析,发现其与前人所报道的华南同时期腕足动物群存在着显著的差别,以Spiriferellina为绝对优势属,包含少量华南长兴期的常见分子,如Fusichonetes、Araxathyris和Peltichia等。募役剖面的腕足类化石主要产自碎屑岩层位,与华南同期碎屑岩相剖面的腕足动物群落相比,该动物群中的优势分子个体较大、壳体较厚且发育较粗大的壳疹,这可能与长兴期募役剖面动物群所处的特殊栖息地环境(浅水碳酸盐岩台地与深水硅质碎屑岩盆地之间的过渡地带)有关。二叠纪末期大规模的火山作用导致水体中碎屑物质含量增加,影响腕足类的滤食效率,而募役剖面清澈、水动力弱的水体环境,为滤食性的腕足动物提供了有利的环境条件。最后,通过与华南长兴期不同沉积相区腕足动物群落(六枝剖面、稻堆山剖面、中寨剖面、新民剖面、马家山剖面和仁村坪剖面群落)的对比分析,发现募役剖面腕足动物群与毗邻的六枝剖面腕足动物群在属级组成上的相似度较高,且过渡岩相栖息地环境下的腕足动物群在生物灭绝事件前也呈现出高优势度、低均匀度的群落结构特征,指示海洋底栖生物群落已经先于二叠纪末期生物集群灭绝事件出现了早期危机信号。  相似文献   

4.
Pseudoatrypa (Atrypida, Brachiopoda) are extinct Paleozoic brachiopods that are the closest relatives of the modern brachiopods, rhynchonellids. Two Paleozoic brachiopod species were qualitatively distinguished based on close examination of phenotypic characters and traditional morphometrics. These species were recovered for the first time from the Givetian localities of Traverse Group of Michigan. The efficacy of geometric morphometric analyses in discriminating species has been proven for various organisms, but rarely studies have been performed in distinguishing brachiopod species. The advanced morphometric model developed here using the Procrustes-based landmark method is based on the analysis of valve shape in two extinct brachiopod species: Pseudoatrypa lineata and Pseudoatrypa devoniana. Results from quantitative analyses reinforce the qualitative identifications of the two species. The application of this method on four different orientations (dorsal, ventral, posterior and anterior regions) of the brachiopods permits the two species to be clearly separated, and this study proposes that the model can be effectively used for future identification and distinction of fossil species. Additionally, this study will aid biologists, paleontologists and neontologists in making appropriate advancement in systematic studies and further assist with gauging biodiversity congruously.  相似文献   

5.
The morphological variation of the sulcal development and shell outline in large Permian neospiriferine brachiopods including Fasciculatia Waterhouse, 2004 is investigated using geometric morphometrics. The sulcal tongues of spiriferide brachiopods can be, in a qualitative sense, categorized into three types according to the degree of their development: short sulcal tongue, long sulcal tongue and geniculated sulcal tongue. All three types have been noted within Fasciculatia striatoparadoxa, regardless of the nature of the substrate which they originally inhabited. To quantify its morphological variation both in sulcal development and shell outline, 51 brachiopod shells were scanned with a three‐dimensional (3‐D) surface imaging device, and their 3‐D models were reconstructed. Using two landmarks and 58 semilandmarks designated on the surface of the reconstructed 3‐D models, a landmark‐based morphometric analysis was performed. Our result demonstrates a significant intraspecific variation of sulcal development in F. striatoparadoxa and its relatives. Local environmental factors, especially the intensity of ambient water flow, are invoked as the most likely cause for this intraspecific variation. Additionally, this study also shows that there are considerable interspecific distinctions in shell outline among Fasciculatia species, independent of the high variation in the sulcal development. The strong stability of overall shell outline at species level implies a decoupled morphological development between sulcal tongue and whole shell outline. The 3‐D morphometric approach applied here demonstrates its great utility as a tool for quantifying and analysing the morphological variation of highly convex brachiopod shells.  相似文献   

