首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.

The frequency of epizoans (cornulitids, inarticulate brachiopods, bryozoans, solitary and colonial rugosan corals) on over 8000 specimens of articulate brachiopods (four strophomenids, five orthids, one rhynchonellid) was calculated for four stratigraphic horizons in the Dillsboro Formation of southeastern Indiana. Frequency of shells encrusted correlates significantly with the surface area of the valves. Punctae in brachiopod shells (Onniella meeki) may have deterred larval settlement of epizoans. Coarse ribbing on articulates deterred encrustation by the inarticulate brachiopod. The horn coral shows a preference for attachment to the anterior of Hiscobeccus capax. Bryozoans show a preference for the incurrent lateral margins of inferred living hosts, suggesting rheotropic behavior by settling larvae. Inarticulate brachiopods are concentrated around the sloping commissure of the brachial valve of strophomenids, suggesting geotropic behavior and/or selective survival of settling larvae. Inarticulates deterred overgrowth by bryozoans. High frequencies of encrustations of the medial region of pedicle valves of orthids and strophomenids probably reflect post‐mortem encrustations. Alternating intervals of slow sediment accumulation punctuated by tropical storms and rapid shell burial may account for the high frequency of shells with either their entire surface veneered or only a very small area encrusted by bryozoans.  相似文献   

3.

A detailed study of over 2500 host brachiopods, from the Middle Devonian Hamilton Group of New York State, revealed distinct patterns of epibiont encrustation, that provide insight into taphonomy and paleoautecology of the host brachiopod shells and depositional environments. The concavo‐convex orthid, Tropidoleptus carinatus (Conrad), as well as strophomenid, and smooth athyrid brachiopods are among the most heavily encrusted. However, terebratulids of nearly identical size and shape are relatively clean of epibionts. This selective distribution strongly suggests that epibionts were discouraged from settling on punctate brachiopods. Brachiopods with small spines and frills were also nearly clean of epibionts, possibly because of entrapment of a mud layer, which made the outer layer of the host inhospitable for larval settling. Concavo‐convex taxa reveal high percent coverage and diversity of epibionts on the convex valve, which probably rested on the substrate during the life of brachiopod. This pattern is observed even on brachiopods that were buried with the convex valve downward. This implies complex post‐mortem histories involving multiple episodes of reorientation and colonization.  相似文献   

4.
In contrast to the Palaeozoic to Jurassic fossil record, modern tropical and subtropical shallow-water brachiopods are typically small-sized and mostly restricted to cryptic habitats in coral reefs, but information on microhabitat-composition is scant. At Dahab, northern Red Sea, living brachiopods of the genus Argyrotheca were only detected on massively encrusted coral colonies attached to encrusting foraminifers and coralline red algae. Three samples from autochthonous sediments underneath coral colonies are comparatively rich in the brachiopod genera Megerlia and Argyrotheca, and additionally show low numbers of Novocrania and Thecidellina. Based on a coarse-grain analysis including more than 16,000 components >1 mm, these brachiopod shells co-occur with skeletal components of 11 higher taxa. Decapods, fixosessile foraminifers, molluscs, scleractinians, and coralline red algae clearly dominate the assemblages. Brachiopods in this study always contribute less than 2% to the sediment composition. This confirms previous results that even in brachiopod habitats the contribution of brachiopod shells to the total sediment composition is almost negligible. Our study indicates that brachiopods co-occur with pteriomorph bivalves and other epifauna in the cryptic habitats with limited space for encrusters or epibionts on the undersides of scleractinians and it tentatively supports the hypothesis of brachiopods preferring habitats with low grazing pressure, because shelly components of grazers (polyplacophorans and regular echinoids) are rare in our samples.  相似文献   

