首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The mitochondrial permeability transition (MPT) is a key event in apoptotic and necrotic cell death and is controlled by the cellular redox state. To further investigate the mechanism(s) involved in regulation of the MPT, we used diethylmaleate to deplete GSH in HL60 cells and increase mitochondrial reactive oxygen species (ROS) production. The site of mitochondrial ROS production was determined to be mitochondrial respiratory complex III (cytochrome bc1), because 1). stigmatellin, a Qo site inhibitor, blocked ROS production and prevented the MPT and cell death and 2). cytochrome bc1 activity was abolished in cells protected from the redox-dependent MPT by stigmatellin. We next investigated the effect of pretreating cells with coenzyme Q10 analogs decylubiquinone (dUb) and ubiquinone 0 (Ub0) on the redox-dependent MPT. Pretreatment of HL60 cells with dUb blocked ROS production induced by GSH depletion and prevented activation of the MPT and cell death, whereas Ub0 did not. Since we also found that dUb did not inhibit cytochrome bc1 activity, the mechanism of protection against redox-dependent MPT by dUb may depend on its ability to scavenge ROS generated by cytochrome bc1. These results indicate that dUb, like the clinically used ubiquinone analog idebenone, may serve as a candidate antioxidant compound for the development of pharmacological agents to treat diseases where there is an oxidative stress component.  相似文献   

2.
A role for the antioxidants vitamin E and idebenone in decreasing retinal cell injury, after metabolic inhibition induced by chemical ischemia and hypoglycemia, was investigated and compared with oxidative stress conditions. Preincubation of the antioxidants, vitamin E (20 microM) and idebenone (10 microM), effectively protected from retinal cell injury after oxidative stress or hypoglycemia, whereas the protection afforded after postincubation of both antioxidants was decreased. Delayed retinal cell damage, mediated by chemical ischemia, was attenuated at 10 or 12 h postischemia, only after exposure to the antioxidants during all the experimental procedure. An antagonist of the N-methyl-D-aspartate (NMDA) receptors, an inhibitor of nitric oxide synthase (NOS) or a blocker of L-type Ca2+ channels were ineffective in reducing cell injury induced by chemical ischemia, hypoglycemia or oxidative stress. Oxidative stress and hypoglycemia increased (about 1.2-fold) significantly the fluorescence of the probe DCFH2-DA, that is indicative of intracellular ROS formation. Free radical generation detected with the probe dihydrorhodamine 123 (DHR 123) was enhanced after oxidative stress, chemical ischemia or hypoglycemia (about 2-fold). Nevertheless, the antioxidants vitamin E or idebenone were ineffective against intracellular ROS generation. Cellular energy charge decreased greatly after chemical ischemia, was moderately affected after hypoglycemia, but no significant changes were observed after oxidative stress. Preincubation with vitamin E prevented the changes in energy charge upon 6 h posthypoglycemia. We can conclude that irreversible changes occurring during chemical ischemia mainly reflect the alterations taking place at the ischemic core, whereas hypoglycemia situations may reflect changes occurring at the penumbra area, whereby vitamin E or idebenone may help to increase cell survival, exerting a beneficial neuroprotective effect.  相似文献   

3.
The effect of complex formation between ferricytochrome c and cytochrome c peroxidase (Ferrocytochrome-c:hydrogen peroxide oxidoreductase, EC 1.11.1.5) on the reduction of cytochrome c by N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD), reduced N-methylphenazonium methosulfate (PMSH), and ascorbate has been determined at low ionic strength (pH 7) and 25 degrees C. Complex formation with the peroxidase enhances the rate of ferricytochrome c reduction by the neutral reductants TMPD and PMSH. Under all experimental conditions investigated, complex formation with cytochrome c peroxidase inhibits the ascorbate reduction of ferricytochrome c. This inhibition is due to the unfavorable electrostatic interactions between the ascorbate dianion and the negatively charged cytochrome c-cytochrome c peroxidase complex. Corrections for the electrostatic term by extrapolating the data to infinite ionic strength suggest that ascorbate can reduce cytochrome c peroxidase-bound cytochrome c faster than free cytochrome c. Reduction of cytochrome c peroxidase Compound II by dicyanobis(1,10-phenanthroline)iron(II) (Fe(phen)2(CN)2) is essentially unaffected by complex formation between the enzyme and ferricytochrome c at low ionic strength (pH 6) and 25 degrees C. However, reduction of Compound II by the negatively changed tetracyano-(1,10-phenanthroline)iron(II) (Fe(phen)(CN)4) is enhanced in the presence of ferricytochrome c. This enhancement is due to the more favorable electrostatic interactions between the reductant and cytochrome c-cytochrome c peroxidase Compound II complex then for Compound II itself. These studies indicate that complex formation between cytochrome c and cytochrome c peroxidase does not sterically block the electron-transfer pathways from these small nonphysiological reductants to the hemes in these two proteins.  相似文献   

