首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ephrins and Eph receptors in angiogenesis.   总被引:26,自引:0,他引:26  
Eph receptors are a unique family of receptor tyrosine kinases that play critical roles in embryonic patterning, neuronal targeting, vascular development and adult neovascularization. Engagement of Eph receptors by ephrin ligands mediates critical steps of angiogenesis, including juxtacrine cell-cell contacts, cell adhesion to extracellular matrix, and cell migration. Recent evidence from in vitro angiogenesis assays and analysis of mice deficient for one or more members of the Eph family establishes the role of Eph signaling in sprouting angiogenesis and blood vessel remodeling during vascular development. Furthermore, elevated expression of Eph receptors and ephrin ligands is associated with tumors and associated tumor vasculature, suggesting that Eph receptors and their ephrin ligands also play critical roles in tumor angiogenesis and tumor growth. This review will focus on the relevance of Eph receptor signaling in embryonic and adult neovascularization, and possible contributions to tumor growth and metastasis.  相似文献   

2.
The Eph receptors are a large family of receptor tyrosine kinases. Their kinase activity and downstream signaling ability are stimulated by the binding of cell surface-associated ligands, the ephrins. The ensuing signals are bidirectional because the ephrins can also transduce signals (known as reverse signals) following their interaction with Eph receptors. The ephrin-binding pocket in the extracellular N-terminal domain of the Eph receptors and the ATP-binding pocket in the intracellular kinase domain represent potential binding sites for peptides and small molecules. Indeed, a number of peptides and chemical compounds that target Eph receptors and inhibit ephrin binding or kinase activity have been identified. These molecules show promise as probes to study Eph receptor/ephrin biology, as lead compounds for drug development, and as targeting agents to deliver drugs or imaging agents to tumors. Current challenges are to find (1) small molecules that inhibit Eph receptor-ephrin interactions with high binding affinity and good lead-like properties and (2) selective kinase inhibitors that preferentially target the Eph receptor family or subsets of Eph receptors. Strategies that could also be explored include targeting additional Eph receptor interfaces and the ephrin ligands.  相似文献   

3.
The Eph family of receptor tyrosine kinases and their ligands can be divided into two specificity subclasses: the Eck-related receptors and their GPI-anchored ligands, and the Elk-related receptors and their transmembrane ligands. Previous reports demonstrated that Eck- and Elk-related receptors in the retina distribute in high temporal–low nasal and high ventral–low dorsal gradients, respectively. While others have focused on complementary ligand gradients in the retinal axon target, the tectum, we report that ligands from each subclass also distribute in gradients opposing those of their corresponding receptors within the retina itself. Moreover, ligand gradients in the retina precede ganglion cell genesis. These results support an intraretinal role for Eph family members in addition to their previously proposed role in the development of retinotectal topography. The distinct distributions of Eph family members suggest that each subclass specifies positional information along independent retinal axes.  相似文献   

4.
5.
6.
The family of Eph tyrosine kinase receptors is an important part of signaling pathways involved in development, tissue homeostasis and tumorigenesis. Binding and activation of the receptors by their ligands, the ephrins, result in bidirectional signaling into both receptor and ligand expressing cells. Adult stem cell niches and tumors frequently express receptors and ligands, although their function is only beginning to be understood. Thus, Eph receptors and ephrins have become important molecules for understanding basic biological processes as well as tumorigenesis, and are promising targets for potential therapeutic intervention in human disease.  相似文献   

7.
The family of Eph tyrosine kinase receptors is an important part of signaling pathways involved in development, tissue homeostasis and tumorigenesis. Binding and activation of the receptors by their ligands, the ephrins, result in bidirectional signaling into both receptor and ligand expressing cells. Adult stem cell niches and tumors frequently express receptors and ligands, although their function is only beginning to be understood. Thus, Eph receptors and ephrins have become important molecules for understanding basic biological processes as well as tumorigenesis, and are promising targets for potential therapeutic intervention in human disease.  相似文献   