5.
The classic Chengjiang Lagerstätte (Lower Cambrian, Atdabanian stage: Yu''anshan Formation) Yunnan, southwestern China, has yielded, besides the exceptional and often controversial soft-bodied fossils, a fauna of primitive/early lingulid brachiopods. Diandongia pista (Rong 1974) is one of the commonest and most strongly mineralized of the phosphatic brachiopods from the Lagerstätte. The shells of this species have been found to commonly serve as a basibiont host. Epibionts comprise the coeval brachiopod Longtancunella chengjiangensis and the cone-shaped cnidarian-related Archotuba conoidalis, as well as rounded smaller-sized epizoans (lesser than 2 mm). A principle morphological analysis demonstrates that the ovoid and rounded organisms that often occur along the commissure of D. pista resemble small juvenile or immature brachiopods. Epibiont-bearing shells of D. pista with soft-tissue preservation demonstrate that the host brachiopods were overgrown while alive, and provide an argument for D. pista having a semi-infaunal life style with only the slim pedicle embedded in sediment. The epibiotic association sheds direct light on the ecology of Cambrian brachiopods in soft-substrate marine environments. The Chengjiang fossils demonstrate that the Early Cambrian brachiopods, as compared with recent lingulids, occupied different and a wider spectrum of ecological niches and tiers of space.  相似文献   

6.
《Palaeoworld》2021,30(4):643-648
Epipunctae are microscopic perforations that do not penetrate the shell but are confined to the outer layers of the shell. They have been known previously only in the orthidine family Plaesiomyidae. The striated walls of epipunctae are considered unique to brachiopods and thus of significance for the study of stem-group brachiopod. In this study, we report the first occurrence of epipunctae in a non-plaesiomyid brachiopod based on a well-preserved external mould of Cathaysiorthis yushanensis from the lower Silurian Shiyang Formation of Jiangxi, southeastern China. The species belongs to the Family Cathaysiorthidae which differs from the Family Plaesiomyidae in many aspects especially in dorsal internal structures. The new data imply that epipunctae may be more widespread in orthide brachiopods than previously thought, strengthening the notion that this is a plesiomorphic character of the brachiopod shell. The discovery of epipunctae, however, depends on excellent preservation of the outer surface of the shells as well as careful cleaning and observation.  相似文献   

7.
The Devonian cemented brachiopod Schuchertellopsis durbutensis has proved difficult to classify and its possible taxonomic relationships are unknown. Morphologically Schuchertellopsis resembles more closely members of the Orthotetidina than the Davidsoniidina. Examination of the shell structure, a key diagnostic feature of the Orthotetidina, shows that Schuchertellopsis has the cross laminar secondary shell typical of all orthotetidines. However, the presence of both pseudopunctate and incipient an extropunctate fabric within the ventral valve is unique amongst orthotetidine brachiopods and is thought to represent a phase of shell fabric experimentation. Schuchertellopsis probably fits most comfortably within the Schuchertellidae, and is the earliest representative of that family.  相似文献   

8.
Carbonate production by brachiopods in shallow-water habitats is generally expected to be not sufficiently high and temporally persistent to allow them to form very thick and densely packed shell concentrations. The formation of thick brachiopod concentrations requires long-term persistence of populations with high density of individuals, and such circumstances are assumed to be rare especially during the Cenozoic. However, here we show that the large-sized brachiopod Terebratula terebratula, the most common species in benthic assemblages with epifaunal bivalves and irregular echinoids, formed several decameter- to meter-thick, densely packed concentrations in shallow siliciclastic, high-energy environments, in a seaway connecting the Atlantic Ocean with the Mediterranean Sea during the Latest Tortonian (Late Miocene, Guadix Basin, southern Spain). This brachiopod formed (1) meter-scale, thick, parautochthonous concentrations in a prodelta setting and (2) thin, mainly allochthonous, tide- and storm-reworked concentrations in megaripples and dunes. The abundance of brachiopods at the spatial scale of the Guadix Basin seems to be mainly related to intermediate levels of sedimentation rate and current velocity because abundance and thickness of shell concentrations decline both (1) in onshore direction towards delta foresets with high sedimentation rate generated by debris flows and (2) in offshore direction with increasing levels of tide- and storm-induced substrate instability. Although brachiopods in dune and megaripple deposits are more fragmented, disarticulated, and sorted, and have a higher pedicle/brachial valve ratio than in prodelta deposits, taphonomic damage is still relatively high in prodelta deposits. Terebratula terebratula thus formed thick concentrations in spite of that disintegration processes were relatively intense along the whole depositional gradient. Therefore, population dynamic of this species was probably characterized by production maxima that were comparable to some Cenozoic molluscs in terms of their productivity potential to form thick shell concentrations in shallow subtidal environments. We suggest that temporal changes in brachiopod carbonate production have a significant spatial and phylogenetic component because multiple large-sized species of the family Terebratulidae, which underwent radiation during the Cenozoic, attained high abundances and formed shell concentrations in temperate regions.  相似文献   