4.
Mitochondria can regenerate ascorbic acid from its oxidized forms, which may help to maintain the vitamin both in mitochondria and in the cytoplasm. In this work, we sought to determine the site and mechanism of mitochondrial ascorbate recycling from dehydroascorbic acid. Rat skeletal muscle mitochondria incubated for 3 h at 37 degrees C with 500 microM dehydroascorbic acid and energy substrates maintained ascorbate concentrations more than twice those observed in the absence of substrate. Succinate-dependent mitochondrial reduction of dehydroascorbic acid was blocked by inhibitors of mitochondrial Complexes II and III. Neither cytochrome c nor the outer mitochondrial membrane were necessary for the effect. The ascorbate radical was generated by mitochondria during treatment with dehydroascorbic acid and was abolished by ferricyanide, which does not penetrate the mitochondrial inner membrane. Together, these results show that energy substrate-dependent ascorbate recycling from dehydroascorbic acid involves an externally exposed portion of mitochondrial complex III.  相似文献   

5.
Many effects of ascorbate center on its interactions with membranes from plant and animal cells. These actions can be studied using vesicles produced from phospholipid components (liposomes), by isolating naturally occurring vesicles, or by purifying particular membranes that form vesicles during the extraction process. Liposomes have provided information concerning the anti- and prooxidant properties of ascorbate and about how the water-soluble vitamin can have effects within the phospholipid bilayer. The involvement of ascorbate in transmembrane electron transport has been characterized in vesicles normally found in certain cells, such as, chromaffin granules, synaptosomes, glyoxisomes, peroxisomes, and clathrincoated vesicles. Redox activity using reducing power associated with ascorbate/ascorbate free radical (AFR) has been characterized in some of these vesicles and it appears to be mediated by ab-type cytochrome. Ascorbate also participates in the reduction of iron within clathrin-coated vesicles. Vesicles appearing during purification of plasma membranes have transmembrane electron transport, oxidoreductase activity with ascorbate/AFR as redox agents, and an ascorbate-reducibleb-type cytochrome. It is also possible that ascorbate-related redox activity exists at the tonoplast of plant cells.  相似文献   

6.
Short-chain quinones are described as potent antioxidants and in the case of idebenone have already been under clinical investigation for the treatment of neuromuscular disorders. Due to their analogy to coenzyme Q10 (CoQ10), a long-chain quinone, they are widely regarded as a substitute for CoQ10. However, apart from their antioxidant function, this provides no clear rationale for their use in disorders with normal CoQ10 levels. Using recombinant NAD(P)H:quinone oxidoreductase (NQO) enzymes, we observed that contrary to CoQ10 short-chain quinones such as idebenone are good substrates for both NQO1 and NQO2. Furthermore, the reduction of short-chain quinones by NQOs enabled an antimycin A-sensitive transfer of electrons from cytosolic NAD(P)H to the mitochondrial respiratory chain in both human hepatoma cells (HepG2) and freshly isolated mouse hepatocytes. Consistent with the substrate selectivity of NQOs, both idebenone and CoQ1, but not CoQ10, partially restored cellular ATP levels under conditions of impaired complex I function. The observed cytosolic-mitochondrial shuttling of idebenone and CoQ1 was also associated with reduced lactate production by cybrid cells from mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS) patients. Thus, the observed activities separate the effectiveness of short-chain quinones from the related long-chain CoQ10 and provide the rationale for the use of short-chain quinones such as idebenone for the treatment of mitochondrial disorders.  相似文献   

