首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Elevated atmospheric CO2 concentration may result in increased below‐ground carbon allocation by trees, thereby altering soil carbon cycling. Seasonal estimates of soil surface carbon flux were made to determine whether carbon losses from Pinus radiata trees growing at elevated CO2 concentration were higher than those at ambient CO2 concentration, and whether this was related to increased fine root growth. Monthly soil surface carbon flux density (f) measurements were made on plots with trees growing at ambient (350) and elevated (650 μmol mol?1) CO2 concentration in large open‐top chambers. Prior to planting the soil carbon concentration (0.1%) and f (0.28 μmol m?2 s?1 at 15 °C) were low. A function describing the radial pattern of f with distance from tree stems was used to estimate the annual carbon flux from tree plots. Seasonal estimates of fine root production were made from minirhizotrons and the radial distribution of roots compared with radial measurements of f. A one‐dimensional gas diffusion model was used to estimate f from soil CO2 concentrations at four depths. For the second year of growth, the annual carbon flux from the plots was 1671 g y?1 and 1895 g y?1 at ambient and elevated CO2 concentrations, respectively, although this was not a significant difference. Higher f at elevated CO2 concentration was largely explained by increased fine root biomass. Fine root biomass and stem production were both positively related to f. Both root length density and f declined exponentially with distance from the stem, and had similar length scales. Diurnal changes in f were largely explained by changes in soil temperature at a depth of 0.05 m. Ignoring the change of f with increasing distance from tree stems when scaling to a unit ground area basis from measurements with individual trees could result in under‐ or overestimates of soil‐surface carbon fluxes, especially in young stands when fine roots are unevenly distributed.  相似文献   

2.
In this study, we investigated the impact of elevated atmospheric CO2 (ambient + 350 μmol mol–1) on fine root production and respiration in Scots pine (Pinus sylvestris L.) seedlings. After six months exposure to elevated CO2, root production measured by root in-growth bags, showed significant increases in mean total root length and biomass, which were more than 100% greater compared to the ambient treatment. This increased root length may have lead to a more intensive soil exploration. Chemical analysis of the roots showed that the roots in the elevated treatment accumulated more starch and had a lower C/N-ratio. Specific root respiration rates were significantly higher in the elevated treatment and this was probably attributed to increased nitrogen concentrations in the roots. Rhizospheric respiration and soil CO2 efflux were also enhanced in the elevated treatment. These results clearly indicate that under elevated atmospheric CO2 root production and development in Scots pine seedlings is altered and respiratory carbon losses through the root system are increased.  相似文献   

3.
Efforts to characterize carbon (C) cycling among atmosphere, forest canopy, and soil C pools are hindered by poorly quantified fine root dynamics. We characterized the influence of free‐air‐CO2‐enrichment (ambient +200 ppm) on fine roots for a period of 6 years (Autumn 1998 through Autumn 2004) in an 18‐year‐old loblolly pine (Pinus taeda) plantation near Durham, NC, USA using minirhizotrons. Root production and mortality were synchronous processes that peaked most years during spring and early summer. Seasonality of fine root production and mortality was not influenced by atmospheric CO2 availability. Averaged over all 6 years of the study, CO2 enrichment increased average fine root standing crop (+23%), annual root length production (+25%), and annual root length mortality (+36%). Larger increase in mortality compared with production with CO2 enrichment is explained by shorter average fine root lifespans in elevated plots (500 days) compared with controls (574 days). The effects of CO2‐enrichment on fine root proliferation tended to shift from shallow (0–15 cm) to deeper soil depths (15–30) with increasing duration of the study. Diameters of fine roots were initially increased by CO2‐enrichment but this effect diminished over time. Averaged over 6 years, annual fine root NPP was estimated to be 163 g dw m?2 yr?1 in CO2‐enriched plots and 130 g dw m?2 yr?1 in control plots (P= 0.13) corresponding to an average annual additional input of fine root biomass to soil of 33 g m?2 yr?1 in CO2‐enriched plots. A lack of consistent CO2× year effects suggest that the positive effects of CO2 enrichment on fine root growth persisted 6 years following minirhizotron tube installation (8 years following initiation of the CO2 fumigation). Although CO2‐enrichment contributed to extra flow of C into soil in this experiment, the magnitude of the effect was small suggesting only modest potential for fine root processes to directly contribute to soil C storage in south‐eastern pine forests.  相似文献   

