首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Aquatic Botany》2001,69(2-4):251-268
The accumulation in sediments of the low molecular weight, volatile, monocarboxylic acids and/or sulphide, generated by the decay of (i) the underground parts of the reed and/or (ii) organic deposits produced under eutrophic conditions, may play a crucial part in Phragmites die-back. In the field high levels of some of these phytotoxins have been detected at certain die-back sites and in sediments containing the rotting underground parts of the plant.Symptoms of die-back include a clumped habit, stunting and death of roots and shoots, bud death, premature senescence of shoots, weakened stems, impeded aeration of the underground parts of the plant due to callus development, blockages within the vascular systems, lignification and suberisation of laterals and apical regions of adventitious roots and lower levels of starch in rhizomes. Poor convective aeration of the rhizome system has also been associated with higher proportions of alanine, γ-amino butyric acid and serine in culm bases, indicating hypoxic metabolism in the underground system.In laboratory experiments plants developed almost all of the growth, morphological and anatomical symptoms of die-back when treated with various single phytotoxins, e.g. acetic, propionic, n- and iso-butyric and n-caproic acids and sulphide at concentrations reported for die-back sites and/or associated with the decaying underground parts of the plant. For each acid alone, a concentration of ca. 1 mM, was highly toxic at pH 4.5, but relatively non-toxic at pH 6.0. However, when a cocktail of the five acids was applied (where each acid was 1 mM) the mixture proved to be toxic even at pH 6.  相似文献   

2.
Die-back and healthy stands ofPhragmites australis (Cav.) Trin. exSteud., in the U.K. and Hungary, were compared in terms of plant morphology and anatomy, sediment redox potential and sulphide levels and plant resistance to internal Poiseuille gas flow. In laboratory experiments rhizome cuttings were exposed to acetic acid or dissolved sulphide in unstirred solution cultures in order to determine whether the die-back symptoms found in the field could be induced by these phytotoxins. Most of the die-back symptoms, namely stunting of adventitious roots and laterals, bud death, callus blockages of the gas-pathways, and vascular blockages (both xylem and phloem), were produced by each of the phytotoxin treatments. These symptoms were largely absent from healthy field sites and from the experimental controls. In a greenhouse experiment, plants were grown in waterlogged sand or loam, with or without a sub-surface organic layer composed of chopped up rhizomes and roots mixed with the soil base. Especially during the first 70 days, redox levels were considerably lowered, and shoot numbers and shoot growth much reduced by the presence of the organic layers; the effects were most pronounced in the sand plus organic matter treatment. It is suggested that accumulated phytotoxins, e.g. orgnaic acids and/or sulphide, whether produced from the death and decay of the plant, or from excessive organic loading or as an indirect results of eutrophication, will perpetuate the die-back ofPhragmites and prevent the recovery of the plant in the short term.  相似文献   

3.
Stable isotope signatures of Zn have shown great promise in elucidating changes in uptake and translocation mechanisms of this metal in plants during environmental changes. Here this potential was tested by investigating the effect of high Zn concentrations on the isotopic fractionation patterns of Phragmites australis (Cav.) Trin. ex Steud. Plants were grown for 40?d in a nutritive solution containing 3.2?μM (sufficient) or 2?mM (toxic) Zn. The Zn isotopic composition of roots, rhizomes, shoots, and leaves was analysed. Stems and leaves were sampled at different heights to evaluate the effect of long-distance transport on Zn fractionation. During Zn sufficiency, roots, rhizomes, and shoots were isotopically heavy (δ(66)Zn(JMC Lyon)=0.2‰) while the youngest leaves were isotopically light (-0.5‰). During Zn excess, roots were still isotopically heavier (δ(66)Zn=0.5‰) and the rest of the plant was isotopically light (up to -0.5‰). The enrichment of heavy isotopes at the roots was attributed to Zn uptake mediated by transporter proteins under Zn-sufficient conditions and to chelation and compartmentation in Zn excess. The isotopically lighter Zn in shoots and leaves is consistent with long-distance root to shoot transport. The tolerance response of P. australis increased the range of Zn fractionation within the plant and with respect to the environment.  相似文献   

4.
The presented investigations have been carried out in order to estimate toxic sulphide levels and to examine detoxification capabilities in roots and rhizomes of the common reed (Phragmites australis). Underground organs of common reed are sensitive towards sulphide above 1 mM applied exogenously under hypoxia. However, certain tolerance may be achieved by sulphide detoxification. Accumulated sulphide is partially used for the synthesis of non-toxic thiols, mainly glutathione. But the detoxification capacity of the underground organs is limited. Maximum concentrations of thiols are about 60 nmol/g?1 fw in roots and 300 nmol/g?1 fw in rhizomes. Energy metabolism is considerably affected by low sulphide concentrations of 1 mM for 4 days, and immediately disturbed by increased concentrations up to 6 mM sulphide. Adenylate energy charge, total adenylates, posthypoxic respiration, and fermentation capacity decrease significantly. Roots are more sensitive than rhizomes.  相似文献   