9.
《Palaeoworld》2020,29(3):512-533
Abundant and diverse small shelly fossils have been reported from Cambrian Series 2 in North China, but the co-occurring brachiopods are still poorly known. Herein, we describe seven genera, five species and two undetermined species of organophosphatic brachiopods including one new genus and new species from the lower Cambrian Xinji Formation at Shuiyu section, located on the southern margin of North China Platform. The brachiopod assemblage comprises one mickwitziid (stem group brachiopoda), Paramickwitzia boreussinaensis n. gen. n. sp., a paterinide, Askepasma toddense Laurie, 1986, an acrotretoid, Eohadrotreta cf. zhenbaensis Li and Holmer, 2004, a botsfordiid, Schizopholis yorkensis (Holmer and Ushatinskaya in Gravestock et al., 2001) and three linguloids, Spinobolus sp., Eodicellomus cf. elkaniiformis Holmer and Ushatinskaya in Gravestock et al., 2001 and Eoobolus sp. This brachiopod assemblage suggests a late Age 3 to early Age 4 for the Xinji Formation and reveals a remarkably strong connection with coeval faunas from East Gondwana, particularly the Hawker Group in South Australia. The high degree of similarity (even at species level) further supports a close palaeogeographic position between the North China Platform and Australian East Gondwana during the early Cambrian as indicated by small shelly fossil data.  相似文献   

10.
The in-life and post-mortem orientations of the Lower Devonian brachiopod Meristella atoka from the Haragan Formation (Lower Devonian; south-central Oklahoma) are inferred from the distribution of epizoic bryozoans and the orientations of base plates of epizoic corals. Three bryozoans, Cyphotrypa corrugata, Fistuliporella maynardi and Leioclema pulchellum, and one coral, Favosites conicus, are considered. Most zoaria that contact the commissure terminate at the commissurc, and a few zoaria terminate at growth lines. This suggests that the bryozoans were primarily life associates of Meristella atoka. Collectively, these three bryozoan species most extensively encrusted marginal sectors of the brachial valve and are very rare on the posteromedian sector (the umbo) of the pedicle valve. This distributional pattern indicates that the preferred living orientation of Meristella atoka was umbo-down (posteromedian sector of the pedicle valve resting on or buried in the substratum) with the commissure steeply inclined to the sediment water interface. Most coralla of Favosites conicus that contacted the commissure encrusted over the commissure. This indicates that Favosites conicus either preferentially encrusted Meristella atoka post-mortem or colonized living brachiopods but subsequently caused them to die. Furthermore, Favosites conicus most extensively encrusted anterior sectors of the brachial valve, especially the fold. The lateral and anterior orientations of the commissure with respect to the base plates (holothecae) of Favosites conicus indicates that the brachiopods were oriented approximately horizontal with respect to the base plates. This suggests that the preferred post-mortem orientation of Meristella atoka was resting nearly horizontally on the substratum. These data and interpretations confirm previously inferred in-life orientations of Meristella atoka and are consistent with post-mortem orientations hypothesized for elongate-oval athyrid brachiopods. □Brachiopoda, Athyridacea, Meristella atoka , palaeoecology, autecology, epizoans, bryozoans, corals, sedimentology, Lower Devonian, North America, Oklahoma.  相似文献   

11.
The brachiopod Cardiarina cordata, collected from a Late Pennsylvanian (Virgilian) limestone unit in Grapevine Canyon (Sacramento Mts., New Mexico), reveals frequent drillings: 32.7% (n = 400) of these small, invariably articulated specimens (<2 mm size) display small (<0.2 mm), round often beveled holes that are typically single and penetrate one valve of an articulated shell. The observed drilling frequency is comparable with frequencies observed in the Late Mesozoic and Cenozoic. The drilling organism displayed high valve and site selectivity, although the exact nature of the biotic interaction recorded by drill holes (parasitism vs. predation) cannot be established. In addition, prey/host size may have been an important factor in the selection of prey/host taxa by the predator/parasite. These results suggest that drilling interactions occasionally occurred at high (Cenozoic-like) frequencies in the Paleozoic. However, such anomalously high frequencies may have been restricted to small prey/host with small drill holes. Small drillings in C. cordata, and other Paleozoic brachiopods, may record a different guild of predators/parasites than the larger, but less common, drill holes previously documented for Paleozoic brachiopods, echinoderms, and mollusks.  相似文献   

