首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
The structural basis of water permeation and proton exclusion in aquaporins   总被引:2,自引:0,他引:2  
Fu D  Lu M 《Molecular membrane biology》2007,24(5-6):366-374
Aquaporins (AQPs) represent a ubiquitous class of integral membrane proteins that play critical roles in cellular osmoregulations in microbes, plants and mammals. AQPs primarily function as water-conducting channels, whereas members of a sub-class of AQPs, termed aquaglyceroporins, are permeable to small neutral solutes such as glycerol. While AQPs facilitate transmembrane permeation of water and/or small neutral solutes, they preclude the conduction of protons. Consequently, openings of AQP channels allow rapid water diffusion down an osmotic gradient without dissipating electrochemical potentials. Molecular structures of AQPs portray unique features that define the two central functions of AQP channels: effective water permeation and strict proton exclusion. This review describes AQP structures known to date and discusses the mechanisms underlying water permeation, proton exclusion and water permeability regulation.  相似文献   

2.
Junction-forming aquaporins   总被引:2,自引:0,他引:2  
Aquaporins (AQPs) are a family of ubiquitous membrane channels that conduct water and solutes across membranes. This review focuses on AQP0 and AQP4, which in addition to forming water channels also appear to play a role in cell adhesion. We discuss the recently determined structures of the membrane junctions mediated by these two AQPs, the mechanisms that regulate junction formation, and evidence that supports a role for AQP0 and AQP4 in cell adhesion.  相似文献   

3.
The structure of aquaporins   总被引:1,自引:0,他引:1  
The ubiquitous members of the aquaporin (AQP) family form transmembrane pores that are either exclusive for water (aquaporins) or are also permeable for other small neutral solutes such as glycerol (aquaglyceroporins). The purpose of this review is to provide an overview of our current knowledge of AQP structures and to describe the structural features that define the function of these membrane pores. The review will discuss the mechanisms governing water conduction, proton exclusion and substrate specificity, and how the pore permeability is regulated in different members of the AQP family.  相似文献   

4.

Background

The mechanisms underlying water transport through aquaporin (AQP) have been debated for two decades. The water permeation phenomenon of AQP seems inexplicable because the Grotthuss mechanism does not allow for simultaneous fast water permeability and inhibition of proton transfer through the hydrogen bonds of water molecules.

Scope of review

The AQP1 structure determined by electron crystallography provided the first insights into the proton exclusion mechanism despite fast water permeation. Although several studies have provided clues about the mechanism based on the AQP structure, each proposed mechanism remains incomplete. The present review is focused on AQP function and structure solved by electron crystallography in an attempt to fill the gaps between the findings in the absence and presence of lipids.

Major conclusions

Many AQP structures can be superimposed regardless of the determination method. The AQP fold is preserved even under conditions lacking lipids, but the water arrangement in the channel pore differs. The differences might be explained by dipole moments formed by the two short helices in the lipid bilayer. In addition, structure analyses of double-layered two-dimensional crystals of AQP suggest an array formation and cell adhesive function.

General significance

Electron crystallography findings not only have contributed to resolve some of the water permeation mechanisms, but have also elucidated the multiple functions of AQPs in the membrane. The roles of AQPs in the brain remain obscure, but their multiple activities might be important in the regulation of brain and other biological functions. This article is part of a Special Issue entitled Aquaporins.  相似文献   

5.
6.
植物水通道蛋白生理功能的研究进展   总被引:1,自引:0,他引:1  
自1992年第一个水通道蛋白AQP1被人们认识以来,从植物中分离得到了大量AQPs基因。AQPs在植物体内形成选择性运输水及一些小分子溶质和气体的膜通道,参与介导多个植物生长发育的生理活动,如细胞伸长、气孔运动、种子发育、开花繁殖和逆境胁迫等。就植物水通道蛋白的生理功能进行概述。  相似文献   

7.
Aquaporins and aquaglyceroporins are passive membrane channels that, in many species, facilitate highly efficient yet strictly selective permeation of water and small solutes across lipid bilayers. Their ability to block proton flux is particularly remarkable, because other aqueous pores and water efficiently conduct protons, via the so-called Grotthuss mechanism. How efficient water permeation is achieved and how it is reconciled with the seemingly contradictory task of strict proton exclusion have been long-standing puzzles. Because neither the dynamics of the water molecules nor the mobility of protons inside the aquaporin channel could be experimentally accessed so far, several groups addressed this challenge using a variety of atomistic computer simulation methods.  相似文献   

