首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Acinetobacter calcoaceticusRAG-1 cells lacking the emulsan capsule on the cell surface were obtained by two methods; a) by selecting for mutants that lack emulsan with a specific phage and b) by removal of the emulsan capsule from wild type cells with a specific emulsan depolymerase. Emulsan deficient cells obtained by either method become deficient in the adsorption of phage ap3 and sensitive to a newly isolated bacteriophage, nø. When RAG-1 cells were first treated with emulsan depolymerase and subsequently incubated without the enzyme, regeneration of the cell-associated emulsan was correlated with an increase in phage ap3 adsorption and an inhibition in phage nø adsorption. By partial regeneration of cell surface emulsan, a physiological state was obtained in which RAG-1 cells were sensitive to and efficiently adsorbed found phages. Enzyme-treated RAG-1 cells were found to be more adherent to hexadecane than the untreated RAG-1 cells. The data indicate that in addition to its function as the ap3 receptor, cell-associated emulsan masks the expression of other cell-surface determinant(s) which function(s) as: (i) receptor for bacteriophage nø, and (ii) cell-surface sites which enhance adherence to hydrophobic surfaces.Present address: Department of Applied Biological Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA  相似文献   

2.
When Acinetobacter calcoaceticus RAG-1 was grown together with an emulsan-deficient mutant on crude oil, only the emulsan-producing RAG-1 was found to grow, regardless of whether the medium was supplemented with emulsan. The results suggested that the cell-associated form of the bioemulsifier is the biologically active species required for growth on crude oil. A revertant of an emulsan-deficient strain was isolated which simultaneously regained the ability to produce both cell-associated and cell-free emulsan as well as the ability to grow on crude oil.  相似文献   

3.
The oil-degrading microorganism Acinetobacter venetianus RAG-1 produces an extracellular polyanionic, heteropolysaccharide bioemulsifier termed emulsan. Emulsan forms and stabilizes oil-water emulsions with a variety of hydrophobic substrates. Removal of the protein fraction yields a product, apoemulsan, which exhibits much lower emulsifying activity on hydrophobic substrates such as n-hexadecane. One of the key proteins associated with the emulsan complex is a cell surface esterase. The esterase (molecular mass, 34.5 kDa) was cloned and overexpressed in Escherichia coli BL21(DE3) behind the phage T7 promoter with the His tag system. After overexpression, about 80 to 90% of the protein was found in inclusion bodies. The overexpressed esterase was recovered from the inclusion bodies by solubilization with deoxycholate and, after slow dialysis, was purified by metal chelation affinity chromatography. Mixtures containing apoemulsan and either the catalytically active soluble form of the recombinant esterase isolated from cell extracts or the solubilized inactive form of the enzyme recovered from the inclusion bodies formed stable oil-water emulsions with very hydrophobic substrates such as hexadecane under conditions in which emulsan itself was ineffective. Similarly, a series of esterase-defective mutants were generated by site-directed mutagenesis, cloned, and overexpressed in E. coli. Mutant proteins defective in catalytic activity as well as others apparently affected in protein conformation were also active in enhancing the apoemulsan-mediated emulsifying activity. Other proteins, including a His-tagged overexpressed esterase from the related organism Acinetobacter calcoaceticus BD4, showed no enhancement.  相似文献   

4.
Aims: To isolate and characterize bacterial strains derived from Lactobacillus casei and Lactobacillus paracasei strains and resistant to phage MLC‐A. Methods and Results: Two of nine assayed strains rendered resistant mutants with recovery efficiencies of 83% (Lact. paracasei ATCC 27092) and 100% (Lact. casei ATCC 27139). DNA similarity coefficients (RAPD–PCR) confirmed that no significant genetic changes occurred while obtaining resistant mutants. Neither parent nor mutant strains spontaneously released phages. Phage‐resistant mutants were tested against phages PL‐1, J‐1, A2 and MLC‐A8. Lactobacillus casei ATCC 27092 mutants showed, overall, lower phage resistance than Lact. paracasei ATCC 27092 ones, but still higher than that of the parent strain. Lactobacillus paracasei ATCC 27092 mutants moderately adsorbed phage MLC‐A only in calcium presence, although their parent strain successfully did it with or without calcium. Adsorption rates for Lact. casei ATCC 27139 and its mutants were highly influenced by calcium. Again, phage adsorption was higher on the original strain. Conclusions: Several isolates derived from two Lact. casei and Lact. paracasei strains showed resistance to phage MLC‐A but also to other Lact. casei and Lact. paracasei phages. Significance and Impact of the Study: This study highlights isolation of spontaneous bacteriophage‐resistant mutants from Lact. casei and Lact. paracasei as a good choice for use in industrial rotation schemes.  相似文献   