12.
Wen-Zhong Li 《Geobios》2008,41(2):307
The strata below the defined Wuchiapingian-Changhsingian boundary GSSP are mostly covered and obscured by faulting at the Meishan Section D. Therefore, it is very difficult to collect fossils there. After an intensive excavation at Meishan Section C, a diverse fauna based on high-resolution biostratigraphy comprising brachiopods, ammonoids, conodonts, fusulinids and small foraminifers were found. Among these fossils, brachiopods are the most dominant. Eleven species of 10 genera based on more than 1300 specimens are identified. This brachiopod fauna is of late Wuchiapingian-Changhsingian of Lopingian (Late Permian) in age as well constrained by the associated ammonoid Pseudogastrioceras sp., Jinjiangoceras and Konglingites sp., the fusulinid Palaeofusulina and the conodont lineage from C. longicuspidata to C. wangi. In terms of the changes of brachiopod fauna composition around Wuchiapingian-Changhsingian boundary, it clearly indicates a continuous transgression from the upper part of the Lungtan Formation to the lower part of the Changhsing Formation. A new species, Neochonetes (Huangichonetes) meishanensis, is described and some other species are discussed based on the new collection from Meishan Sections C and D.  相似文献   

13.
A new genus and species of a Middle Cambrian stem group brachiopod, Acanthotretella spinosa n. gen. and n. sp., is described from the Burgess Shale Formation. Most of the 42 specimens studied came from the Greater Phyllopod bed (Walcott Quarry) and were collected from five bed assemblages, each representing a single obrution event. Specimens are probably preserved within their original habitat. In contrast to all brachiopods known from the Burgess Shale, the shells of the new stem group brachiopod are often deformed and do not show signs of brittle breakage, which suggests that the valves were originally either entirely organic in composition or, more likely, had just a minor mineral component. Acanthotretella spinosa differs from all the other described Cambrian brachiopods in that it is covered by long, slender and possibly partly mineralized spines that are posteriorly inclined at an oblique angle away from the anterior margin. The spines penetrate the shell and are mainly comparable with the thorn‐like organic objects that have been inferred from early siphonotretoid brachiopods. The pedicle was slender and was composed of a central coelomic region and emerged from an apical foramen at the end of an internal pedicle tube. The finding of a pedicle attached to the macrobenthic algae Dictyophycus and other epibenthos implies that A. spinosa did not have an infaunal mode of life. The visceral region and interior characters are poorly preserved.  相似文献   

14.
Brachiopod and phoronid phylogeny is inferred from SSU rDNA sequences of 28 articulate and nine inarticulate brachiopods, three phoronids, two ectoprocts and various outgroups, using gene trees reconstructed by weighted parsimony, distance and maximum likelihood methods. Of these sequences, 33 from brachiopods, two from phoronids and one each from an ectoproct and a priapulan are newly determined. The brachiopod sequences belong to 31 different genera and thus survey about 10% of extant genus-level diversity. Sequences determined in different laboratories and those from closely related taxa agree well, but evidence is presented suggesting that one published phoronid sequence (GenBank accession UO12648) is a brachiopod-phoronid chimaera, and this sequence is excluded from the analyses. The chiton, Acanthopleura, is identified as the phenetically proximal outgroup; other selected outgroups were chosen to allow comparison with recent, non-molecular analyses of brachiopod phylogeny. The different outgroups and methods of phylogenetic reconstruction lead to similar results, with differences mainly in the resolution of weakly supported ancient and recent nodes, including the divergence of inarticulate brachiopod sub-phyla, the position of the rhynchonellids in relation to long- and short-looped articulate brachiopod clades and the relationships of some articulate brachiopod genera and species. Attention is drawn to the problem presented by nodes that are strongly supported by non-molecular evidence but receive only low bootstrap resampling support. Overall, the gene trees agree with morphology-based brachiopod taxonomy, but novel relationships are tentatively suggested for thecideidine and megathyrid brachiopods. Articulate brachiopods are found to be monophyletic in all reconstructions, but monophyly of inarticulate brachiopods and the possible inclusion of phoronids in the inarticulate brachiopod clade are less strongly established. Phoronids are clearly excluded from a sister-group relationship with articulate brachiopods, this proposed relationship being due to the rejected, chimaeric sequence (GenBank UO12648). Lineage relative rate tests show no heterogeneity of evolutionary rate among articulate brachiopod sequences, but indicate that inarticulate brachiopod plus phoronid sequences evolve somewhat more slowly. Both brachiopods and phoronids evolve slowly by comparison with other invertebrates. A number of palaeontologically dated times of earliest appearance are used to make upper and lower estimates of the global rate of brachiopod SSU rDNA evolution, and these estimates are used to infer the likely divergence times of other nodes in the gene tree. There is reasonable agreement between most inferred molecular and palaeontological ages. The estimated rates of SSU rDNA sequence evolution suggest that the last common ancestor of brachiopods, chitons and other protostome invertebrates (Lophotrochozoa and Ecdysozoa) lived deep in Precambrian time. Results of this first DNA-based, taxonomically representative analysis of brachiopod phylogeny are in broad agreement with current morphology-based classification and systematics and are largely consistent with the hypothesis that brachiopod shell ontogeny and morphology are a good guide to phylogeny.  相似文献   