4.
Young Scots pine trees naturally established at a pine heath were exposed to two concentrations of CO2 (ambient and doubled ambient) and two O3 regimes (ambient and doubled ambient) and their combination in open-top field chambers during growing seasons 1994, 1995 and 1996 (late May to 15 September). Filtered ozone treatment and chamberless control trees were also included in the treatment comparisons. Root ingrowth cores were inserted to the undisturbed soil below the branch projection of each tree at the beginning of the fumigation period in 1994 and were harvested at the end of the fumigation periods in 1995 and 1996. Root biomasses were determined from different soil layers in the ingrowth cores, and the infection levels of different mycorrhizal types were calculated. Elevated O3 and CO2 did not have significant effects on the biomass production of Scots pine coarse (Ø > 2 mm) or fine roots (Ø < 2 mm) and roots of grasses and dwarf shrubs. Elevated O3 caused a transient stimulation, observable in 1995, in the proportion of tuber-like mycorrhizas, total mycorrhizas and total short roots but this stimulation disappeared during the last study year. Elevated CO2 did not enhance carbon allocation to root growth or mycorrhiza formation, although a diminishing trend in the mycorrhiza formation was observed. In the combination treatment increased CO2 inhibited the transient stimulating effect of ozone, and a significant increase of old mycorrhizas was observed. Our conclusion is that doubled CO2 is not able to increase carbon allocation to growth of fine roots or mycorrhizas in nutrient poor forest sites and realistically elevated ozone does not cause a measurable limitation to roots within a period of three exposure years.  相似文献   

5.
Elevated atmospheric carbon dioxide (CO2) often stimulates the growth of fine roots, yet there are few reports of responses of intact root systems to long‐term CO2 exposure. We investigated the effects of elevated CO2 on fine root growth using open top chambers in a scrub oak ecosystem at Kennedy Space Center, Florida for more than 7 years. CO2 enrichment began immediately after a controlled burn, which simulated the natural disturbance that occurs in this system every 10–15 years. We hypothesized that (1) root abundance would increase in both treatments as the system recovered from fire; (2) elevated CO2 would stimulate root growth; and (3) elevated CO2 would alter root distribution. Minirhizotron tubes were used to measure fine root length density (mm cm?2) every three months. During the first 2 years after fire recovery, fine root abundance increased in all treatments and elevated CO2 significantly enhanced root abundance, causing a maximum stimulation of 181% after 20 months. The CO2 stimulation was initially more pronounced in the top 10 cm and 38–49 cm below the soil surface. However, these responses completely disappeared during the third year of experimental treatment: elevated CO2 had no effect on root abundance or on the depth distribution of fine roots during years 3–7. The results suggest that, within a few years following fire, fine roots in this scrub oak ecosystem reach closure, defined here as a dynamic equilibrium between production and mortality. These results further suggest that elevated CO2 hastens root closure but does not affect maximum root abundance. Limitation of fine root growth by belowground resources – particularly nutrients in this nutrient‐poor soil – may explain the transient response to elevated CO2.  相似文献   