5.
Emulsan, the extracellular polyanionic emulsifying agent produced by Acinetobacter calcoaceticus RAG-1, has been implicated as a receptor for a specific virulent RAG-1 bacteriophage, ap3. Aqueous solutions of emulsan did not interfere with phage ap3 adsorption to RAG-1 cells. However, binding of phage ap3 occurred at the interfaces of hexadecane-in-water emulsions specifically stabilized by emulsan polymers. Binding of ap3 to emulsions was inhibited either in the presence of anti-emulsan antibodies or in the presence of a specific emulsan depolymerase. Moreover, when the phage was first bound to emulsan-stabilized emulsions and the emulsions subsequently treated with emulsan depolymerase, viable phage was released, indicating that phage ap3 DNA ejection was not triggered by binding. The results indicate that emulsan functions as the ap3 receptor and suggest that to function as a receptor, emulsan assumes a specific conformation conferred on it by its specific interaction with hydrophobic surfaces.  相似文献   

6.
Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population was obtained by enrichment culture that was capable of degrading emulsan and using it as a carbon source. From this mixed culture, an emulsan-degrading bacterium, termed YUV-1, was isolated. Strain YUV-1 is an aerobic, gram-negative, non-spore-forming, rod-shaped bacterium which grows best in media containing yeast extract. When placed on preformed lawns of A. calcoaceticus RAG-1, strain YUV-1 produced translucent plaques which grew in size until the entire plate was covered. Plaque formation was due to solubilization of the emulsan capsule of RAG-1. Plaque formation was not observed on emulsan-negative mutants of RAG-1. As a consequence of the solubilization of the emulsan capsule, RAG-1 cells became more hydrophobic, as determined by adherence to hexadecane. Growth of YUV-1 on a medium containing yeast extract and emulsan was biphasic. During the initial 24 h, cell concentration increased 10-fold, but emulsan was not degraded; during the lag in growth (24 to 48 h), emulsan was inactivated and depolymerized but not consumed; during the second growth phase (48 to 70 h) the depolymerized emulsan products were consumed.  相似文献   

7.
Bacterial degradation of emulsan.   总被引:5,自引:3,他引:2       下载免费PDF全文
Emulsan is a polyanionic heteropolysaccharide bioemulsifier produced by Acinetobacter calcoaceticus RAG-1. A mixed bacterial population was obtained by enrichment culture that was capable of degrading emulsan and using it as a carbon source. From this mixed culture, an emulsan-degrading bacterium, termed YUV-1, was isolated. Strain YUV-1 is an aerobic, gram-negative, non-spore-forming, rod-shaped bacterium which grows best in media containing yeast extract. When placed on preformed lawns of A. calcoaceticus RAG-1, strain YUV-1 produced translucent plaques which grew in size until the entire plate was covered. Plaque formation was due to solubilization of the emulsan capsule of RAG-1. Plaque formation was not observed on emulsan-negative mutants of RAG-1. As a consequence of the solubilization of the emulsan capsule, RAG-1 cells became more hydrophobic, as determined by adherence to hexadecane. Growth of YUV-1 on a medium containing yeast extract and emulsan was biphasic. During the initial 24 h, cell concentration increased 10-fold, but emulsan was not degraded; during the lag in growth (24 to 48 h), emulsan was inactivated and depolymerized but not consumed; during the second growth phase (48 to 70 h) the depolymerized emulsan products were consumed.  相似文献   