7.
Lithium preparations are commonly used drug in treating mental disorders and bipolar diseases, but metal's cytotoxic mechanisms have not yet been completely understood. In this study, we investigated the cytotoxic mechanisms of lithium in freshly isolated rat hepatocytes. Lithium cytotoxicity were associated with reactive oxygen species (ROS) formation and collapse of mitochondrial membrane potential and cytochrome c release into the hepatocyte cytosol. All of the mentioned lithium-induced cytotoxicity markers were significantly (P?相似文献   

8.
The mitochondria-targeted drugs mitoquinone (Mito-Q) and mitovitamin E (MitoVit-E) are a new class of antioxidants containing the triphenylphosphonium cation moiety that facilitates drug accumulation in mitochondria. In this study, Mito-Q (ubiquinone attached to a triphenylphosphonium cation) and MitoVit-E (vitamin E attached to a triphenylphosphonium cation) were used. The aim of this study was to test the hypothesis that mitochondria-targeted antioxidants inhibit peroxide-induced oxidative stress and apoptosis in bovine aortic endothelial cells (BAEC) through enhanced scavenging of mitochondrial reactive oxygen species, thereby blocking reactive oxygen species-induced transferrin receptor (TfR)-mediated iron uptake into mitochondria. Glucose/glucose oxidase-induced oxidative stress in BAECs was monitored by oxidation of dichlorodihydrofluorescein that was catalyzed by both intracellular H(2)O(2) and transferrin iron transported into cells. Pretreatment of BAECs with Mito-Q (1 microM) and MitoVit-E (1 microM) but not untargeted antioxidants (e.g. vitamin E) significantly abrogated H(2)O(2)- and lipid peroxide-induced 2',7'-dichlorofluorescein fluorescence and protein oxidation. Mitochondria-targeted antioxidants inhibit cytochrome c release, caspase-3 activation, and DNA fragmentation. Mito-Q and MitoVit-E inhibited H(2)O(2)- and lipid peroxide-induced inactivation of complex I and aconitase, TfR overexpression, and mitochondrial uptake of (55)Fe, while restoring the mitochondrial membrane potential and proteasomal activity. We conclude that Mito-Q or MitoVit-E supplementation of endothelial cells mitigates peroxide-mediated oxidant stress and maintains proteasomal function, resulting in the overall inhibition of TfR-dependent iron uptake and apoptosis.  相似文献   

9.
A decrease in total glutathione, and aberrant mitochondrial bioenergetics have been implicated in the pathogenesis of Parkinson's disease. Our previous work exemplified the importance of glutathione (GSH) in the protection of mesencephalic neurons exposed to malonate, a reversible inhibitor of mitochondrial succinate dehydrogenase/complex II. Additionally, reactive oxygen species (ROS) generation was an early, contributing event in malonate toxicity. Protection by ascorbate was found to correlate with a stimulated increase in protein-glutathione mixed disulfide (Pr-SSG) levels. The present study further examined ascorbate-glutathione interactions during mitochondrial impairment. Depletion of GSH in mesencephalic cells with buthionine sulfoximine potentiated both the malonate-induced toxicity and generation of ROS as monitored by dichlorofluorescein diacetate (DCF) fluorescence. Ascorbate completely ameliorated the increase in DCF fluorescence and toxicity in normal and GSH-depleted cultures, suggesting that protection by ascorbate was due in part to upstream removal of free radicals. Ascorbate stimulated Pr-SSG formation during mitochondrial impairment in normal and GSH-depleted cultures to a similar extent when expressed as a proportion of total GSH incorporated into mixed disulfides. Malonate increased the efflux of GSH and GSSG over time in cultures treated for 4, 6 or 8 h. The addition of ascorbate to malonate-treated cells prevented the efflux of GSH, attenuated the efflux of GSSG and regulated the intracellular GSSG/GSH ratio. Maintenance of GSSG/GSH with ascorbate plus malonate was accompanied by a stimulation of Pr-SSG formation. These findings indicate that ascorbate contributes to the maintenance of GSSG/GSH status during oxidative stress through scavenging of radical species, attenuation of GSH efflux and redistribution of GSSG to the formation of mixed disulfides. It is speculated that these events are linked by glutaredoxin, an enzyme shown to contain both dehydroascorbate reductase as well as glutathione thioltransferase activities.  相似文献   