8.
A new aquaporin (AQP10) was identified in human small intestine. This gene encoded a 264-amino-acid protein with high sequence identity with AQP3 (53%), 9 (52%), and 7 (43%). These AQPs constitute one subfamily of AQP family that is differentiated from the other subfamily of AQP (AQP0, 1, 2, 4, 5, 6, and 8) by sequence homology. Ribonuclease protection assay and Northern blotting demonstrated almost exclusive expression of AQP10 mRNA in the duodenum and jejunum. In situ hybridization localized it in absorptive jejunal epithelial cells. Xenopus oocytes expressing AQP10 exhibited an increased osmotic water permeability in a mercury-sensitive manner. Although AQP10 belongs to the AQP subfamily, which has been characterized by permeability to water and neutral solutes such as urea and glycerol, it was not permeable to urea nor glycerol. The specific expression of AQP10 suggests its contribution to the water transport in the upper portion of small intestine.  相似文献   

9.
Aquaporins (AQPs) can be revisited from a distinct and complementary perspective: the outcome from analyzing them from both plant and animal studies. (1) The approach in the study. Diversity found in both kingdoms contrasts with the limited number of crystal structures determined within each group. While the structure of almost half of mammal AQPs was resolved, only a few were resolved in plants. Strikingly, the animal structures resolved are mainly derived from the AQP2-lineage, due to their important roles in water homeostasis regulation in humans. The difference could be attributed to the approach: relevance in animal research is emphasized on pathology and in consequence drug screening that can lead to potential inhibitors, enhancers and/or regulators. By contrast, studies on plants have been mainly focused on the physiological role that AQPs play in growth, development and stress tolerance. (2) The transport capacity. Besides the well-described AQPs with high water transport capacity, large amount of evidence confirms that certain plant AQPs can carry a large list of small solutes. So far, animal AQP list is more restricted. In both kingdoms, there is a great amount of evidence on gas transport, although there is still an unsolved controversy around gas translocation as well as the role of the central pore of the tetramer. (3) More roles than expected. We found it remarkable that the view of AQPs as specific channels has evolved first toward simple transporters to molecules that can experience conformational changes triggered by biochemical and/or mechanical signals, turning them also into signaling components and/or behave as osmosensor molecules.  相似文献   

10.
Invertebrate aquaporins: a review   总被引:2,自引:0,他引:2  
Aquaporins (AQPs) or water channels render the lipid bilayer of cell membranes permeable to water. The numerous AQP subtypes present in any given species, the transport properties of each subtype and the variety of methods of their regulation allows different cell types to be transiently or permanently permeable to water or other solutes that AQPs are capable of transporting (e.g. urea or glycerol). AQPs have been well characterized in all vertebrate classes, other than reptilia. Here we review the current state of knowledge of invertebrate AQPs set in the context of the much more thoroughly studied vertebrate AQPs. By phylogenetic analysis of the total AQP complement of several completed insect genomes, we propose a classification system of insect AQPs including three sub-families (DRIP, BIB and PRIP) that have one representative from all the complete insect genomes. The physiological role of AQPs in invertebrates (insects, ticks and nematodes) is discussed, including their function in common invertebrate phenomena such as high-volume liquid diets, cryoprotection and anhydrobiosis.  相似文献   

11.
Aquaporins (AQPs) are a family of channel proteins, which transport water and/or small solutes across cell membranes. AQPs are present in Bacteria, Eukarya, and Archaea. The classical AQP evolution paradigm explains the inconsistent phylogenetic trees by multiple transfer events and emphasizes that the assignment of orthologous AQPs is not possible, making it difficult to integrate functional information. Recently, a novel phylogenetic framework of eukaryotic AQP evolution showed congruence between eukaryotic AQPs and organismal trees identifying 32 orthologous clusters in plants and animals (Soto et al. Gene 503:165–176, 2012). In this article, we discuss in depth the methodological strength, the ability to predict functionality and the AQP community perception about the different paradigms of AQP evolution. Moreover, we show an updated review of AQPs transport functions in association with phylogenetic analyses. Finally, we discuss the possible effect of AQP data integration in the understanding of water and solute transport in eukaryotic cells.  相似文献   