6.
The in-life and post-mortem orientations of the Lower Devonian brachiopod Meristella atoka from the Haragan Formation (Lower Devonian; south-central Oklahoma) are inferred from the distribution of epizoic bryozoans and the orientations of base plates of epizoic corals. Three bryozoans, Cyphotrypa corrugata, Fistuliporella maynardi and Leioclema pulchellum, and one coral, Favosites conicus, are considered. Most zoaria that contact the commissure terminate at the commissurc, and a few zoaria terminate at growth lines. This suggests that the bryozoans were primarily life associates of Meristella atoka. Collectively, these three bryozoan species most extensively encrusted marginal sectors of the brachial valve and are very rare on the posteromedian sector (the umbo) of the pedicle valve. This distributional pattern indicates that the preferred living orientation of Meristella atoka was umbo-down (posteromedian sector of the pedicle valve resting on or buried in the substratum) with the commissure steeply inclined to the sediment water interface. Most coralla of Favosites conicus that contacted the commissure encrusted over the commissure. This indicates that Favosites conicus either preferentially encrusted Meristella atoka post-mortem or colonized living brachiopods but subsequently caused them to die. Furthermore, Favosites conicus most extensively encrusted anterior sectors of the brachial valve, especially the fold. The lateral and anterior orientations of the commissure with respect to the base plates (holothecae) of Favosites conicus indicates that the brachiopods were oriented approximately horizontal with respect to the base plates. This suggests that the preferred post-mortem orientation of Meristella atoka was resting nearly horizontally on the substratum. These data and interpretations confirm previously inferred in-life orientations of Meristella atoka and are consistent with post-mortem orientations hypothesized for elongate-oval athyrid brachiopods. □Brachiopoda, Athyridacea, Meristella atoka , palaeoecology, autecology, epizoans, bryozoans, corals, sedimentology, Lower Devonian, North America, Oklahoma.  相似文献   

7.
Tomteluva perturbata gen. et sp. nov. and Nasakia thulensis gen. et sp. nov., two new rhynchonelliformean brachiopod taxa, are described from carbonate beds from the lower middle Cambrian (Series 3, Stage 5) basinal Stephen Formation, Canada, and the upper lower Cambrian (Series 2, Stage 4) Henson Gletscher Formation, North Greenland, respectively. The two taxa are characterized by an unusual coral‐like morphology typified by a high conical ventral valve with an anteriorly curved umbo and a tube‐like structure inside the ventral valve, interpreted as pedicle tube. Both resemble the problematic late middle Cambrian (Drumian) species Anomalocalyx cawoodi Brock from Australia, whose systematic affiliation is controversial. Together, the three genera are interpreted as representatives of a new family of rhynchonelliformean brachiopods, the Tomteluvidae fam. nov., which is interpreted as an aberrant or derived taxon within the Order Naukatida. Convergence between the Tomteluvidae and the coralla of small solitary Cambrian coralimorphs, as well as the late Palaeozoic reef‐building richthofenioid brachiopods, might indicate adaptation to a similar life habits and environments. However, their small size (length 4 mm), well‐developed pedicle and perfect morphological symmetry make it more likely that tomteluvids lived attached to frondose algae or sponges, above the seafloor, in a similar fashion to the acrotretoid brachiopods with which they show a high degree of morphological convergence. Morphological features of the pedicle tube of N. thulensis suggest that the tomteluvid pedicle is homologous to that in modern rhynchonelliformean brachiopods. This is the first evidence of the pedicle type within the Naukatida and represents the oldest confirmation of a rhynchonellate pedicle.  相似文献   

8.
9.
The rhynchonellid brachiopod Obliquorhynchia flustracea from the middle Danian (Paleocene) cool‐water coral mounds of the Faxe Formation, Denmark, exhibits commissural asymmetry, a rare feature in articulate brachiopods. It has been much discussed whether the underlying reasons for this asymmetry were species specific caused by pedicle attachment in the limited space between the branches of the scleractinian Dendrophyllia candelabrum. The two species are always found together, and the brachiopod is essentially missing outside facies characterized by Dcandelabrum. Based on morphological analyses and statistical tests, we suggest that ecophenotypic variation is the main reason for the variability in the external shell morphology and development of commissural asymmetry. Conditions such as sexual dimorphism and defects can be dismissed as a facilitating reason of phenotypic variation. This is a rare case where it is possible to directly link commissural asymmetry to mode of attachment on a specific host.  相似文献   