8.
酪氨酸激酶受体Eph亚族的研究进展   总被引:2,自引:0,他引:2  
酪氨酸激酶受体(RTK)参与细胞生长、分化、胚胎发育及细胞内信号传递等过程,具有相当重要的生理功能.目前已发现50多种RTK基因分属于14种亚族,Eph亚族是其中最大的家族,由14个基因组成,一些基因主要在脑的发育中表达,另一些则在各种组织中广泛表达.最近该亚族胞外配体的发现为深入研究其生理功能打下基础.综述了Eph亚族成员的来源、表达及其配体的研究概况.  相似文献   

9.
In mammals, 14 members of the Eph receptor tyrosine kinase family have been described so far. Here we present a not yet described member of this family denoted EphA10. We report the identification of three putative EphA10 isoforms: one soluble and two transmembrane isoforms. One of the latter isoforms lacked the sterile alpha motif commonly found in Eph receptors. The gene encoding EphA10 is located on chromosome 1p34 and expression studies show that EphA10 mRNA is mainly expressed in testis. Binding studies to ephrin ligands suggests that this receptor belongs to the EphA subclass of Eph receptors binding mainly to ephrin-A ligands.  相似文献   

10.
Eph receptors comprise the largest family of receptor tyrosine kinases. They are classified into an A family and a B family on the basis of the characteristic properties of the corresponding ephrin ligands which are either GPI-anchored peripheral membrane molecules (A class ephrins) or transmembrane molecules (B class ephrins). Eph receptors and ephrin ligands were originally identified as neuronal pathfinding molecules. Yet, gene targeting experiments in mice have identified the EphB/ephrinB system as critical and rate-limiting determinant of arterio-venous differentiation during embryonic vascular development. Identification of vascular EphB/ephrinB functions has in the last few years stimulated two emerging fields of vascular biology research, namely (1) the molecular analysis of the structural and functional mechanisms of arterio-venous differentiation, and (2) the molecular study of the commonalities between vascular and neuronal guidance and patterning mechanisms. This review summarizes the current understanding of vascular Eph receptor and ephrin ligand functions and provides an overview of emerging roles of the Eph/ephrin system in controlling tumor and vascular functions during tumorigenesis and tumor progression.  相似文献   

11.
Eph受体家族及其配体的信号转导途径及功能   总被引:5,自引:1,他引:4  
Eph受体是已知最大的酪氨酸蛋白激酶受体家族,Eph受体和其膜附着型配体(ephrin)在发育过程中呈现不同的表达模式,近来研究证明,Eph受体和其配体在包括神经网络形成,神经管和轴旁中胚层的成型(patterning),细胞迁移导向和轴突路径导引,血管形成等许多的发育过程中起重要作用.Eph受体及其配体也与肿瘤发生有关,因此深入分析这些分子尤其在肿瘤细胞生长中的功能而应用于治疗具有重要的临床意义.  相似文献   

12.
New exchanges in eph-dependent growth cone dynamics   总被引:2,自引:0,他引:2  
Murai KK  Pasquale EB 《Neuron》2005,46(2):161-163
The Eph receptor tyrosine kinases and their ephrin ligands play a pivotal role during axon pathfinding and neural circuitry formation. A prominent way in which Eph receptors sculpt cellular morphology is by remodeling the actin cytoskeleton and the surrounding plasma membrane through the regulation of Rho family GTPases. Two articles in this issue of Neuron (Sahin et al. and Cowan et al.) shed light on how Eph receptors recruit guanine nucleotide exchange factors for Rho family GTPases to modulate growth cone dynamics.  相似文献   