15.
The morphological variation of the sulcal development and shell outline in large Permian neospiriferine brachiopods including Fasciculatia Waterhouse, 2004 is investigated using geometric morphometrics. The sulcal tongues of spiriferide brachiopods can be, in a qualitative sense, categorized into three types according to the degree of their development: short sulcal tongue, long sulcal tongue and geniculated sulcal tongue. All three types have been noted within Fasciculatia striatoparadoxa, regardless of the nature of the substrate which they originally inhabited. To quantify its morphological variation both in sulcal development and shell outline, 51 brachiopod shells were scanned with a three‐dimensional (3‐D) surface imaging device, and their 3‐D models were reconstructed. Using two landmarks and 58 semilandmarks designated on the surface of the reconstructed 3‐D models, a landmark‐based morphometric analysis was performed. Our result demonstrates a significant intraspecific variation of sulcal development in F. striatoparadoxa and its relatives. Local environmental factors, especially the intensity of ambient water flow, are invoked as the most likely cause for this intraspecific variation. Additionally, this study also shows that there are considerable interspecific distinctions in shell outline among Fasciculatia species, independent of the high variation in the sulcal development. The strong stability of overall shell outline at species level implies a decoupled morphological development between sulcal tongue and whole shell outline. The 3‐D morphometric approach applied here demonstrates its great utility as a tool for quantifying and analysing the morphological variation of highly convex brachiopod shells.  相似文献   

16.
Well‐preserved juvenile specimens of the orthotetide brachiopod Coolinia pecten (Linnaeus, 1758 ) from the Silurian of Gotland, Sweden, demonstrate evidence of a planktotrophic larval habit. Larval shell morphology indicates the absence of a pedicle sheath: this character is otherwise typical of derived billingsellides, strophomenides and productides, which form the conventional strophomenide clade. The presence of a rudimentary colleplax structure in the larval shell of Colinia suggests instead a phylogenetic link to chiliate brachiopods and the enigmatic genus Salanygolina. This relationship suggests an early divergence of rhynchonellate and strophomenate brachiopods.  相似文献   

17.
The detailed structure of the lophophore is a key diagnostic character in the definition of higher brachiopod taxa. The problematic Heliomedusa orienta Sun and Hou, from the Lower Cambrian Chengjiang Lagerstätte of Yunnan, southwestern China, has a well-preserved lophophore, which is unlike that of any known extant or extinct brachiopods. Based on a comparative study of lophophore disposition in H. orienta and the extant discinid Pelagodiscus atlanticus, the in- and excurrent pattern and shell orientation of H. orienta are described and discussed. Reconstructions of lophophore shape and function are based on numerous specimens and comparison with P. atlanticus. The lophophore is composed of a pair of lophophoral arms that freely arch posteriorly rather than coiling anteriorly as commonly seen in fossil and recent lingulids. The lophophore is attached to the dorsal lobe of the mantle; it has neither calcareous nor chitinous supporting structures, and is disposed symmetrically on either side of the valve midline. The mouth can be inferred to be located at the base of the two brachial tubes, slightly posterior to the anterodorsal projection of the body wall. The lophophoral arms bear laterofrontal tentacles with a double row of cilia along their lateral edge, as in extant lingulid brachiopods. The main brachial axes are also ciliated, which presumably facilitated transport of mucous-bound nutrient particles to the mouth. The unique organization of the lophophore in Heliomedusa is not like any known fossil and living brachiopods. This clearly demonstrates that H. orienta is not a member of any crown group. It is here considered as a member of the brachiopod stem group, which challenges recent interpretations of a close discinid affinity.  相似文献   

