首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
beta cells sense glucose through its metabolism and the resulting increase in ATP, which subsequently stimulates insulin secretion. Uncoupling protein-2 (UCP2) mediates mitochondrial proton leak, decreasing ATP production. In the present study, we assessed UCP2's role in regulating insulin secretion. UCP2-deficient mice had higher islet ATP levels and increased glucose-stimulated insulin secretion, establishing that UCP2 negatively regulates insulin secretion. Of pathophysiologic significance, UCP2 was markedly upregulated in islets of ob/ob mice, a model of obesity-induced diabetes. Importantly, ob/ob mice lacking UCP2 had restored first-phase insulin secretion, increased serum insulin levels, and greatly decreased levels of glycemia. These results establish UCP2 as a key component of beta cell glucose sensing, and as a critical link between obesity, beta cell dysfunction, and type 2 diabetes.  相似文献   

2.
Chronic exposure to elevated free fatty acids (lipotoxicity) induces uncoupling protein (UCP2) in the pancreatic beta-cell, and therefore a causal link between UCP2 and beta-cell defects associated with obesity may exist. Recently, we showed that lipid treatment in vivo and in vitro in UCP2(-/-) mice/islets does not result in any loss in beta-cell glucose sensitivity. We have now assessed the mechanism of maintained beta-cell function in UCP2(-/-) mice by exposing islets to 0.4 mM palmitate for 48 h. Palmitate treatment increased triglyceride concentrations in wild type (WT) but not UCP2(-/-) islets because of higher palmitate oxidation rates in the UCP2(-/-) islets. Dispersed beta-cells from the palmitate-exposed WT islets had reduced glucose-stimulated hyperpolarization of the mitochondrial membrane potential compared with both control WT and palmitate-exposed UCP2(-/-) beta-cells. The glucose-stimulated increases in the ATP/ADP ratio and cytosolic Ca2+ are attenuated in palmitate-treated WT but not UCP2(-/-) beta-cells. Exposure to palmitate reduced glucose-stimulated insulin secretion (GSIS) in WT islets, whereas UCP2(-/-) islets had enhanced GSIS. Overexpression of recombinant UCP2 but not enhanced green fluorescent protein in beta-cells resulted in a loss of glucose-stimulated hyperpolarization of the mitochondrial membrane potential and GSIS similar to that seen in WT islets exposed to palmitate. Reactive oxygen species (ROS) are known to increase the activity of UCP2. We showed that ROS levels were elevated in control UCP2(-/-) islets as compared with WT and UCP2(-/-) islets overexpressing UCP2 and that palmitate increased ROS in WT and UCP2(-/-) islets overexpressing UCP2 but not in UCP2(-/-) islets. Thus, UCP2(-/-) islets resisted the toxic effects of palmitate by maintaining glucose-dependent metabolism-secretion coupling. We propose that higher free fatty acid oxidation rates prevent accumulation of triglyceride in UCP2(-/-) islets, such accumulation being a phenomenon associated with lipotoxicity.  相似文献   

3.
4.
Protein kinase C (PKC) is considered to modulate glucose-stimulated insulin secretion. Pancreatic beta cells express multiple isoforms of PKCs; however, the role of each isoform in glucose-stimulated insulin secretion remains controversial. In this study we investigated the role of PKCdelta, a major isoform expressed in pancreatic beta cells on beta cell function. Here, we showed that PKCdelta null mice manifested glucose intolerance with impaired insulin secretion. Insulin tolerance test showed no decrease in insulin sensitivity in PKCdelta null mice. Studies using islets isolated from these mice demonstrated decreased glucose- and KCl-stimulated insulin secretion. Perifusion studies indicated that mainly the second phase of insulin secretion was decreased. On the other hand, glucose-induced influx of Ca2+ into beta cells was not altered. Immunohistochemistry using total internal reflection fluorescence microscopy and electron microscopic analysis showed an increased number of insulin granules close to the plasma membrane in beta cells of PKCdelta null mice. Although PKC is thought to phosphorylate Munc18-1 and facilitate soluble N-ethylmaleimide-sensitive fusion protein attachment protein receptors complex formation, the phosphorylation of Munc18-1 by glucose stimulation was decreased in islets of PKCdelta null mice. We conclude that PKCdelta plays a non-redundant role in glucose-stimulated insulin secretion. The impaired insulin secretion in PKCdelta null mice is associated with reduced phosphorylation of Munc18-1.  相似文献   