10.
Structural mitochondrial damage accompanies the cytotoxic effects of several drugs including tumor necrosis factor (TNF). Using various inhibitors of mitochondrial electron transport we have investigated the mechanism of TNF-mediated cytotoxicity in L929 and WEHI 164 clone 13 mouse fibrosarcoma cells. Inhibitors with different sites of action modulated TNF cytotoxicity, however, with contrasting effects on final cell viability. Inhibition of mitochondrial electron transport at complex III (cytochrome c reductase) by antimycin A resulted in a marked potentiation of TNF-mediated injury. In contrast, when the electron flow to ubiquinone was blocked, either at complex I (NADH-ubiquinone oxidoreductase) with amytal or at complex II (succinate-ubiquinone reductase) with thenoyltrifluoroacetone, cells were markedly protected against TNF cytotoxicity. Neither uncouplers nor inhibitors of oxidative phosphorylation nor complex IV (cytochrome c oxidase) inhibitors significantly interfered with TNF-mediated effects, ruling out the involvement of energy-coupled phenomena. In addition, the toxic effects of TNF were counteracted by the addition of antioxidants and iron chelators. Furthermore, we analyzed the direct effect of TNF on mitochondrial morphology and functions. Treatment of L929 cells with TNF led to an early degeneration of the mitochondrial ultrastructure without any pronounced damage of other cellular organelles. Analysis of the mitochondrial electron flow revealed that TNF treatment led to a rapid inhibition of the mitochondria to oxidize succinate and NADH-linked substrates. The inhibition of electron transport was dose-dependent and became readily detectable 60 min after the start of TNF treatment, thus preceding the onset of cell death by at least 3-6 h. In contrast, only minor effects were observed on complex IV activity. The different effects observed with the mitochondrial respiratory chain inhibitors provide suggestive evidence that mitochondrial production of oxygen radicals mainly generated at the ubisemiquinone site is a causal mechanism of TNF cytotoxicity. This conclusion is further supported by the protective effect of antioxidants as well as the selective pattern of damage of mitochondrial chain components and characteristic alterations of the mitochondrial ultrastructure.  相似文献   

11.
Lee CS  Han ES  Lee WB 《Neurochemical research》2003,28(12):1833-1841
Phenelzine, deprenyl, and antioxidants (SOD, catalase, ascorbate, or rutin) reduced the loss of cell viability in differentiated PC12 cells treated with 250 M MPP+, whereas N-acetylcysteine and dithiothreitol did not inhibit cell death. Phenelzine reduced the condensation and fragmentation of nuclei caused by MPP+ in PC12 cells. Phenelzine and deprenyl prevented the MPP+-induced decrease in mitochondrial membrane potential, cytochrome c release, formation of reactive oxygen species, and depletion of GSH in PC12 cells. Phenelzine revealed a scavenging action on hydrogen peroxide and reduced the hydrogen peroxide–induced cell death in PC12 cells, whereas deprenyl did not depress the cytotoxic effect of hydrogen peroxide. Both compounds reduced the iron and EDTA-mediated degradation of 2-deoxy-d-ribose degradation. The results suggest that phenelzine attenuates the MPP+-induced viability loss in PC12 cells by reducing the alteration of mitochondrial membrane permeability that seems to be mediated by oxidative stress.  相似文献   

12.
Previous investigations of our laboratory have shown that 7-ketocholesterol was a potent inducer of apoptosis involving a release of cytochrome c into the cytosol, and a lipid peroxidation process that could be the consequence of a production of radical oxygen species. According to these considerations, we asked whether some antioxidants were able to counteract 7-ketocholesterol-induced apoptosis, and whether prevention of cell death was associated with the impairment of mitochondrial events implied in the commitment to apoptosis, i.e., opening of the mitochondrial megachannels leading to the loss of the mitochondrial transmembrane potential (DeltaPsim), and release of cytochrome c from mitochondria into the cytosol. To this end, we studied the effects of glutathione (15 mM), N-acetylcysteine (15 mM), vitamin E (100 microM), vitamin C (50 microM) and melatonin (1 mM) on U937 cells treated with 7-ketocholesterol (40 microg/ml). Only glutathione, N-acetylcysteine, and vitamin E prevented apoptosis measured by the occurrence of cells with condensed and/or fragmented nuclei, as well as the loss of DeltaPsim, and the release of cytochrome c. However, all the antioxidants used were potent inhibitors of the production of O(2)(*) occuring under treatment with 7-ketocholesterol. Collectively, our data demonstrate that impairment of apoptosis by glutathione, N-acetylcysteine, and vitamin E correlates with the prevention of mitochondrial dysfunctions, and they underline that the ability of antioxidants to counteract 7-ketocholesterol-induced apoptosis does not only depend on their capability to inhibit the production of O(2)(*).  相似文献   