8.
Summary A large number of Caulobacter mutants resistant to DNA or RNA phages were isolated. These phage-resistant mutants exhibited phenotypic variations with respect to cell motility and sensitivity to other phages.The majority of the mutants was resistant to both DNA and RNA phages tested. In addition, these mutants were either motile or non-motile. The analysis of spontaneous revertants from these mutants indicated that a single mutation is involved in these phenotypic variations. Other mutants were resistant to RNA phages and only to a certain DNA phage tested, and were also motile or non-motile.Several temperature-sensitive phage-resistant mutants were also isolated. One of them, CB13 ple-801, exhibited the wild type phenotype when grown at 25°C. However, at a higher temperature (35°C), the mutant cells became non-motile and resistant to both DNA and RNA phages. These phenotypes seem to be attributed to the concommitant loss of flagella, pili and phage receptors. In other respects (cell growth and morphology, and asymmetric stalk formation), CB13 ple-801 was normal at 35°C. The spontaneous revertants from CB13 ple-801 simultaneously regained the wild type phenotypes in all respects.It is suggested that a single mutation pleiotropically affects the formation of flagella, pili and phage receptors.  相似文献   

9.
Flow cytometry (FCM) in conjunction with immunocytochemical-labeling was used to analyze and screen a population of Escherichia coli clones containing a genomic library from the oil-degrading microorganism Acinetobacter calcoaceticus RAG-1 for the isolation of clones which expressed specific RAG-1 surface antigens. Reconstruction experiments using mixed populations indicated that RAG-1 cells could be clearly distinguished at a ratio of one RAG-1 cell to 500 Escherichia coli cells. Using this technique two clones, WM143 and WM191, were isolated and shown by restriction endonuclease cleavage and Southern hybridization to contain plasmids carrying inserts of RAG-1 DNA of 9.4 and 9.8 kb respectively.Non-common abbreviations FCM flow cytometry - FITC fluorescein-iso-thiocyanate - LB Luria broth - MM minimal salt medium - PBS phosphate buffered saline - PMSF phenylmethylsulfonyl fluoride  相似文献   

10.
Various immunochemical techniques were employed to probe the relationship between the extracellular emulsifying agent (emulsan) and the cell-associated form of the polymer in Acinetobacter calcoaceticus RAG-1. Using an emulsan-specific antibody preparation, immunocytochemical labeling revealed that an emulsan-like antigen is a major component of the 125-nm minicapsule which envelopes the exponential-phase cell of the parent strain. The marked reduction of this capsule in stationary-phase cells was correlated with the production of extracellular emulsifying activity. Crossed immunoelectrophoresis techniques demonstrated that the major antigenic component (S1) of the culture supernatant fluid is immunochemically identical to purified emulsan, yet electrophoretically distinct. The characteristics of the parent strain were compared with those of two phage-resistant mutant strains which are defective in extracellular emulsan production. One of these mutants, termed TR3, lacked both the emulsan-like capsule on the cell surface and the extracellular S1 component. A second phage-resistant emulsan-defective mutant (TL4) was characterized by an antigenically altered and inactive form of extracellular emulsan. A relatively small amount of emulsan-like capsular material was consistently demonstrated on the cell surface of this mutant. The correlation between phage sensitivity and extracellular emulsan production was strengthened by the fact that emulsan-specific antibodies inhibited both emulsification activity and phage adsortion onto cells of the parent strain.  相似文献   

11.
An exocellular esterase from the oil-degrading Acinetobacter venetianus RAG-1 was previously shown to enhance the emulsification and emulsion stabilization properties of the amphipathic, aminopolysaccharide bioemulsifier, emulsan [Bach H, Berdichevsky Y, Gutnick D (2003) An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Appl Environ Microbiol 69:2608–15]. This enhancement was specific for the RAG-1 esterase and was independent of catalytic activity. In this report, fragments from both the N′- and C′-termini were cloned as fusions to the C-terminus of the maltose-binding protein (MBP) and were tested for enhancement activity in the presence of the deproteinated form of emulsan, apoemulsan. The activity could be localized to the C-terminal third of the protein which exhibited the same activity as the intact enzyme. MBP itself was completely inactive and could be cleaved from the fusion without affecting the subsequent emulsification. However, the enhancement completely depended on the presence of a unique C-terminal 20 amino acid peptide not found in any other protein in the databases. In addition, progressive removal of amino acids from the N-terminus of the active MBP polypeptide resulted in a concomitant loss of activity, indicating that enhancement is also proportional to the size of the peptide fragment. The middle third and the C-terminal third of the enzyme each contained a copy of the conserved Cardin–Weintraub consensus sequence for protein binding to heparin. These sequences were not detected in homologous esterases from a closely related strain, Acinetobacter calcoaceticus BD413.  相似文献   