6.
Root dynamics are important for plant, ecosystem and global carbon cycling. Changes in root dynamics caused by rising atmospheric CO2 not only have the potential to moderate further CO2 increases, but will likely affect forest function. We used FACE (Free‐Air CO2 Enrichment) to expose three 30‐m diameter plots in a 13‐year‐old loblolly pine (Pinus taeda) forest to elevated (ambient + 200 µL L?1) atmospheric CO2. Three identical fully instrumented plots were implemented as controls (ambient air only). We quantified root dynamics from October 1998 to October 1999 using minirhizotrons. In spite of 16% greater root lengths and 24% more roots per minirhizotron tube, the effects of elevated atmospheric CO2 on root lengths and numbers were not statistically significant. Similarly, production and mortality were also unaffected by the CO2 treatment, even though annual root production and mortality were 26% and 46% greater in elevated compared to ambient CO2 plots. Average diameters of live roots present at the shallowest soil depth were, however, significantly enhanced in CO2‐enriched plots. Mortality decreased with increasing soil depth and the slopes of linear regression lines (mortality vs. depth) differed between elevated and ambient CO2 treatments, reflecting the significant CO2 by depth interaction. Relative root turnover (root flux/live root pool) was unchanged by exposure to elevated atmospheric CO2. Results from this study suggest modest, if any, increases in ecosystem‐level root productivity in CO2‐enriched environments.  相似文献   

7.
 Carbon dioxide enrichment may increase the Al tolerance of trees by increasing root growth, root exudation and/or mycorrhizal colonization. The effect of elevated CO2 on the response of mycorrhizal pitch pine (Pinus rigida Mill.) seedlings to Al was determined in two experiments with different levels of nutrients, 0.1- or 0.2-strength Clark solution. During each experiment, seedlings inoculated with the ectomycorrhizal fungus Pisolithus tinctorius (Pers.) Coker & Couch were grown 13 weeks in sand irrigated with nutrient solution (pH 3.8) containing 0, 6.25, 12.5, or 25 mg/l Al (0, 232, 463, or 927 μM Al) in growth chambers fumigated with 350 (ambient) or 700 (elevated) μl/l CO2. At ambient CO2, in the absence of Al, mean total dry weights (DW) of seedlings at the high nutrient level were 164% higher than those at the low level. Total DW at elevated CO2, in the absence of Al, was significantly greater than that in ambient CO2 at the low (+34%) and high (+16%) nutrient levels. Root and shoot DW at both nutrient levels decreased with increasing Al concentrations with Al reducing root growth more than shoot growth. Although visible symptoms of Al toxicity in roots and needles were reduced by CO2 enrichment, there were no significant CO2 × Al interactions for shoot or root DW. The percentage of seedling roots that became mycorrhizal was negatively related to nutrient level and was greater at elevated than at ambient CO2 levels. Generally, elevated CO2 had little effect on concentration of mineral nutrients in roots and needles. Aluminum reduced concentrations of most nutrients by inhibiting uptake. Received: 18 June 1997 / Accepted: 8 December 1997  相似文献   

8.
Upland rice (Oryza sativa L.) was grown at both ambient (350 μmol mol?1) and elevated (700 μmol mol?1) CO2 in either the presence or absence of the root hemi‐parasitic angiosperm Striga hermonthica (Del) Benth. Elevated CO2 alleviated the impact of the parasite on host growth: biomass of infected rice grown at ambient CO2 was 35% that of uninfected, control plants, while at elevated CO2, biomass of infected plants was 73% that of controls. This amelioration occurred despite the fact that O. sativa grown at elevated CO2 supported both greater numbers and a higher biomass of parasites per host than plants grown at ambient CO2. The impact of infection on host leaf area, leaf mass, root mass and reproductive tissue mass was significantly lower in plants grown at elevated as compared with ambient CO2. There were significant CO2 and Striga effects on photosynthetic metabolism and instantaneous water‐use efficiency of O. sativa. The response of photosynthesis to internal [CO2] (A/Ci curves) indicated that, at 45 days after sowing (DAS), prior to emergence of the parasites, uninfected plants grown at elevated CO2 had significantly lower CO2 saturated rates of photosynthesis, carboxylation efficiencies and ribulose‐1,5‐bisphosphate carboxylase/oxygenase (Rubisco; EC 4.1.1.39) contents than uninfected, ambient CO2‐grown O. sativa. In contrast, infection with S. hermonthica prevented down‐regulation of photosynthesis in O. sativa grown at elevated CO2, but had no impact on photosynthesis of hosts grown at ambient CO2. At 76 DAS (after parasites had emerged), however, infected plants grown at both elevated and ambient CO2 had lower carboxylation efficiencies and Rubisco contents than uninfected O. sativa grown at ambient CO2. The reductions in carboxylation efficiency (and Rubisco content) were accompanied by similar reductions in nitrogen concentration of O. sativa leaves, both before and after parasite emergence. There were no significant CO2 or infection effects on the concentrations of soluble sugars in leaves of O. sativa, but starch concentration was significantly lower in infected plants at both CO2 concentrations. These results demonstrate that elevated CO2 concentrations can alleviate the impact of infection with Striga on the growth of C3 hosts such as rice and also that infection can delay the onset of photosynthetic down‐regulation in rice grown at elevated CO2.  相似文献   