13.
In the redox antioxidant network, dihydrolipoate can synergistically enhance the ascorbate-dependent recycling of vitamin E. Since the major endogenous thiol antioxidant in biological systems is glutathione (GSH) it was of interest to compare the effects of dihydrolipoate with GSH on ascorbate-dependent recycling of the water-soluble homologue of vitamin E, Trolox, by electron spin resonance (ESR). Trolox phenoxyl radicals were generated by a horseradish peroxidase (HRP)-hydrogen peroxide (H2O2) oxidation system. In the presence of dihydrolipoate, Trolox radicals were suppressed until both dihydrolipoate and endogenous levels of ascorbate in skin homogenates were consumed. Similar experiments made in the presence of GSH revealed that Trolox radicals reappeared immediately after ascorbate was depleted and that GSH was not able to drive the ascorbate-dependent Trolox recycling reaction. However, at higher concentrations GSH was able to increase ascorbate-mediated Trolox regeneration from the Trolox radical. ESR and spectrophotometric measurements demonstrated the ability of dihydrolipoate or GSH to react with dehydroascorbate, the two-electron oxidation product of ascorbate in this system. Dihydrolipoate regenerated greater amounts of ascorbate at a much faster rate than equivalent concentrations of GSH. Thus the marked difference between the rate and efficiency of ascorbate generation by dihydrolipoate as compared with GSH appears to account for the different kinetics by which these thiol antioxidants influence ascorbate-dependent Trolox recycling.  相似文献   

14.
In this study, we investigated the involvement of reactive oxygen species (ROS) and calcium in staurosporine (STS)-induced apoptosis in cultured retinal neurons, under conditions of maintained membrane integrity. The antioxidants idebenone (IDB), glutathione-ethylester (GSH/EE), trolox, and Mn(III)tetrakis (4-benzoic acid) porphyrin chloride (MnTBAP) significantly reduced STS-induced caspase-3-like activity and intracellular ROS generation. Endogenous sources of ROS production were investigated by testing the effect of the following inhibitors: 7-nitroindazole (7-NI), a specific inhibitor of the neuronal isoform of nitric oxide synthase (nNOS); arachidonyl trifluoromethyl ketone (AACOCF(3)), a phospholipase A(2) (PLA(2)) inhibitor; allopurinol, a xanthine oxidase inhibitor; and the mitochondrial inhibitors rotenone and oligomycin. All these compounds decreased caspase-3-like activity and ROS generation, showing that both mitochondrial and cytosolic sources of ROS are implicated in this mechanism. STS induced a significant increase in intracellular calcium concentration ([Ca(2+)](i)), which was partially prevented in the presence of IDB and GSH/EE, indicating its dependence on ROS generation. These two antioxidants and the inhibitors allopurinol and 7-NI also reduced the number of TdT-mediated dUTP nick-end labeling-positive cells. Thus, endogenous ROS generation and the rise in intracellular calcium are important inter-players in STS-triggered apoptosis. Furthermore, the antioxidants may help to prolong retinal cell survival upon apoptotic cell death.  相似文献   