5.
6.
Many plant species excrete organic acids into the rhizosphere in response to aluminum stress to protect sensitive cells from aluminum rhizotoxicity. When the roots of Eucalyptus camaldulensis, a major source of pulp production, were incubated in aluminum-toxic medium, citrate released into the solution increased as a function of time. Citrate excretion was inducible by aluminum, but not by copper or sodium chloride stresses. This indicated that citrate is the major responsive organic acid released from the roots of this plant species to protect the root tips from aluminum damage. Four genes highly homologs to known citrate-transporting multidrugs and toxic compounds exclusion proteins, named EcMATE14, were isolated using polymerase chain reaction-based cloning techniques. Their predicted proteins included 12 membrane spanning domains, a common structural feature of citrate-transporting MATE proteins, and consisted of 502–579 amino acids with >60 % homology to orthologous genes in other plant species. One of the homologs, designated EcMATE1, was expressed in the roots more abundantly than in the shoots and in response to both Al and low pH stresses. Ectopic expression of EcMATE1 and 3 in tobacco hairy roots enhanced Al-responsive citrate excretion. Pharmacological characterization indicated that Al-responsive citrate excretion involved a protein phosphorylation/dephosphorylation process. These results indicate that citrate excretion through citrate-transporting multidrugs and toxic compounds exclusion proteins is one of the important aluminum-tolerance mechanisms in Eucalyptus camaldulensis.  相似文献   

7.
Young Phragmites plants were grown in two cocktails of monocarboxylic acids (C(1)-C(5)) at pH 6, where the concentration of each acid was innocuous and the total undissociated (potentially toxic) concentrations were 0.35 mmol/L and 0.42 mmol/L. Rice plants were subjected to 1.5 mmol/L acetic acid at pH 4.5 (undissociated concentration = 1.05 mmol/L). In Phragmites, each cocktail curtailed root growth especially and induced premature shoot senescence. In both species, after 3-5 d of treatment, radial oxygen loss (ROL) from apical regions of adventitious roots, and from Phragmites laterals, was reduced to very low values and associated with cell wall lignification and suberization in the surface cell layers. At later stages of treatment, rice responded to acetic acid in similar ways to Phragmites, with the development of intercellular and callus type occlusions in the gas space system, vascular blockages, and the failure of laterals to emerge. The results are relevant to the supply of oxygen from Phragmites roots to sediments for the phytopurification of waste waters, to the efflux of methane and carbon dioxide from wetlands, and to rice cultivation.  相似文献   

8.
An anaerobic granular sludge was enriched to utilize H2/CO2 in a continuous gas-fed up-flow anaerobic sludge reactor by applying operating conditions expected to produce acetic acid, butyric acid, and ethanol. Three stages of fermentation were found: Stage I with acetic acid accumulation with the highest concentration of 35 mM along with a pH decrease from initial 6 to 4.5. In Stage II, H2/CO2 was replaced by 100% H2 to induce solventogenesis, whereas butyric acid was produced with the highest concentration of 2.5 mM. At stage III with 10 µM tungsten (W) addition, iso-valeric acid, valeric acid, and caproic acid were produced at pH 4.5–5.0. In the batch tests inoculated with the enriched sludge taken from the bioreactor (day 70), however, methane production occurred at pH 6. Exogenous 15 mM acetate addition enhanced both the H2 and CO2 consumption rate compared to exogenous 10, 30, and 45 mM acetate by the enriched sludge. Exogenous acetate was failed to be converted to ethanol using H2 as electron donor by the enriched acetogens.  相似文献   