12.
The membrane pore proteins, aquaporins (AQPs), facilitate the osmotically driven passage of water and, in some instances, small solutes. Under hyperosmotic conditions, the expression of some AQPs changes, and some studies have shown that the expression of AQP1 and AQP5 is regulated by MAPKs. However, the mechanisms regulating the expression of AQP4 and AQP9 induced by hyperosmotic stress are poorly understood. In this study, we observed that hyperosmotic stress induced by mannitol increased the expression of AQP4 and AQP9 in cultured rat astrocytes, and intraperitoneal infusion of mannitol increased AQP4 and AQP9 in the rat brain cortex. In addition, a p38 MAPK inhibitor, but not ERK and JNK inhibitors, suppressed their expression in cultured astrocytes. AQPs play important roles in maintaining brain homeostasis. The expression of AQP4 and AQP9 in astrocytes changes after brain ischemia or traumatic injury, and some studies have shown that p38 MAPK in astrocytes is activated under similar conditions. Since mannitol is commonly used to reduce brain edema, understanding the regulation of AQPs and p38 MAPK in astrocytes under hyperosmotic conditions induced with mannitol may lead to a control of water movements and a new treatment for brain edema.  相似文献   

13.
Proteomic knowledge of human aquaporins   总被引:8,自引:0,他引:8  
Aquaporins (AQPs) are an ubiquitous family of proteins characterized by sequence similarity and the presence of two NPA (Asp-Pro-Ala) motifs. At present, 13 human AQPs are known and they are divided into two subgroups according to their ability to transport only water molecules (AQP0, AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8), or also glycerol and other small solutes (AQP3, AQP7, AQP9, AQP10, AQP12). The genomic, structural, and functional aspects of this family are briefly described. In particular, proteomic approaches to identify and characterize the most studied AQPs, mainly through SDS-PAGE followed by MS analysis, are discussed. Moreover, the clinical importance of the best studied aquaporin (AQP1) in human diseases is also provided.  相似文献   

14.
The aquaporins (AQPs) form a family of integral membrane proteins that facilitate the movement of water across biological membrane by osmosis, as well as facilitating the diffusion of small polar solutes. AQPs have been recognised as drug targets for a variety of disorders associated with disrupted water or solute transport, including brain oedema following stroke or trauma, epilepsy, cancer cell migration and tumour angiogenesis, metabolic disorders, and inflammation. Despite this, drug discovery for AQPs has made little progress due to a lack of reproducible high-throughput assays and difficulties with the druggability of AQP proteins. However, recent studies have suggested that targetting the trafficking of AQP proteins to the plasma membrane is a viable alternative drug target to direct inhibition of the water-conducting pore. Here we review the literature on the trafficking of mammalian AQPs with a view to highlighting potential new drug targets for a variety of conditions associated with disrupted water and solute homeostasis.  相似文献   

15.
The microsporidia are a group of obligate intracellular parasitic protists that have been implicated as both human and veterinary pathogens. The infectious process of these organisms is believed to be dependent upon the rapid influx of water into spores, presumably via aquaporins (AQPs), transmembrane channels that facilitate osmosis. An AQP-like sequence of the microsporidium Encephalitozoon cuniculi (EcAQP), when cloned and expressed in oocytes of Xenopus laevis, rendered these oocytes highly permeable to water. No permeability to the solutes glycerol or urea was observed. Pre-treatment of EcAQP-expressing oocytes with HgCl(2) failed to inhibit their osmotic permeability, as predicted from EcAQP's lack of mercury-sensitive cysteine residues near the NPA motifs which line the AQP aqueous pore. EcAQP exhibits sequence identity to AQP A of Dictyostelium discoideum (26%) and human AQP 2 (24%). Further study of AQPs in microsporidia and their potential inhibitors may yield novel therapeutic agents for microsporidian infections.  相似文献   

16.
Soto G  Alleva K  Amodeo G  Muschietti J  Ayub ND 《Gene》2012,503(1):165-176
Aquaporins (AQPs) represent a family of channel proteins that transport water and/or small solutes across cell membranes in the three domains of life. In all previous phylogenetic analysis of aquaporin, trees constructed using proteins with very low amino acid identity (<15%) were incongruent with rRNA data. In this work, restricting the evolutionary study of aquaporins to proteins with high amino acid identity (>25%), we showed congruence between AQPs and organismal trees. On the basis of this analysis, we defined 19 orthologous gene clusters in flowering plant species (3 PIP-like, 7 TIP-like, 6 NIP-like and 3 SIP-like). We described specific conserved motifs for each subfamily and each cluster, which were used to develop a method for automatic classification. Analysis of amino acid identity between orthologous monocotyledon and dicotyledon AQPs from each cluster, suggested that PIPs are under high evolutionary constraint. The phylogenetic analysis allowed us the assignment of orthologous aquaporins for very distant animal lineages (tetrapods-fishes). We also demonstrated that the location of all vertebrate AQPs in the ortholog clusters could be predicted by comparing their amino acid identity with human AQPs. We defined four AQP subfamilies in animals: AQP1-like, AQP8-like, AQP3-like and AQP11-like. Phylogenetic analysis showed that the four animal AQPs subfamilies are related with PIP-like, TIP-like, NIP-like and SIP-like subfamilies, respectively. Thus, this analysis would allow the prediction of individual AQPs function on the basis of orthologous genes from Arabidopsis thaliana and Homo sapiens.  相似文献   