9.
Lolium perenne and Trifolium repens were grown in a Free Air CO2 Enrichment (FACE) system at elevated (600 μimol mol-1) and ambient (340 μmol mol-1) carbon dioxide concentrations during a whole growing season. Using a root ingrowth bag technique the extent to which CO2 enrichment influenced the growth of L, perenne and T. repens roots under two contrasting nutrient regimes was examined. Root ingrowth bags were inserted for a fixed time into the soil in order to trap roots. It was also possible to follow the mortality of roots in bags inserted for different time intervals. Root ingrowth of both L. perenne and T. repens increased under elevated CO2 conditions. In L. perenne, root ingrowth decreased with increasing nutrient fertilizer level, but for T. repens the root ingrowth was not affected by the nutrient application rate. Besides biomass measurements, root length estimates were made for T, repens. These showed an increase under elevated CO2 concentrations. Root decomposition appeared to decrease under elevated CO2 concentrations. A possible explanation for this effect is the observed changes in tissue composition, such as the increase in the carbon: nitrogen ratio in roots of L. perenne at elevated CO2 concentrations.  相似文献   

10.
We investigated the effects of elevated atmospheric CO2 concentrations (ambient + 200 ppm) on fine root production and soil carbon dynamics in a loblolly pine (Pinus taeda) forest subject to free‐air CO2 enrichment (FACE) near Durham, NC (USA). Live fine root mass (LFR) showed less seasonal variation than dead fine root mass (DFR), which was correlated with seasonal changes in soil moisture and soil temperature. LFR mass increased significantly (by 86%) in the elevated CO2 treatment, with an increment of 37 g(dry weight) m?2 above the control plots after two years of CO2 fumigation. There was no long‐term increment in DFR associated with elevated CO2, but significant seasonal accumulations of DFR mass occurred during the summer of the second year of fumigation. Overall, root net primary production (RNPP) was not significantly different, but annual carbon inputs were 21.7 gC m?2 y?1 (68%) higher in the elevated CO2 treatment compared to controls. Specific root respiration was not altered by the CO2 treatment during most of the year; however, it was significantly higher by 21% and 13% in September 1997 and May 1998, respectively, in elevated CO2. We did not find statistically significant differences in the C/N ratio of the root tissue, root decomposition or phosphatase activity in soil and roots associated with the treatment. Our data show that the early response of a loblolly pine forest ecosystem subject to CO2 enrichment is an increase in its fine root population and a trend towards higher total RNPP after two years of CO2 fumigation.  相似文献   