9.
卢豪良  严重玲 《生态学报》2007,27(10):4173-4181
应用电感耦合等离子体质谱(ICP-Ms)与高效液相色谱(HPLC)分别对福建漳江口红树林湿地不同土壤结构(砂质与泥质)根际与非根际沉积物中重金属(Cu,Pb,Cd,Zn)含量,以及生长于砂质与泥质滩涂上的红树植物秋茄(Kandelia candel(L)Druce))幼苗根系分泌物中的低分子量有机酸进行测定。在室内模拟秋茄根系分泌的低分子量有机酸,作为重金属提取剂提取沉积物中可溶解态与碳酸盐结合态重金属,并与欧盟标准物质局(BCR)连续提取法相比较,探讨红树根系分泌的低分子量有机酸对红树林沉积物重金属生物有效性的影响。研究结果表明:漳江口红树林泥质沉积物中重金属含量大于砂质沉积物,根际沉积物大于非根际沉积物。两样地沉积物中重金属的赋存形态主要以铁锰氧化物结合态为主,根际沉积物中可交换态与碳酸盐结合态重金属含量均大于非根际沉积物。秋茄根系分泌低分子量有机酸为甲酸,丁酸,苹果酸,柠檬酸,乳酸。不同土壤结构对秋茄根系分泌的苹果酸,柠檬酸,乳酸有显著影响(P<0.05)。以低分子量有机酸作为提取剂对沉积物中可溶解态与碳酸盐结合态重金属的提取率表现为:柠檬酸>混合酸>苹果酸>乳酸>乙酸,低分子量有机酸对红树林沉积物重金属的生物有效性有促进作用。  相似文献   

10.
Short chain flavour esters synthesis by microbial lipases   总被引:6,自引:0,他引:6  
Summary The peparative synthesis of 35 short chain flavour esters by lipases fromMucor miehi, Aspergillus sp.,Candida rugosa andRhizopus arrhizus was investigated in organic media. Acetic, propionic, butyric, valeric and caproic acids, as well as methanol, ethanol, butanol, i-pentanol, hexanol, citronellol and geraniol were used as substrates. Most of the esters were synthesized in good yield by at least one of the lipase preparations tested. Different conversion yields were observed according to the lipase specificity toward the acid or the alcohol moiety of the ester. Methyl- and ethyl acetates were also produced by changing the organic solvent. Enzymatic catalysis in organic solvent is thought to be a valuable method for preparative synthesis of flavour esters.  相似文献   

11.
Reynoutria japonica (Polygonaceae) is a pioneer clonal herbcolonising the volcanic desert on Mt. Fuji (height 3776 m),central Japan; establishment of secondary successional speciesoccurs only in the central die-back parts of the clonal standsofR. japonica. Clonal stands were excavated and the morphologyand growth pattern of the rhizomes were investigated with specialreference to the mechanisms of central die-back. Four morphologicalparameters, length of mother rhizomes, and number, branchingpositions and branching angle of daughter rhizomes on respectivemother rhizomes were measured or counted, and their roles inrhizome growth were examined employing a stochastic computersimulation model of the whole stand development. The simulationsclarified that, of these four parameters, the branching anglewas the most influential determinant of the whole pattern ofshoot distribution and that the central die-back was producedwhen the mean branching angle was 40° or smaller. Theseresults strongly infer that the onset of central die-back iscaused intrinsically byR. japonica itself by having the meanbranching angle of 40°. The adaptive significance of thegrowth pattern is discussed in relation to resource acquiringand habitat exploitation strategies of this species. Below-ground morphology; branching angle; central die-back; clonal plant; computer simulation; Japanese knotweed;Reynoutria japonica Houttuyn; rhizome growth pattern  相似文献   

12.
Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (Delta(pH)), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.  相似文献   

13.
Exudates produced from Bermuda grass roots were collected in deionized water from sterilized Bermuda grass sod at 3-day intervals over a period of 15 days. Exudates were analyzed for total organic carbon, and characterized via Fourier Transform Infrared Spectroscopy. Exudate samples were adjusted to pH values of 4.5, 6.5, and 7.5, amended with lead and quantified for soluble and complexed lead via Inductively Coupled Plasma—Optical Emission Spectrometry. Data obtained from total organic carbon measurements indicated compositional changes in Bermuda grass root exudates as organic carbon concentrations increased over time. Analysis of the infrared spectroscopy data indicated that carboxylic acids and amine functional groups were present in root exudates. Also, the ability of root-exuded compounds to solubilize lead in aqueous media was demonstrated as exudate samples dissolved an average of 60% more lead than deionized water. At pH values 4.5 and 7.5, lead complexation by Bermuda grass root exudates increased with decreasing molecular weight size fractions, while an opposite trend was observed at pH 6.5. Results from this study demonstrated the ability of Bermuda grass root exudates to complex lead in aqueous media.  相似文献   