17.
Aquaporins and aquaglyceroporins (AQPs) are membrane channel proteins responsible for transport of water and for transport of glycerol in addition to water across the cell membrane, respectively. They are expressed throughout the human body and also in other forms of life. Inhibitors of human AQPs have been sought for therapeutic treatment for various medical conditions including hypertension, refractory edema, neurotoxic brain edema, and so forth. Conducting all‐atom molecular dynamics simulations, we computed the binding affinity of acetazolamide to human AQP4 that agrees closely with in vitro experiments. Using this validated computational method, we found that 1,3‐propanediol (PDO) binds deep inside the AQP4 channel to inhibit that particular aquaporin efficaciously. Furthermore, we used the same method to compute the affinities of PDO binding to four other AQPs and one aquaglyceroporin whose atomic coordinates are available from the protein data bank (PDB). For bovine AQP1, human AQP2, AQP4, AQP5, and Plasmodium falciparum PfAQP whose structures were resolved with high resolution, we obtained definitive predictions on the PDO dissociation constant. For human AQP1 whose PDB coordinates are less accurate, we estimated the dissociation constant with a rather large error bar. Taking into account the fact that PDO is generally recognized as safe by the US FDA, we predict that PDO can be an effective diuretic which directly modulates water flow through the protein channels. It should be free from the serious side effects associated with other diuretics that change the hydro‐homeostasis indirectly by altering the osmotic gradients.  相似文献   

18.
It is now over 10 years ago that aquaporin 1 (AQP1) was discovered and cloned from the red blood cells, and in 2003 the Nobel price in Chemistry was awarded to Pr. Peter Agre for his work on AQPs, highlighting the importance of these proteins in life sciences. AQPs are water channels. To date this protein family is composed of 11 sub-types in mammalians. Three main AQPs described in the mammalian brain are AQP1, AQP4 and AQP9. Several recent studies have shown that these channels are implicated in numerous physiological functions. AQP1 has a role in cerebrospinal fluid formation, whereas AQP4 is involved in water homeostasis and extracellular osmotic pressure in brain parenchyma. AQP4 seems also to have an important function in oedema formation after brain trauma or brain ischemia. AQP9 is implicated in brain energy metabolism. The level of expression of each AQP is highly regulated. After a trauma or an ischemia perturbation of the central nervous system, the level of expression of each AQP is differentially modified, resulting in facilitating oedema formation. At present, the exact role of each AQP is not yet determined. A better understanding of the mechanisms of AQP regulation should permit the development of new pharmacological strategies to prevent oedema formation. AQP9 has been recently specifically detected in the catecholaminergic neurons of the brain. This new result strengthens the hypothesis that the AQPs are not only water channels, but that some AQPs may play a role in energy metabolism as metabolite channels.  相似文献   

19.
20.
Localization and trafficking of aquaporin 2 in the kidney   总被引:2,自引:1,他引:1  
Aquaporins (AQPs) are membrane proteins serving in the transfer of water and small solutes across cellular membranes. AQPs play a variety of roles in the body such as urine formation, prevention from dehydration in covering epithelia, water handling in the blood-brain barrier, secretion, conditioning of the sensory system, cell motility and metastasis, formation of cell junctions, and fat metabolism. The kidney plays a central role in water homeostasis in the body. At least seven isoforms, namely AQP1, AQP2, AQP3, AQP4, AQP6, AQP7, and AQP11, are expressed. Among them, AQP2, the anti-diuretic hormone (ADH)-regulated water channel, plays a critical role in water reabsorption. AQP2 is expressed in principal cells of connecting tubules and collecting ducts, where it is stored in Rab11-positive storage vesicles in the basal state. Upon ADH stimulation, AQP2 is translocated to the apical plasma membrane, where it serves in the influx of water. The translocation process is regulated through the phosphorylation of AQP2 by protein kinase A. As soon as the stimulation is terminated, AQP2 is retrieved to early endosomes, and then transferred back to the Rab 11-positive storage compartment. Some AQP2 is secreted via multivesicular bodies into the urine as exosomes. Actin plays an important role in the intracellular trafficking of AQP2. Recent findings have shed light on the molecular basis that controls the trafficking of AQP2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号