10.
Spiralia are lophophore‐supporting, coiled internal structures developed in some extinct brachiopods. In spite of considerable variations in their orientation, the spiralia of most spiriferide and spiriferinide taxa are known to be laterally directed. Recent studies have shown that these brachiopods consistently have a median inhalant and lateral exhalant feeding system. Here, we report a Permian spiriferellid brachiopod fossil (Spiriferella protodraschei) bearing ventrally directed spiralia in its interior. Using the serial sections of the specimen, we have reconstructed the detailed morphology and orientation of the spiralia. Each spiralium in the specimen does not show the apically tapering pattern supposedly universal in all the known types of spiralia: instead it maintains a similar diameter even at its last whorl. The spiralia appear to have directly developed from strong and anteriorly extended crura, consisting of ten whorls in one side and 13 whorls in the other side. As the morphology and orientation of spiralia are immediately associated with the arrangement of spirolophous lophophore within the mantle cavity, the extraordinary orientation and form of the spiralia indicate that this brachiopod likely had developed a considerably modified feeding pattern with respect to most other spirolophous brachiopods. It is postulated that the inhalant/exhalant current circulation of the species (and its descendants) would be considerably different from that of other spiriferide taxa. In particular, the combination of the vertically oriented life posture (free‐lying with thickened ventral apex bottom) and ventrally directed spiralia resembles both fossil atrypide and modern rhynchonellide brachiopods in the orientation of spirolophe, suggesting that some spiriferellid brachiopods may have developed a lateral inhalant/median exhalant feeding current system. A few spiriferide and spiriferinide brachiopod taxa with a weakly transverse but strongly convex ventral valve are noted to exhibit similar modifications in their spiralia, possibly due to the spatial limitation of their mantle cavities.  相似文献   

11.
《Palaeoworld》2016,25(4):675-683
Computational fluid dynamics simulations were performed to examine the passive recruitment of epibionts onto Devonian spiriferide brachiopod host shells. Because many planktonic larvae and spores are propulsion-inefficient swimmers, we determined the areas most prone to settlement in terms of inertial impaction and direct interception, which are characteristic of higher and lower pressure, respectively. Simulations on a unique specimen of Paraspirifer with a geopetal structure of broken brachidia suggest that the larva of Aulopora on the shell was transported and had settled onto the shell through inertial impaction after the host was dead and overturned on the sea floor. In the case of an ideal life posture, the spiriferide models received higher pressure on the shell surfaces at the forward and rearward stagnation areas and lower pressure along the shell margins and the anterior part of the sulcus, regardless of whether the ventral or the dorsal valve was facing upstream. Both sites seem to be available for epibionts by way of direct interception or inertial impaction. Our results indicate that the initial recruitment of most epibionts is accidental and passive, whereas the directions and patterns of epibiont growth suggest a biological response to ambient conditions.  相似文献   

12.
Shiino, Y & Suzuki, Y. 2011: The ideal hydrodynamic form of the concavo‐convex productide brachiopod shell. Lethaia, Vol. 44, pp. 329–343. Water‐flume experiments were performed to determine whether the concavo‐convex Permian brachiopod Waagenoconcha imperfecta was hydrodynamically adapted for feeding. The generation of passive currents inside the valves was observed experimentally. The use of four transparent, hollow polyhedron models, each differing in a single morphological feature, permitted observation of the currents inside the valves and allowed evaluation of the hydrodynamic significance of the ears and the prominent geniculated trail. Regardless of the direction of ambient flow, only the approximate‐imitation model generated a stable flow pattern consisting of inhalation from the ear gapes and exhalation from the anterior trail gape; models lacking or with small changes in these morphological features failed to generate stable flow patterns. The stable flow pattern was probably maintained by a pressure difference between the posterior lower ear gapes (maximum pressure) and the anterior trail gape (minimum pressure). Notably, bilaterally rotating internal currents formed parallel to the brachial ridges; such flow patterns would facilitate the capture of food particles by the animal via tentacles on its lophophore, which is most likely were located on the brachial ridges. Our results demonstrate that the immobile brachiopod W. imperfecta, an animal incapable of widely opening its valves, probably fed on the passive internal currents generated by its shell form. This unique valve morphology appears to be perfectly adapted from a hydrodynamic point of view. □Biomechanics, ecomorphology, evolution, morphological disparity, Productidina, suspension feeder.  相似文献   

13.
The species of the brachiopod Gigantoproductus are giants within the Palaeozoic sedentary benthos. This presents a dilemma as living brachiopods have low‐energy lifestyles. Although brachiopod metabolic rates were probably higher during the Palaeozoic than today, the massive size reached by species of Gigantoproductus is nevertheless unusual. By examining the diet of Gigantoproductus species from the Visean (Mississippian, Carboniferous) of Derbyshire (UK), we seek to understand the mechanisms that enabled those low‐metabolism brachiopod species to become giants. Were they suspension feeders, similar to all other brachiopods, or did endosymbiosis provide a lifestyle that allowed them to have higher metabolic rates and become giants? We suggest that the answer to this conundrum may be solved by the identification of the biogeochemical signatures of symbionts, through combined analyses of the carbon and nitrogen‐isotopic compositions of the occluded organic matrix within their calcite shells. The shells are formed of substructured columnar units that are remarkably long and a few hundreds of microns wide, deemed to be mostly pristine based on multiple analyses (petrography, cathodoluminescence (CL), scanning electron microscopy (SEM), electron backscatter diffraction (EBSD), transmission electron microscopy (TEM)); they contain occluded organic fractions detected by TEM, nuclear magnetic resonance (NMR) and gas chromatography mass spectrometry (GC‐MS) analyses. We conclude that the gigantic size reached by the species of Gigantoproductus is probably the result of a mixotroph lifestyle, by which they could rely on the energy and nutrients derived both from photosymbiotic microbes and from filtered particulate food.  相似文献   