14.
Acetic acid (167 mM) and lactic acid (548 mM) completely inhibited growth of Saccharomyces cerevisiae both in minimal medium and in media which contained supplements, such as yeast extract, corn steep powder, or a mixture of amino acids. However, the yeast grew when the pH of the medium containing acetic acid or lactic acid was adjusted to 4.5, even though the medium still contained the undissociated form of either acid at a concentration of 102 mM. The results indicated that the buffer pair formed when the pH was adjusted to 4.5 stabilized the pH of the medium by sequestering protons and by lessening the negative impact of the pH drop on yeast growth, and it also decreased the difference between the extracellular and intracellular pH values (ΔpH), the driving force for the intracellular accumulation of acid. Increasing the undissociated acetic acid concentration at pH 4.5 to 163 mM by raising the concentration of the total acid to 267 mM did not increase inhibition. It is suggested that this may be the direct result of decreased acidification of the cytosol because of the intracellular buffering by the buffer pair formed from the acid already accumulated. At a concentration of 102 mM undissociated acetic acid, the yeast grew to higher cell density at pH 3.0 than at pH 4.5, suggesting that it is the total concentration of acetic acid (104 mM at pH 3.0 and 167 mM at pH 4.5) that determines the extent of growth inhibition, not the concentration of undissociated acid alone.  相似文献   

15.
Hemicellulose residues can be hydrolyzed into a sugar syrup using dilute mineral acids. Although this syrup represents a potential feedstock for biofuel production, toxic compounds generated during hydrolysis limit microbial metabolism. Escherichia coli LY01, an ethanologenic biocatalyst engineered to ferment the mixed sugars in hemicellulose syrups, has been tested for resistance to selected organic acids that are present in hemicellulose hydrolysates. Compounds tested include aromatic acids derived from lignin (ferulic, gallic, 4-hydroxybenzoic, syringic, and vanillic acids), acetic acid from the hydrolysis of acetylxylan, and others derived from sugar destruction (furoic, formic, levulinic, and caproic acids). Toxicity was related to hydrophobicity. Combinations of acids were roughly additive as inhibitors of cell growth. When tested at concentrations that inhibited growth by 80%, none appeared to strongly inhibit glycolysis and energy generation, or to disrupt membrane integrity. Toxicity was not markedly affected by inoculum size or incubation temperature. The toxicity of all acids except gallic acid was reduced by an increase in initial pH (from pH 6.0 to pH 7.0 to pH 8.0). Together, these results are consistent with the hypothesis that both aliphatic and mononuclear organic acids inhibit growth and ethanol production in LY01 by collapsing ion gradients and increasing internal anion concentrations.  相似文献   

16.
Susceptibility of the rabbit enteropathogenic strain Escherichia coli C6 (O128 serogroup) to C6-C14 fatty acids, oleic, citric, lactic and fumaric acid at 5 mg/mL was determined by the plating technique in the near-neutral pH region (pH approximately 6.5), and in a weakly acid and acid environment (pH 5.4 +/- 0.1 and 2.2-2.5, respectively). In the near-neutral pH region caproic and caprylic acid reduced the concentration of viable cells by 3 and 6 orders, respectively. At lower pH the bactericidal effect of caproic acid remained similar, but caprylic acid decreased the concentration of viable cells to < 100/mL. The bactericidal activity of capric acid was low at pH 6.5 but increased at pH 5.3. High environmental acidity was intrinsically bactericidal and at very low pH the effects of fatty acids were thus less pronounced. Citric acid reduced the counts of viable cells to 1/10. Antimicrobial activity of other acids examined was marginal or absent. Medium-chain fatty acids, caprylic and, to a lesser extent, also caproic and capric acid were better antimicrobials than other organic acids examined; the antimicrobial activity of fatty acids toward the C6 strain was pH-dependent. Beneficial effects of citric, lactic and fumaric acid reported by animal nutritionists are thus probably related to factors other than their direct antimicrobial action.  相似文献   

17.
The potential of two plant species, Phragmites australis (common reed) and Typha latifolia (cattail), in the phytoremediation process of selenium (Se) was studied in subsurface-flow constructed wetland (SSF). Se was supplemented continuously at a concentration of 100 microg Se L(-1) in the inlet of the cultivation beds of the SSF. Water samples collected from the outlet of the Phragmites bed after 1, 3, 6, 9, and 12 wk of treatments showed that Se content was under detectable limits. Water samples collected from the Typha bed at the same five periods showed that Se concentrations in the outlet were 55, 47, 65, 76, and 25 microg/L, respectively. The results of bioaccumulation in the biomass of both species after 12 wk of treatment indicated that Typha plants accumulated Se mainly in fine roots. Phragmites accumulated Se mainly in leaves and rhizomes, and moderate levels were found in stems and fine organic materials. The results indicate that common reed is a very good species for Se phytoextraction and phytostabilization (immobilization) and that cattail is only a phytostabilization species. The use of common reed and cattail for Se phytoremediation in a SSF system and in constructed wetland models are discussed.  相似文献   