11.
Elevation of atmospheric CO2 concentration is predicted to increase net primary production, which could lead to additional C sequestration in terrestrial ecosystems. Soil C input was determined under ambient and Free Atmospheric Carbon dioxide Enrichment (FACE) conditions for Lolium perenne L. and Trifolium repens L. grown for four years in a sandy‐loam soil. The 13C content of the soil organic matter C had been increased by 5‰ compared to the native soil by prior cropping to corn (Zea mays) for > 20 years. Both species received low or high amounts of N fertilizer in separate plots. The total accumulated above‐ground biomass produced by L. perenne during the 4‐year period was strongly dependent on the amount of N fertilizer applied but did not respond to increased CO2. In contrast, the total accumulated above‐ground biomass of T. repens doubled under elevated CO2 but remained independent of N fertilizer rate. The C:N ratio of above‐ground biomass for both species increased under elevated CO2 whereas only the C:N ratio of L. perenne roots increased under elevated CO2. Root biomass of L. perenne doubled under elevated CO2 and again under high N fertilization. Total soil C was unaffected by CO2 treatment but dependent on species. After 4 years and for both crops, the fraction of new C (F‐value) under ambient conditions was higher (P= 0.076) than under FACE conditions: 0.43 vs. 0.38. Soil under L. perenne showed an increase in total soil organic matter whereas N fertilization or elevated CO2 had no effect on total soil organic matter content for both systems. The net amount of C sequestered in 4 years was unaffected by the CO2 concentration (overall average of 8.5 g C kg?1 soil). There was a significant species effect and more new C was sequestered under highly fertilized L. perenne. The amount of new C sequestered in the soil was primarily dependent on plant species and the response of root biomass to CO2 and N fertilization. Therefore, in this FACE study net soil C sequestration was largely depended on how the species responded to N rather than to elevated CO2.  相似文献   

12.
A fast growing high density Populus plantation located in central Italy was exposed to elevated carbon dioxide for a period of three years. An elevated CO2 treatment (550 ppm), of 200 ppm over ambient (350 ppm) was provided using a FACE technique. Standing root biomass, fine root turnover and mycorrhizal colonization of the following Populus species was examined: Populus alba L., Populus nigra L., Populus x euramericana Dode (Guinier). Elevated CO2 increased belowground allocation of biomass in all three species examined, standing root biomass increased by 47–76% as a result of FACE treatment. Similarly, fine root biomass present in the soil increased by 35–84%. The FACE treatment resulted in 55% faster fine root turnover in P. alba and a 27% increase in turnover of roots of P. nigra and P. x euramericana. P. alba and P. nigra invested more root biomass into deeper soil horizon under elevated CO2. Response of the mycorrhizal community to elevated CO2 was more varied, the rate of infection increased only in P. alba for both ectomycorrhizal (EM) and arbuscular mycorrhizas (AM). The roots of P. nigra showed greater infection only by AM and the colonization of the root system of P. x euramericana was not affected by FACE treatment. The results suggest that elevated atmospheric CO2 conditions induce greater belowground biomass investment, which could lead to accumulation of assimilated C in the soil profile. This may have implications for C sequestration and must be taken into account when considering long‐term C storage in the soil.  相似文献   

13.
As a consequence of land‐use change and the burning of fossil fuels, atmospheric concentrations of CO2 are increasing and altering the dynamics of the carbon cycle in forest ecosystems. In a number of studies using single tree species, fine root biomass has been shown to be strongly increased by elevated CO2. However, natural forests are often intimate mixtures of a number of co‐occurring species. To investigate the interaction between tree mixture and elevated CO2, Alnus glutinosa, Betula pendula and Fagus sylvatica were planted in areas of single species and a three species polyculture in a free‐air CO2 enrichment study (BangorFACE). The trees were exposed to ambient or elevated CO2 (580 μmol mol?1) for 4 years. Fine and coarse root biomass, together with fine root turnover and fine root morphological characteristics were measured. Fine root biomass and morphology responded differentially to the elevated CO2 at different soil depths in the three species when grown in monocultures. In polyculture, a greater response to elevated CO2 was observed in coarse roots to a depth of 20 cm, and fine root area index to a depth of 30 cm. Total fine root biomass was positively affected by elevated CO2 at the end of the experiment, but not by species diversity. Our data suggest that existing biogeochemical cycling models parameterized with data from species grown in monoculture may be underestimating the belowground response to global change.  相似文献   