14.
Well‐preserved juvenile specimens of the orthotetide brachiopod Coolinia pecten (Linnaeus, 1758 ) from the Silurian of Gotland, Sweden, demonstrate evidence of a planktotrophic larval habit. Larval shell morphology indicates the absence of a pedicle sheath: this character is otherwise typical of derived billingsellides, strophomenides and productides, which form the conventional strophomenide clade. The presence of a rudimentary colleplax structure in the larval shell of Colinia suggests instead a phylogenetic link to chiliate brachiopods and the enigmatic genus Salanygolina. This relationship suggests an early divergence of rhynchonellate and strophomenate brachiopods.  相似文献   

15.

Two strophomenid brachiopod shell pavements bearing abundant edrioasteroid epizoans occur stratigraphically within the top 4.5 m of the Corryville Formation (Upper Ordovician, Maysvillian) in Boone County, Kentucky, and Hamilton County, Ohio. Both assemblages are dominated by Isorophus cincinnatiensis and contain Carneyella pilea and Streptaster vorticellatus as lesser constituents. Pedicle exterior valves of Rafinesquina “alternata”; are the preferred substratum for all species at both sites, but the Kentucky population occurs mainly on unabraded, articulated shells and the Ohio population occupies abraded, disarticulated shells. The Kentucky population includes a greater size range of Isorophus (at least three cohorts) than the Ohio population (at least two cohorts), suggesting a greater time span of colonization for the Kentucky site. Host shells from Kentucky have anterior‐posterior axes strongly aligned NE‐SW whereas the Ohio shells are unoriented. Isorophus in Kentucky show a preference for the anterior margin of the Rafinesquina pedicle exterior valve, whereas Isorophus in Ohio show no preferred location on host shells. The Kentucky edrioasteroids are inferred to have attached to mainly live Rafinesquina in brachial‐valve‐up position. Host shells were inverted and oriented by a NE‐SW storm surge, then buried rapidly. Ohio edrioasteroids occupied mainly dead, already inverted host shells not oriented by storm surge possibly because of their more downslope (distal) location. Comparative taphonomic relationships between the two coeval populations are consistent with a model of proximal to distal distribution along a gentle shallow subtidal N‐S paleoslope subject to episodic storm activity.  相似文献   

16.
Schimmel, M., Kowalewski, M. & Coffey, BP. 2011: Traces of predation/parasitism recorded in Eocene brachiopods from the Castle Hayne Limestone, North Carolina, USA. Lethaia, Vol. 45, pp. 274–289. The Castle Hayne Limestone (Middle Eocene, North Carolina), noted for its diverse macro‐invertebrate fossils, was sampled to assess if Early Cenozoic brachiopods from eastern North America record any traces of biotic interactions. Systematic surveys of two North Carolina quarries yielded 494 brachiopods dominated by one species: Plicatoria wilmingtonensis (Lyell and Sowerby, 1845). Despite subtle variations in taphonomy, taxonomy and drilling patterns, the two sampled quarries are remarkably similar in terms of quantitative and qualitative palaeoecological and taphonomic patterns. In both quarries, brachiopods contain frequent drillholes (24.5% specimens drilled). The majority of drillholes were singular, perpendicular to shell surface and drilled from the outside. Ventral valves were drilled slightly more frequently than dorsal ones, but site‐selectivity in drilhole location was not evident. Larger brachiopods were drilled significantly more frequently than smaller ones. However, drillhole diameter did not correlate with brachiopod size. The drillholes are interpreted as records of ‘live‐live’ biotic interactions, representing either predatory attacks or parasitic infestations or a combination of those two types of interactions. A notable fraction of specimens bear multiple drillholes, which is consistent with either parasitic nature of interactions or frequent failed predatory events. The high drilling frequency reported here reinforces other reports (from other continents and other epochs of the Cenozoic), which suggest that brachiopods may be an important prey or host of drilling organisms in some settings. The number of case studies reporting high frequencies of drilling in brachiopods is still limited and thus insufficient to draw reliable generalizations regarding the causes and consequences of these occasionally intense ecological interactions. □Brachiopods, drilling parasitism, drilling predation, Eocene, North Carolina, taphonomy.  相似文献   