13.
The Eph receptors are the largest known family of receptor tyrosine kinases. The Eph receptors and their membrane-attached ligands, ephrins, show diverse expression patterns during development. Recent studies have demonstrated that Eph receptors and ephrins play important roles in many developmental processes, including neuronal network formation, the patterning of the neural tube and the paraxial mesoderm, the guidance of cell migration, and vascular formation. In the nervous system, Eph receptors and ephrins have been shown to act as positional labels to establish topographic projections. They also play a key role in pathway finding by axons and neural crest cells. The crucial roles of Eph receptors and ephrins during development suggest involvement of these genes in congenital disorders affecting the nervous system and other tissues. It has also been suggested that Eph receptors and ephrins may be involved in carcinogenesis. It is therefore of clinical importance to further analyse the function of these molecules, as manipulation of their function may have therapeutic applications.  相似文献   

14.
Signal transfer by Eph receptors   总被引:4,自引:0,他引:4  
The Eph receptors are a unique family of receptor tyrosine kinases that enforce cellular position in tissues through mainly repulsive signals generated upon cell-cell contact. Together, Eph receptors and their membrane-anchored ligands. the ephrins, are key molecules for establishing tissue organization through signaling pathways that control axonal projection, cell migration, and the maintenance of cellular boundaries. Through their SH2 (Src Homology 2) and PDZ (postsynaptic density protein, disks large, zona occludens) domains, several signaling molecules have been demonstrated to interact with the activated cytoplasmic domain of Eph receptors by using the yeast two-hybrid system and in vitro biochemical assays. Most proteins found to interact with Eph receptors are well-known regulators of cytoskeletal organization and cell adhesion, and also cell proliferation. Promoting growth, however, does not appear to be a primary role of Eph receptors. Explaining which signaling interactions identified for the Eph receptors have physiological significance, how Eph receptor signaling cascades are propagated, and characterizing the intrinsic signaling properties of the ephrins are all exciting questions currently being investigated.  相似文献   

15.
Eph receptors and their membrane-associated ephrin ligands regulate cell-cell interactions during development. The biochemical and biologic functions of this receptor tyrosine kinase family are still being elucidated but include roles in nervous system segmentation, axon pathfinding, and angiogenesis. To isolate murine orthologs of three zebrafish Eph family members (zek1, zek2, and zek3), we have used a degenerate RT-PCR-based cloning method specific for members of the Eph family. Although this method was effective for isolation of Eph receptor cDNAs, including members of both the A and B subfamilies, our results suggested that zek1 may not have a murine ortholog. The isolated cDNAs were also used to generate RNA in situ hybridization probes to examine the expression patterns of murine EphA2, A3, A4, A7, B1, B2, and B4 in 9.5-dpc mouse embryos. In addition to the expected abundant expression of these Eph receptors in the developing CNS and the presence of EphB receptors in vascular tissues, several of the EphA receptors were expressed in discrete regions of the developing vasculature. These results suggest a role for both EphA and EphB receptors in vascular development.  相似文献   

16.
Eph receptors and their ligands, ephrins, represent the largest group of the receptor tyrosine kinase (RTK) family, and they mediate numerous developmental processes in a variety of organisms. Ephrins are membrane-bound proteins that are mainly divided into two classes: A class ephrins, which are linked to the membrane by a glycosylphosphatidylinositol (GPI) linkage, and B class ephrins, which are transmembrane ligands. Based on their domain structures and affinities for ligand binding, the Eph receptors are also divided into two groups. Trans-dimerization of Eph receptors with their membrane-tethered ligands regulates cell-cell interactions and initiates bidirectional signaling pathways. These pathways are intimately involved in regulating cytoskeleton dynamics, cell migration, and alterations in cellular dynamics and shapes. The EphBs and ephrinBs are specifically localized and modified to promote higher-order clustering and initiate of bidirectional signaling. In this review, we present an in-depth overview of the structure, mechanisms, cell signaling, and functions of EphB/ephrinB in cell adhesion and migration.  相似文献   