12.
Six rhizobiophages designated as RC1, RC2, RC3, RC4, RC5 and RC6, infective against six strains of chickpea Rhizobium were isolated from field soils. Seasonal incidence, morphology, host range and inactivation pattern of the phages to heat and UV-light were studied. Four investigated phages were differentiated into two morphological types; one with hexagonal head and a long flexible tail (RC1 and RC5), the other with hexagonal head and a very short tail (RC2 and RC3). Electron microscopic examination of phage RC1 infected cells revealed that phage multiplication occurred at one pole of the cell. Phage RC3 appeared to be more thermal sensitive than others and exhibited one component inactivation while relatively resistant phages (RC1 and RC2) revealed two component inactivation. The six phages could be grouped into two classes on the basis of UV sensitivity; relatively resistant (RC1, RC2 and RC5) and sensitive (RC3, RC4 and RC6).  相似文献   

13.
Summary Bacteriophage T12 is the prototype phage carrying the streptococcal erythrogenic toxin A (speA) gene. To examine more closely the phages involved in lysogenic conversion, we examined 300 group A streptococcal strains, and identified and isolated two new phages that carry the speA gene. The molecular sizes of these phage genomes were between 32 and 40 kb, similar to that of phage T12 (35 kb). However, as ascertained by restriction analysis, the physical maps of the new phage genomes were different from phage T12 and from each other. Hybridization analysis also showed that all of these phages were only partially related to one another and the speA gene was always located close to the phage attachment site. Additionally, colony hybridization showed that whereas phage T12 or one of its close relatives is the most common phage associated with the group A streptococci, phage 49 has a much stronger association with the speA gene. A defective phage was also found following pulsed field gel electrophoresis of total phage DNA. This phage appears to be a resident of strain T253c and is found only following induction of a T253c lysogen. Restriction enzyme analysis of the isolated defective phage DNA suggests that it is the source of the submolar amounts of DNA previously found in association with phage T12 digestion patterns. Additionally, the defective phage may serve as the site of integration of the speA gene-carrying phages described above.  相似文献   

14.
Previous results showed that the cell-surface esterase from Acinetobacter venetianus RAG-1 enhances the emulsification properties of the polymeric bioemulsifier emulsan and its deproteinated derivative apoemulsan (Bach H, Berdichevsky Y, Gutnick D (2003) An exocellular protein from the oil-degrading microbe Acinetobacter venetianus RAG-1 enhances the emulsifying activity of the polymeric bioemulsifier emulsan. Appl Environ Microbiol 69:2608–2615). Here we show that in the presence of the his-tagged recombinant esterase from RAG-1, 18 different polysaccharides from microbial, plant, insect and synthetic sources formed hexadecane-in-water emulsions. Emulsifying activities were distributed over a 13-fold range from over 4800 U/mg protein/mg polysaccharide in the case of apoemulsan to 370 U/mg protein/mg polysaccharide in the case of alginic acid. The stability of the emulsions ranged between 95 and 58%. Emulsions formed in the presence of seven of the polysaccharides exhibited stabilities of over 80%. The esterase from A. calcoaceticus BD4, which shows sequence homology to the RAG-1 esterase, was inactive in emulsification enhancement. The sequence of the RAG-1 esterase was shown to contain two conserved peptide sequences previously shown to be implicated in carbohydrate/polysaccharide binding. A hypothetical model illustrating a possible mode of interaction between the esterase, the apoemulsan and the oil droplet is presented. The complex is presumed to generate a series of “coated” oil droplets which are restricted in their ability to coalesce resulting in a relatively stable emulsion.  相似文献   

15.
By selecting survivors of λ phage infection, mutants of Escherichia coli K12 that block reproduction cycle of the phage have been isolated. Fourteen of these phage-tolerant mutants (lam mutants) were chosen and characterized biochemically and genetically. It was shown that these mutants were tolerant to infection by all the lambdoid phages, except for few cases, but they were susceptible to infection by a non-lambdoid temperate phage (φ299), P1 or T phages. The mutants can be divided into at least three groups: (1) A mutant (lam 16) strain that seems to block normal penetration of phage DNA: (2) Three mutant (lam 64, lam 67 and lam 71) strains that block an “early” step(s) of phage growth, including phage DNA synthesis: (3) Six mutant (lam 24, lam 25, lam 26, lam 27, lam 646 and lam 6) strains that block normal functioning of the gene E products and produce unusual head structures. Some lambdoid phages and λ mutants that overcome the interference by the lam mutations have been obtained, and were used as tools for characterizing the host mutations. Two (lam 12 and lam 13) mutant strains and one (lam 1) mutant were inferred as affecting the expression of “late” genes, and early gene, respectively, by this test.  相似文献   