17.
A new genus and species of a Middle Cambrian stem group brachiopod, Acanthotretella spinosa n. gen. and n. sp., is described from the Burgess Shale Formation. Most of the 42 specimens studied came from the Greater Phyllopod bed (Walcott Quarry) and were collected from five bed assemblages, each representing a single obrution event. Specimens are probably preserved within their original habitat. In contrast to all brachiopods known from the Burgess Shale, the shells of the new stem group brachiopod are often deformed and do not show signs of brittle breakage, which suggests that the valves were originally either entirely organic in composition or, more likely, had just a minor mineral component. Acanthotretella spinosa differs from all the other described Cambrian brachiopods in that it is covered by long, slender and possibly partly mineralized spines that are posteriorly inclined at an oblique angle away from the anterior margin. The spines penetrate the shell and are mainly comparable with the thorn‐like organic objects that have been inferred from early siphonotretoid brachiopods. The pedicle was slender and was composed of a central coelomic region and emerged from an apical foramen at the end of an internal pedicle tube. The finding of a pedicle attached to the macrobenthic algae Dictyophycus and other epibenthos implies that A. spinosa did not have an infaunal mode of life. The visceral region and interior characters are poorly preserved.  相似文献   

18.
Molecular phylogenetics has resulted in conflicting accounts of the relationship between phoronids and brachiopods. Taxonomically comprehensive analyses of brachiopod and phoronid ribosomal DNA sequences (rDNAs) rooted with short‐branched mollusc sequences uniformly find that phoronids nest within brachiopods as the sister of the three extant inarticulate lineages. Here, this is called the ‘alternate’ topology because it does not match traditional, morphology‐based ideas. Many other analyses of protein‐coding genes and/or rDNAs place phoronids elsewhere, often as the sister group of all brachiopods, better matching ‘traditional’ ideas. However, these analyses generally are based on data from small selections of brachiopods and phoronids, include data from a wide range of other metazoan taxa, and are rooted with distant outgroups. Here, I show that outgroup rooting of brachiopods and phoronid rDNAs is unreliable, and instead find the root position with procedures that are free from all distortions caused by distantly related taxa, i.e. by Bayesian and maximum likelihood relaxed‐clock analyses of a purely ingroup alignment. All such analyses confirm the ‘alternate’ topology: phoronids belong within the Brachiopoda as the sister group of the inarticulates. In addition, nine factors are identified that (singly or in combination) can cause misreporting of the phylogenetic signal in wide taxon‐range analyses of both rDNA and amino acid sequence data. © 2012 The Linnean Society of London, Zoological Journal of the Linnean Society, 2012.  相似文献   

19.
Substrate specificity of Auloporida (Tabulata) from the Ska?y Fm. (Upper Eifelian-Lower Givetian) of the Holy Cross Mts., Poland, has been recognized. Kyrtatrypa sp., a rare species in the formation (under 5%), was the most often encrusted brachiopod (59% of investigated specimens), while the most often occurring brachiopod, Aulacella eifeliensis (de Verneuil) was nearly not encrusted. The majority of encrusted brachiopods were larger than 20 mm, while smaller brachiopods occur abundantly in the Formation. The substrate specificity has been caused mainly by the ornamentation of the host's shell. The position of corallites along the commissure of the brachiopod shell proves that auloporids often encrusted living hosts. The epizoan probably used water currents produced by brachiopod's lophophore impoverishing the host's food composition, their relationship can therefore be described as scramble competition.  相似文献   

20.
Abstract: A diverse brachiopod fauna from a relatively deep water carbonate facies of the Upper Ordovician Beiguoshan Formation (uppermost Caradoc – lower Ashgill, middle Katian) is characterized by small shells and contains the oldest known Dicoelosia and Epitomyonia, two diagnostic taxa of deep water brachiopod palaeocommunities during the Late Ordovician and Silurian. Three new species are recognized: Dicoelosia cordiformis sp. nov., Dicoelosia perbrevis sp. nov. and Epitomyonia fui sp. nov. These pioneer forms of the family Dicoelosiidae show a relatively high degree of morphological plasticity. The shells of Dicoelosia from the Beiguoshan Formation range from the typical slender‐lobed form with a concavoconvex profile to the strongly equibiconvex, fat‐lobed morphotype that was not known previously until the late Silurian. The Beiguoshan dicoelosiids point to an important attribute of the deep water brachiopods: small generalists with high morphological plasticity, which make them ideal candidates as progenitors for the evolution of shallow water brachiopod faunas in shelf and platform depositional environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号