14.
Although desert ecosystems are predicted to be the most responsive to elevated CO2, low nutrient availability may limit increases in productivity and cause plants in deserts to allocate more resources to root biomass or activity for increased nutrient acquisition. We measured root respiration of two Mojave Desert shrubs, Ambrosia dumosa and Larrea tridentata, grown under ambient (~375 ppm) and elevated (~517 ppm) CO2 concentrations at the Nevada Desert FACE Facility (NDFF) over five growing seasons. In addition, we grew L. tridentata seedlings in a greenhouse with similar CO2 treatments to determine responses of primary and lateral roots to an increase in CO2. In both field and greenhouse studies, root respiration was not significantly affected by elevated CO2. However, respiration of A. dumosa roots <1 month old was significantly greater than respiration of A. dumosa roots between 1 and 4 months old. For both shrub species, respiration rates of very fine (<1.0 mm diameter) roots were significantly greater than those of fine (1–2 mm diameter) roots, and root respiration decreased as soil water decreased. Because specific root length was not significantly affected by CO2 and because field minirhizotron measurements of root production were not significantly different, we infer that root growth at the NDFF has not increased with elevated CO2. Furthermore, other studies at the NDFF have shown increased nutrient availability under elevated CO2, which reduces the need for roots to increase scavenging for nutrients. Thus, we conclude that A. dumosa and L. tridentata root systems have not increased in size or activity, and increased shoot production observed under elevated CO2 for these species does not appear to be constrained by the plant's root growth or activity.  相似文献   

15.
The question of how tropical trees cope with infertile soils has been challenging to address, in part, because fine root dynamics must be studied in situ. We used annual fertilization with nitrogen (N as urea, 12.5 g N m?2 year?1), phosphorus (P as superphosphate, 5 g P m?2 year?1) and potassium (K as KCl, 5 g K m?2 year?1) within 38 ha of old‐growth lowland tropical moist forest in Panama and examined fine root dynamics with minirhizotron images. We expected that added P, above all, would (i) decrease fine root biomass but, (ii) have no impact on fine root turnover. Soil in the study area was moderately acidic (pH = 5.28), had moderate concentrations of exchangeable base cations (13.4 cmol kg?1), low concentrations of Bray‐extractable phosphate (PO4 = 2.2 mg kg?1), and modest concentrations of KCl‐extractable nitrate (NO3 = 5.0 mg kg?1) and KCl‐extractable ammonium (NH4 = 15.5 mg kg?1). Added N increased concentrations of KCl‐extractable NO3 and acidified the soil by one pH unit. Added P increased concentrations of Bray‐extractable PO4 and P in the labile fraction. Concentrations of exchangeable K were elevated in K addition plots but reduced by N additions. Fine root dynamics responded to added K rather than added P. After 2 years, added K decreased fine root biomass from 330 to 275 g m?2. The turnover coefficient of fine roots <1 mm diameter ranged from 2.6 to 4.4 per year, and the largest values occurred in plots with added K. This study supported the view that biomass and dynamics of fine roots respond to soil nutrient availability in species‐rich, lowland tropical moist forest. However, K rather than P elicited root responses. Fine roots smaller than 1 mm have a short lifetime (<140 days), and control of fine root production by nutrient availability in tropical forests deserves more study.  相似文献   

16.
Soil‐surface CO2 efflux and its spatial and temporal variations were examined in an 8‐y‐old ponderosa pine plantation in the Sierra Nevada Mountains in California from June 1998 to August 1999. Continuous measurements of soil CO2 efflux, soil temperatures and moisture were conducted on two 20 × 20 m sampling plots. Microbial biomass, fine root biomass, and the physical and chemical properties of the soil were also measured at each of the 18 sampling locations on the plots. It was found that the mean soil CO2 efflux in the plantation was 4.43 µmol m?2 s?1 in the growing season and 3.12 µmol m?2 s?1 in the nongrowing season. These values are in the upper part of the range of published soil‐surface CO2 efflux data. The annual maximum and minimum CO2 efflux were 5.87 and 1.67 µmol m?2 s?1, respectively, with the maximum occurring between the end of May and early June and the minimum in December. The diurnal fluctuation of CO2 efflux was relatively small (< 20%) with the minimum appearing around 09.00 hours and the maximum around 14.00 hours. Using daytime measurements of soil CO2 efflux tends to overestimate the daily mean soil CO2 efflux by 4–6%. The measurements taken between 09.00 and 11.00 hours (local time) seem to better represent the daily mean with a reduced sampling error of 0.9–1.5%. The spatial variation of soil CO2 efflux among the 18 sampling points was high, with a coefficient of variation of approximately 30%. Most (84%) of the spatial variation was explained by fine root biomass, microbial biomass, and soil physical and chemical properties. Although soil temperature and moisture explained most of the temporal variations (76–95%) of soil CO2 efflux, the two variables together explained less than 34% of the spatial variation. Microbial biomass, fine root biomass, soil nitrogen content, organic matter content, and magnesium content were significantly and positively correlated with soil CO2 efflux, whereas bulk density and pH value were negatively correlated with CO2 efflux. The relationship between soil CO2 efflux and soil temperature was significantly controlled by soil moisture with a Q10 value of 1.4 when soil moisture was <14% and 1.8 when soil moisture was >14%. Understanding the spatial and temporal variations is essential to accurately assessment of carbon budget at whole ecosystem and landscape scales. Thus, this study bears important implications for the study of large‐scale ecosystem dynamics, particularly in response to climatic variations and management regimes.  相似文献   