15.
Male mice receiving vitamin E (5.0 g alpha-tocopherol acetate/kg of food) from 28 wk of age showed a 40% increased median life span, from 61 +/- 4 wk to 85 +/- 4 wk, and 17% increased maximal life span, whereas female mice equally supplemented exhibited only 14% increased median life span. The alpha-tocopherol content of brain and liver was 2.5-times and 7-times increased in male mice, respectively. Vitamin E-supplemented male mice showed a better performance in the tight-rope (neuromuscular function) and the T-maze (exploratory activity) tests with improvements of 9-24% at 52 wk and of 28-45% at 78 wk. The rates of electron transfer in brain mitochondria, determined as state 3 oxygen uptake and as NADH-cytochrome c reductase and cytochrome oxidase activities, were 16-25% and 35-38% diminished at 52-78 wk. These losses of mitochondrial function were ameliorated by vitamin E supplementation by 37-56% and by 60-66% at the two time points considered. The activities of mitochondrial nitric oxide synthase and Mn-SOD decreased 28-67% upon aging and these effects were partially (41-68%) prevented by vitamin E treatment. Liver mitochondrial activities showed similar effects of aging and of vitamin E supplementation, although less marked. Brain mitochondrial enzymatic activities correlated negatively with the mitochondrial content of protein and lipid oxidation products (r2 = 0.58-0.99, P < 0.01), and the rates of respiration and of complex I and IV activities correlated positively (r2 = 0.74-0.80, P < 0.01) with success in the behavioral tests and with maximal life span.  相似文献   

16.
The reduction of dehydroascorbate, the oxidized form of ascorbate plays important role in the maintenance of sufficient level of ascorbate. In plant mitochondria two DHA reducing mechanisms, the GSH-dependent and the mitochondrial electron transfer chain dependent ascorbate recycling have been characterized. Although both pathways have been extensively studied quantitative information about the electron fluxes from one or another direction for the reduction of DHA is not known. The cellular, mitochondrial glutathione pools and mitochondrial DHA reducing capacity was measured in BSO treated and control tobacco cells. While BSO caused dramatic decrease of cellular GSH content the difference was much smoother at mitochondrial level. The difference in DHA reduction capacity was even smoother affirming the existence of alternative, non-GSH dependent DHA reducing mechanism(s) in plant mitochondria. On the base of the parallel determination of mitochondrial GSH content and ascorbate production upon DHA addition, GSH (consumption) is responsible for the ~ 20 % of ascorbate production. Almost 90 % enhancement of ascorbate production could be provoked by the addition of Complex II substrate succinate which could be almost totally prevented by the concomitant addition of malonate or TTFA. On the base of these results, the importance of mitochondrial Complex II compared to GSH-dependent mechanisms in mitochondrial ascorbate recycling has been underestimated so far.  相似文献   

17.
We have studied the effects of idebenone on mitochondrial function in cybrids derived from one normal donor (HQB17) and one patient harboring the G3460A/MT-ND1 mutation of Leber's Hereditary Optic Neuropathy (RJ206); and in XTC.UC1 cells bearing a premature stop codon at amino acid 101 of MT-ND1 that hampers complex I assembly. Addition of idebenone to HQB17 cells caused mitochondrial depolarization and NADH depletion, which were inhibited by cyclosporin (Cs) A and decylubiquinone, suggesting an involvement of the permeability transition pore (PTP). On the other hand, addition of dithiothreitol together with idebenone did not cause PTP opening and allowed maintenance of the mitochondrial membrane potential even in the presence of rotenone. Addition of dithiothreitol plus idebenone, or of idebenol, to HQB17, RJ206 and XTC.UC1 cells sustained membrane potential in intact cells and ATP synthesis in permeabilized cells even in the presence of rotenone and malonate, and restored a good level of coupled respiration in complex I-deficient XTC.UC1 cells. These findings demonstrate that idebenol can feed electrons at complex III. If the quinone is maintained in the reduced state, a task that in some cell types appears to be performed by dicoumarol-sensitive NAD(P)H:quinone oxidoreductase 1 [Haefeli et al. (2011) PLoS One 6, e17963], electron transfer to complex III may allow reoxidation of NADH in complex I deficiencies.  相似文献   