18.
《Aquatic Botany》2001,69(2-4):195-208
The effects of NaCl-salinity on growth, free amino acid and sugar content and composition were assayed in roots, rhizomes and leaves of Phragmites australis (Cav.) Trin. ex Steud. Juvenile plants produced from freshwater clones, were cultured under greenhouse hydroponic conditions for 21 days. Relative growth rates were highest at a salinity level of 0 and 1.5‰, respectively, but decreased significantly at 10‰. All plants cultured at 35‰ salinity died. The osmolality in rhizomes and leaves increased with salinity. The total contents of free amino acids were highest in rhizomes>leaves>roots. In rhizomes, the amino acid content increased significantly up to four-fold from 0 to 10‰ salinity. This increase was caused by up to 200-fold increase of proline and 11-fold increase of glutamine at 10‰, whilst the share of asparagine and glutamate decreased. Leaves showed a similar response to salinity with increasing amino acid contents, and shares of proline and glutamine whereas roots did not react significantly. The contents of sucrose, glucose and fructose were highest in leaves>rhizomes>roots. In rhizomes of all three clones, the sugar contents increased up to 3.5-fold from 1.5 to 10‰ salinity level, but were lower at 1.5‰ versus the control (0‰). Sugar contents were lowest (roots) and highest (leaves) at 1.5‰ salinity. The sugar composition did not vary significantly except for leaves where the fraction of sucrose decreased with increasing salinity level at all three clones from 89.1 to 61.7% of total dissolved sugar (pooled data). The importance of free amino acids and sugars as osmolytes was similar in rhizomes and leaves (13–15% of total osmolality at 10‰). In rhizomes, free amino acids were more important as osmolyte than sugars, while the opposite was true for leaves. Proline contributed up to 2.7% to total osmolality. It is hypothesised that a strong proline accumulation indicates the exceeding of a critical salinity level.  相似文献   

19.
Aerobic methane (CH(4) ) oxidation reduces the emission of CH(4) from mires and is regulated by various environmental factors. Organic acids and alcohols are intermediates of the anaerobic degradation of organic matter or are released by plant roots. Methanotrophs isolated from mires utilize these compounds preferentially to CH(4) . Thus, the effect of organic acids and ethanol on CH(4) oxidation by methanotrophs of a mire was evaluated. Slurries of mire soil oxidized supplemental CH(4) down to subatmospheric concentrations. The dominant pmoA and mmoX genotypes were affiliated with sequences from Methylocystis species capable of utilization of acetate and atmospheric CH(4) . Soil slurries supplemented with acetate, propionate or ethanol had reduced CH(4) oxidation rates compared with unsupplemented or glucose-supplemented controls. Expression of Methylocystis-affiliated pmoA decreased when CH(4) consumption decreased in response to acetate and was enhanced after acetate was consumed, at which time the consumption of CH(4) reached control levels. The inhibition of methanotroph activity might have been due to either toxicity of organic compounds or their preferred utilization. CH(4) oxidation was reduced at 5 and 0.5 mM of supplemental organic compounds. Acetate concentrations may exceed 3 mM in the investigated mire. Thus, the oxidation of CH(4) might decrease in microzones where organic acids occur.  相似文献   

20.
It is known that the presence of volatile fatty acids may play a role in the inactivation of pathogens for systems that employ an acid phase reactor. This study was conducted to investigate the influence of volatile fatty acids on the inactivation of Salmonella spp. over a range of digestion temperatures. In this study, digesters that were treating municipal wastewater treatment plant sludges were operated at temperatures that ranged from 35 to 49 degrees C and had a solids residence time of 15 days. Samples collected from the effluent of the digesters were dosed with solutions containing acetic, propionic, and butyric acids alone and in mixtures, and the dosed effluents were analyzed for Salmonella spp. over time. In the first round of testing, the digester effluents were dosed with individual organic acids and also a mixture containing all three volatile fatty acids over a range of concentrations from 750 to 6000 mg/L, and the pH of the samples was fixed at a value of 5.5. In the second round of testing, the sample sludges were spiked with a fixed amount of organic acid mixture, and the pH was varied from 4.5 to 7.5. The reduction of Salmonella spp. in digester effluents, when dosed with volatile organic acids, was found to depend on pH, temperature, the chain length of the acids, and the concentration and composition of the acids present. Increases in temperature appeared to increase the inhibitory effects of the volatile organic acids. At mesophilic temperatures, acidic pHs resulted in a greater inhibition of Salmonella spp.; whereas at higher temperatures neutral pHs were found to be more inhibitory. The results suggest that acid phase digesters that operate at elevated temperatures and low pH can achieve substantial reduction of Salmonella spp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号