17.
Root structure parameters, root biomass and allometric relationships between above- and belowground biomass were investigated in young Norway spruce (Picea abies [L.] Karst.) trees cultivated inside the glass domes with ambient (AC, 375 μmol(CO2) mol?1) and elevated (EC, A + 375 μmol(CO2) mol?1) atmospheric CO2 concentrations ([CO2]). After 8 years of fumigation, a mean EC tree in comparison with AC one exhibited about 37 % higher belowground biomass. The growth of primary root structure was unaffected by elevated [CO2]; however, the biomass of secondary roots growing on the primary root structure and the biomass of secondary roots growing in the zone between the soil surface and the first primary root ramification were significantly higher in EC comparing with AC treatment about 58 and 70 %, respectively. The finest root’s (diameter up to 1 mm) biomass as well as length and surface area of both primary and secondary root structures showed the highest difference between the treatments; advancing EC to AC by 43 % on average. Therefore, Norway spruce trees cultivated under well-watered and rather nitrogen-poor soil conditions responded to the air elevated [CO2] environment by the enhancement of the secondary root structure increment, by enlargement of root length and root absorbing area, and also by alternation of root to aboveground organ biomass proportion. Higher root to leaf and root to stem basal area ratios could be beneficial for Norway spruce trees to survive periods with limited soil water availability.  相似文献   

18.
Scots pine (Pinus sylvestris L.) seedlings were grown for 3years in the ground in open top chambers and exposed to twoconcentrations of atmospheric CO2(ambient or ambient + 400 µmol mol-1) without addition of nutrients and water. Biomassproduction (above-ground and below-ground) and allocation, aswell as canopy structure and tissue nitrogen concentrationsand contents, were examined by destructive harvest after 3 years.Elevated CO2increased total biomass production by 55%, reducedneedle area and needle mass as indicated, respectively, by lowerleaf area ratio and leaf mass ratio. A relatively smaller totalneedle area was produced in relation to fine roots under elevatedCO2. The proportion of dry matter in roots was increased byelevated CO2, as indicated by increased root-to-shoot ratioand root mass ratio. Within the root system, there was a significantshift in the allocation towards fine roots. Root litter constituteda much higher fraction of fine roots in trees grown in the elevatedCO2than in those grown in ambient CO2. Growth at elevated CO2causeda significant decline in nitrogen concentration only in theneedles, while nitrogen content significantly increased in branchesand fine roots (with diameter less than 1 mm). There were nochanges in crown structure (branch number and needle area distribution).Based upon measurements of growth made throughout the 3 years,the greatest increase in biomass under elevated CO2took placemainly at the beginning of the experiment, when trees grownin elevated CO2had higher relative growth rates than those grownunder ambient CO2; these differences disappeared with time.Symptoms of acclimation of trees to growth in the elevated CO2treatmentwere observed and are discussed. Copyright 2000 Annals of BotanyCompany Elevated CO2, Pinus sylvestris, biomass production, allocation, fine roots, root litter, crown structure, nitrogen, C/N ratio  相似文献   