18.
《Geobios》2016,49(5):381-393
Plicathyridine brachiopods (Athyridida) from the early–middle Frasnian of southern Belgium and northern France (Dinant Synclinorium) are systematically described for the first time. They include two species: Anathyris (Anathyris) calestiennensis nov. sp., and A. (A.) sp. indet. 1. They are uncommon in the mainly shally La Prée (Nismes Formation) and Ermitage (Moulin Liénaux Formation) members and are absent from the mixed argillaceous–carbonate late Frasnian succession in this area contrary to what is observed in Russia, notably in the East-European Platform and Siberia. In the Middle East, two species of Anathyris are recognized on the basis of a limited material from the Dascht-e-Nawar area in Afghanistan (A. (A.) sp. indet. 2) and the Kuh-e Kaftar mountains in Central Iran (A. (A.) sp. indet. 3). Anathyris (A.) calestiennensis nov. sp. is sometimes encrusted by epizoans (tabulate and rugose corals, and bryozoans) and rarely displays single, small circular drill holes. The past and current epizoan–brachiopod interactions are also discussed (Anathyris vs. Lingula, respectively).  相似文献   

19.
本文对贵州募役剖面长兴期腕足动物群进行了系统分类鉴定和古生态分析,发现其与前人所报道的华南同时期腕足动物群存在着显著的差别,以Spiriferellina为绝对优势属,包含少量华南长兴期的常见分子,如Fusichonetes、Araxathyris和Peltichia等。募役剖面的腕足类化石主要产自碎屑岩层位,与华南同期碎屑岩相剖面的腕足动物群落相比,该动物群中的优势分子个体较大、壳体较厚且发育较粗大的壳疹,这可能与长兴期募役剖面动物群所处的特殊栖息地环境(浅水碳酸盐岩台地与深水硅质碎屑岩盆地之间的过渡地带)有关。二叠纪末期大规模的火山作用导致水体中碎屑物质含量增加,影响腕足类的滤食效率,而募役剖面清澈、水动力弱的水体环境,为滤食性的腕足动物提供了有利的环境条件。最后,通过与华南长兴期不同沉积相区腕足动物群落(六枝剖面、稻堆山剖面、中寨剖面、新民剖面、马家山剖面和仁村坪剖面群落)的对比分析,发现募役剖面腕足动物群与毗邻的六枝剖面腕足动物群在属级组成上的相似度较高,且过渡岩相栖息地环境下的腕足动物群在生物灭绝事件前也呈现出高优势度、低均匀度的群落结构特征,指示海洋底栖生物群落已经先于二叠纪末期生物集群灭绝事件出现了早期危机信号。  相似文献   

20.
Lower Jurassic brachiopods are widely known in the External Betic Zone. Their occurrence was so far virtually restricted to the easternmost Subbetic Zone where they underwent a diversity burst and radiation event during the late Sinemurian–early Pliensbachian interval, leading to a bloom in brachiopod diversity from the early Pliensbachian onwards. Taxonomical and paleobiogeographical analyses performed in a newly recorded assemblage from the most offshore areas of the Subbetic Basin (Granada province, Spain) reveals that this diversification event occurred earlier than expected hitherto, probably in the Turneri–Obtusum chronozones, as similarly observed in the most intra-Tethyan basins such as the Northern Calcareous Alps and Transdanubian Ranges, illustrating the recovery of the background conditions for the establishment of diversified brachiopod communities after the end-Triassic extinction event. A new rhynchonellide species, Alebusirhynchia vorosi nov. sp., is formally described among the ten different taxa recorded for the first time in this area. The Mediterranean paleobiogeographical affinities revealed by the brachiopod assemblage emphasizes that the onset of the Mediterranean/Euro-Boreal bioprovinciality and the initial brachiopod diversification in the pre-Pliensbachian Internal Subbetic platform took place earlier in the Sinemurian as well, following the Euro-Boreal monotypic record previously reported in this region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号