17.
Eph receptor-ephrin bidirectional signals that target Ras and Rho proteins   总被引:12,自引:0,他引:12  
The ability of cells to respond to their surrounding environment and relay signals to the cell interior is essential for numerous processes during the development and maintenance of tissues. Eph receptors and their membrane-bound ligands, the ephrins, are unique in the receptor tyrosine kinase family in that their signaling is bidirectional, through both the receptor and the ligand. Eph receptors and ephrins are essential for a variety of biological processes, and play a particularly important role in regulating cell shape and cell movement. Recent data have linked Eph receptor-ephrin signaling complexes to the Ras and Rho families of small molecular weight GTPases and also to heterotrimeric G proteins. Understanding the signaling networks involved is an important step to understand the molecular basis for normal and defective cell-cell communication through Eph receptors and ephrins.  相似文献   

18.
Eph receptor tyrosine kinases and their ligands, ephrins, are membrane proteins coordinating a wide range of biological functions both in developing embryos and in adult multicellular organisms. Numerous studies have implicated Eph receptors in the induction of opposing responses, including cell adhesion or repulsion, support or inhibition of cell proliferation and cell migration, and progression or suppression of multiple malignancies. Similar to other receptor tyrosine kinases, Eph receptors rely on their ability to catalyze tyrosine phosphorylation for signal transduction. Interestingly, however, Eph receptors also actively utilize three kinase-deficient receptor tyrosine kinases, EphB6, EphA10, and Ryk, in their signaling network. The accumulating evidence suggests that the unusual flexibility of the Eph family, allowing it to initiate antagonistic responses, might be partially explained by the influence of the kinase-dead participants and that the exact outcome of an Eph-mediated action is likely to be defined by the balance between the signaling of catalytically potent and catalytically null receptors. We discuss in this minireview the emerging functions of the kinase-dead EphB6, EphA10, and Ryk receptors both in normal biological responses and in malignancy, and analyze currently available information related to the molecular mechanisms of their action in the context of the Eph family.  相似文献   

19.
Eph receptors comprise the largest family of receptor tyrosine kinases consisting of eight EphA receptors (with five corresponding glycosyl-phosphatidyl-inositol-anchored ephrinA ligands) and six EphB receptors (with three corresponding transmembrane ephrinB ligands). Originally identified as neuronal pathfinding molecules, genetic loss of function experiments have identified EphB receptors and ephrinB ligands as crucial regulators of vascular assembly, orchestrating arteriovenous differentiation and boundary formation. Despite these clearly defined rate-limiting roles of the EphB/ephrinB system for developmental angiogenesis, the mechanisms of the functions of EphB receptors and ephrinB ligands in the cells of the vascular system are poorly understood. Moreover, little evidence can be found in the recent literature regarding complementary EphB and ephrinB expression patterns that occur in the vascular system and that may bring cells into juxtapositional contact to allow bi-directional signaling between neighboring cells. This review summarizes the current knowledge of the role of EphB receptors and ephrinB ligands during embryonic vascular assembly and discusses recent findings on EphB/ephrinB-mediated cellular functions pointing to the crucial role of the Eph/ephrin system in controlling vascular homeostasis in the adult.Eph/ephrin work in the laboratory of the authors is supported by a grant from the Deutsche Forschungsgemeinschaft (Au83/3–2 within the SPP1069 "Angiogenesis")  相似文献   

20.
The role of ephrins and Eph receptors in cancer   总被引:10,自引:0,他引:10  
Eph receptors are the largest receptor tyrosine kinase family of transmembrane proteins with an extracellular domain capable of recognizing signals from the cells’ environment and influencing cell–cell interaction and cell migration. Ephrins are the ligands to Eph receptors and stimulate bi-directional signaling of the Eph/ephrin axis. Eph receptor and ephrin overexpression can result in tumorigenesis as related to tumor growth and survival and is associated with angiogenesis and metastasis in many types of human cancer. Recent data suggest that Eph/ephrin signaling could play an important role in the development of novel inhibition strategies and cancer treatments to potentially target this receptor tyrosine kinase and/or its ligand. A deeper understanding of the molecular basis for normal versus defective cell–cell interaction through the Eph/ephrin axis will enable the potential development of novel cancer treatments. This review emphasizes the biology of Eph/ephrin as well as the potential for novel targeted therapy through this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号