19.
Fine roots (≤1 mm diameter) are critical in plant water and nutrient absorption, and it is important to understand how rising atmospheric CO2 will affect them as part of terrestrial ecosystem responses to global change. This study's objective was to determine the effects of elevated CO2 on production, mortality, and standing crops of fine root length over 2 years in a free‐air CO2 enrichment (FACE) facility in the Mojave Desert of southern Nevada, USA. Three replicate 25 m diameter FACE rings were maintained at ambient (~370 μmol mol?1) and elevated CO2 (~550 μmol mol?1) atmospheric concentrations. Twenty‐eight minirhizotron tubes were placed in each ring to sample three microsite locations: evergreen Larrea shrubs, drought‐deciduous Ambrosia shrubs, and along systematic community transects (primarily in shrub interspaces which account for ~85% of the area). Seasonal dynamics were similar for ambient and elevated CO2: fine root production peaked in April–June, with peak standing crop occurring about 1 month later, and peak mortality occurring during the hot summer months, with higher values for all three measures in a wet year compared with a dry year. Fine root standing crop, production, and mortality were not significantly different between treatments except standing crop along community transects, where fine root length was significantly lower in elevated CO2. Fine root turnover (annual cumulative mortality/mean standing crop) ranged from 2.33 to 3.17 year?1, and was not significantly different among CO2 treatments, except for community transect tubes where it was significantly lower for elevated CO2. There were no differences in fine root responses to CO2 between evergreen (Larrea) and drought‐deciduous (Ambrosia) shrubs. Combined with observations of increased leaf‐level water‐use efficiency and lack of soil moisture differences, these results suggest that under elevated CO2 conditions, reduced root systems (compared with ambient CO2) appear sufficient to provide resources for modest aboveground production increases across the community, but in more fertile shrub microsites, fine root systems of comparable size with those in ambient CO2 were required to support the greater aboveground production increases. For community transects, development of the difference in fine root standing crops occurred primarily through lower stimulation of fine root production in the elevated CO2 treatment during periods of high water availability.  相似文献   

20.
We tested the hypothesis that elevated CO2 would stimulate proportionally higher photosynthesis in the lower crown of Populus trees due to less N retranslocation, compared to tree crowns in ambient CO2. Such a response could increase belowground C allocation, particularly in trees with an indeterminate growth pattern such as Populus tremuloides. Rooted cuttings of P. tremuloides were grown in ambient and twice ambient (elevated) CO2 and in low and high soil N availability (89 ± 7 and 333 ± 16 ng N g−1 day−1 net mineralization, respectively) for 95 days using open-top chambers and open-bottom root boxes. Elevated CO2 resulted in significantly higher maximum leaf photosynthesis (A max) at both soil N levels. A max was higher at high N than at low N soil in elevated, but not ambient CO2. Photosynthetic N use efficiency was higher at elevated than ambient CO2 in both soil types. Elevated CO2 resulted in proportionally higher whole leaf A in the lower three-quarters to one-half of the crown for both soil types. At elevated CO2 and high N availability, lower crown leaves had significantly lower ratios of carboxylation capacity to electron transport capacity (V cmax/J max) than at ambient CO2 and/or low N availability. From the top to the bottom of the tree crowns, V cmax/J max increased in ambient CO2, but it decreased in elevated CO2 indicating a greater relative investment of N into light harvesting for the lower crown. Only the mid-crown leaves at both N levels exhibited photosynthetic down regulation to elevated CO2. Stem biomass segments (consisting of three nodes and internodes) were compared to the total A leaf for each segment. This analysis indicated that increased A leaf at elevated CO2 did not result in a proportional increase in local stem segment mass, suggesting that C allocation to sinks other than the local stem segment increased disproportionally. Since C allocated to roots in young Populus trees is primarily assimilated by leaves in the lower crown, the results of this study suggest a mechanism by which C allocation to roots in young trees may increase in elevated CO2. Received: 12 August 1996 / Accepted: 12 November 1996  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号