18.
AimsIn the present study, the effects of vitamin E and curcumin on hepatic dysfunction, mitochondrial oxygen consumption as well as hyperlipidemia in hypothyroid rats are reported.Main methodsAdult male rats were rendered hypothyroid by administration of 0.05% 6-n-propyl-2-thiouracil (PTU) in their drinking water, while vitamin E (200 mg/kg body weight) and curcumin (30 mg/kg body weight) were supplemented orally for 30 days.Key findingsHypothyroidism-induced elevation in serum aspartate aminotransferase activity was found to decline in vitamin E and curcumin treated rats. Nevertheless, distorted histoarchitecture revealed in hypothyroid rat liver was alleviated to normal by vitamin E and curcumin treatment. Regulation of hypothyroidism induced decrease in complexes I and II mediated mitochondrial respiration by vitamin E and curcumin was found to be different. Administration of curcumin to hypothyroid rats alleviates the decreased state 4 respiration and increased respiratory control ratio (RCR) level in complex I mediated mitochondrial oxygen consumption, whereas complex II mediated respiration was not influenced by exogenous antioxidants. Although, increase in serum concentration of total cholesterol was not modified by exogenous antioxidants, increased level of non-high-density lipoprotein cholesterol (non-HDL-C) in serum of hypothyroid rats was further enhanced by vitamin E and curcumin. Moreover, a significant elevation in mitochondrial lipid peroxidation and protein carbonylation was noticed in hypothyroid groups treated with vitamin E and curcumin.SignificanceThe present study suggests that supplementation of curcumin and vitamin E enhances oxidative stress parameters and hyperlipidemia; nevertheless, it protects hypothyroid-induced altered rectal temperature, serum transaminase activity and hepatic histoarchitecture.  相似文献   

19.
The distribution of respiratory chain complexes in bovine heart and human muscle mitochondria has been explored by immunoelectron microscopy with antibodies made against bovine heart mitochondrial proteins in conjunction with protein A-colloidal gold (12-nm particles). The antibodies used were made against NADH-coenzyme Q reductase (complex I), ubiquinol cytochrome c oxidoreductase (complex III), cytochrome c oxidase, core proteins isolated from complex III and the non-heme iron protein of complex III. Labeling of bovine heart tissue with any of these antibodies gave gold particles randomly distributed along the mitochondrial inner membrane. The labeling of muscle tissue from a patient with a mitochondrial myopathy localized by biochemical analysis to complex III was quantitated and compared with the labeling of human control muscle tissue. Complex I and cytochrome c oxidase antibodies reacted to the same level in myopathic and normal muscle samples. Antibodies to complex III or its components reacted very poorly to the patient's tissue but strongly to control muscle samples. Immunoelectron microscopy using respiratory chain antibodies appears to be a promising approach to the diagnosis and characterization of mitochondrial myopathies when only limited amounts of tissue are available for study.  相似文献   

20.
Etoposide (VP-16) is known to promote cell apoptosis either in cancer or in normal cells as a side effect. This fact is preceded by the induction of several mitochondrial events, including increase in Bax/Bcl-2 ratio followed by cytochrome c release and consequent activation of caspase-9 and -3, reduction of ATP levels, depolarization of membrane potential (DeltaPsi) and rupture of the outer membrane. These events are apoptotic factors essentially associated with the induction of the mitochondrial permeability transition (MPT). VP-16 has been shown to stimulate the Ca2+-dependent MPT induction similarly to prooxidants and to promote apoptosis by oxidative stress mechanisms, which is prevented by glutathione (GSH) and N-acetylcysteine (NAC). Therefore, the aim of this work was to study the effects of antioxidants and thiol protecting agents on MPT promoted by VP-16, attempting to identify the underlying mechanisms on VP-16-induced apoptosis. The increased sensitivity of isolated mitochondria to Ca2+-induced swelling, Ca2+ release, depolarization of DeltaPsi and uncoupling of respiration promoted by VP-16, which are prevented by cyclosporine A proving that VP-16 induces the MPT, are also efficiently prevented by ascorbate, the primary reductant of the phenoxyl radicals produced by VP-16. The thiol reagents GSH, dithiothreitol and N-ethylmaleimide, which have been reported to prevent the MPT induction, also protect this event promoted by VP-16. The inhibition of the VP-16-induced MPT by antioxidants agrees with the prevention of etoposide-induced apoptosis by GSH and NAC and suggests the generation of oxidant species as a potential mechanism underlying the MPT that may trigger the release of mitochondrial apoptogenic factors responsible for apoptotic cascade activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号