16.
Acinetobacter venetianus RAG-1 produces an extracellular protein/high-molecular-weight (HMW) polysaccharide complex termed emulsan. As an emulsion stabilizer, emulsan has potential industrial applications. To control the molecular weight of the polymer, a stable chromosomal mutant was generated where RAG-1 wza, wzb, wzc genes were replaced by Escherichia coli homologs. The heterologous Wza, Wzb, Wzc proteins restored production of HMW polysaccharide. The polymer produced was of higher molecular weight than from the parent strain and with the cells exhibiting modified hydrophobicity. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

17.
Various strains of Aspergillus niger were screened for extracellular glucose oxidase (GOD) activity. The most effective producer, strain FS-3 (15.9 U mL–1), was mutagenized using UV-irradiation or ethyl methane sulfonate. Of the 400 mutants obtained, 32 were found to be resistant to 2-deoxy d-glucose, and 17 of these exhibited higher GOD activities (from 114.5 to 332.1%) than the original FS-3 strain. Following determination of antifungal resistance of the highest producing mutants, four mutants were selected and used in protoplast fusions in three different intraspecific crosses. All fusants showed higher activities (from 285.5 to 394.2%) than the original strain. Moreover, of the 30 fusants isolated, 19 showed higher GOD activity than their corresponding higher-producing parent strain.  相似文献   

18.
Statistical experimental design was used to optimize medium constituents for emulsan production by Acinetobacter venetianus RAG-1 in batch cultivation. The factors affecting emulsan production were screened by a two-level factorial design, and the optimal concentration of medium constituents for emulsan production were determined by the method of steepest path ascent and central composite experimental design. Experimental results showed that the optimal medium constituents were 9.16 g/L ethanol, 8.2 g/L KH2PO4, 23.32 g/L K2HPO4, 5.77 g/L (NH4)2SO4 and 0.354 g/L MgSO4•7H2O. Under this optimal composition, the predicted emulsan production was 72.198 mg/L, and experimental value was 73.312 mg/L for 80 h culture in the shake flasks, and the emulsan yield by A. venetianus RAG-1 was enhanced nearly 1.48-fold (from 49.5 to 73.312 mg/L). Based on the results, we identify the optimal medium constituents for emulsan production and could take advantage of strategy for scale up the fermentation of emulsan production.  相似文献   

19.
Twenty-eight phages active againstCytophaga johnsonae have been isolated and placed into 16 groups based on phage size and morphology and on host range studies using a variety of mutants derived fromC. johnsonae. Several lines of evidence support the idea that these phages infect only actively motile cells: (i) many mutants selected for resistance to one phage are nonmotile and are resistant to all phages, (ii) nonmotile mutants, selected for their inability to spread on plates, are resistant to all phages, (iii) when nonmotile mutants revert to the motile condition, they regain sensitivity to some or all phages, and (iv) carbony-cyanidem-chlorophenylhydrazone inhibits motility and prevents adsorption of a test phage.  相似文献   

20.
Two Rhizobium leguminosarum biovar viceae bacteriophages with contrasting properties were isolated from a field site in which the survival of genetically modified R. leguminosarum inoculants had been monitored for several years. Inoculant strain RSM2004 was used as the indicator for phage isolation and propagation. One phage, RL1RES, was temperate and could not replicate in any of the 42 indigenous R. leguminosarum field isolates tested although nested PCR indicated that phage sequences were present in six of the isolates. The second phage, RL2RES, was virulent, capable of generalised transduction, contained DNA with modified cytosine residues, and was capable of infecting all field isolates tested although the GM inoculant strain CT0370 was resistant. Sequence with homology to RL2RES was detected by nested PCR in six of the 42 field-isolates. These were not the same isolates that showed homology to RL1RES. The implication of these findings for the survival of rhizobial inoculants, and the ecology of phages and their host bacteria, are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号