5.
Previous studies showed that biotin enhanced glucose-induced insulin secretion. Changes in the cytosolic ATP/ADP ratio in the pancreatic islets participate in the regulation of insulin secretion by glucose. In the present study we investigated whether biotin regulates the cytosolic ATP/ADP ratio in glucose-stimulated islets. When islets were stimulated with glucose plus biotin, the ATP/ADP ratio increased to approximately 160% of the ATP/ADP ratio in islets stimulated with glucose alone. The rate of glucose oxidation, assessed by CO(2) production, was also about 2-fold higher in islets treated with biotin. These increasing effects of biotin were proportional to the effects seen in insulin secretion. There are no previous reports of vitamins, such as biotin, directly affecting ATP synthesis. Our data indicate that biotin enhances ATP synthesis in islets following the increased rate of substrate oxidation in mitochondria and that, as a consequence of these events, glucose-induced insulin release is reinforced by biotin.  相似文献   

6.
Studies with genetically modified insulinoma cells suggest that group VIA phospholipase A(2) (iPLA(2)beta) participates in amplifying glucose-induced insulin secretion. INS-1 insulinoma cells that overexpress iPLA(2)beta, for example, exhibit amplified insulin-secretory responses to glucose and cAMP-elevating agents. To determine whether similar effects occur in whole animals, we prepared transgenic (TG) mice in which the rat insulin 1 promoter (RIP) drives iPLA(2)beta overexpression, and two characterized TG mouse lines exhibit similar phenotypes. Their pancreatic islet iPLA(2)beta expression is increased severalfold, as reflected by quantitative PCR of iPLA(2)beta mRNA, immunoblotting of iPLA(2)beta protein, and iPLA(2)beta enzymatic activity. Immunofluorescence microscopic studies of pancreatic sections confirm iPLA(2)beta overexpression in RIP-iPLA(2)beta-TG islet beta-cells without obviously perturbed islet morphology. Male RIP-iPLA(2)beta-TG mice exhibit lower blood glucose and higher plasma insulin concentrations than wild-type (WT) mice when fasting and develop lower blood glucose levels in glucose tolerance tests, but WT and TG blood glucose levels do not differ in insulin tolerance tests. Islets from male RIP-iPLA(2)beta-TG mice exhibit greater amplification of glucose-induced insulin secretion by a cAMP-elevating agent than WT islets. In contrast, islets from male iPLA(2)beta-null mice exhibit blunted insulin secretion, and those mice have impaired glucose tolerance. Arachidonate incorporation into and the phospholipid composition of RIP-iPLA(2)beta-TG islets are normal, but they exhibit reduced Kv2.1 delayed rectifier current and prolonged glucose-induced action potentials and elevations of cytosolic Ca(2+) concentration that suggest a molecular mechanism for the physiological role of iPLA(2)beta to amplify insulin secretion.  相似文献   

7.
The mitochondrial UCP2 mediates glucose-stimulated insulin secretion by decreasing intracellular ATP/ADP ratio. Insulin secretion is a tightly regulated process. Ghrelin, as well as obestatin, were intensively studied to determine their ability to modify insulin secretion. Ghrelin is considered to be an inhibitor of insulin release from pancreatic islets, however little is known about the effects of obestatin. In our study we demonstrate the stimulating effects of both peptides on insulin secretion in INS1 cells. Furthermore, we investigate the potential role of UCP2 in mediating the effects of both peptides on insulin secretion. UCP2 mRNA expression was down-regulated by ghrelin in the presence of 26.4 mM glucose, however it was unchanged after obestatin treatment. Our results confirm that UCP2 could be involved in the stimulating effect of ghrelin on insulin release from INS1 cells.  相似文献   

8.
Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic beta cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In beta cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in beta cells to affect insulin secretion.  相似文献   

9.
We investigated the effect of oleanolic acid, a plant-derived triterpenoid, on insulin secretion and content in pancreatic beta-cells and rat islets. Oleanolic acid significantly enhanced insulin secretion at basal and stimulatory glucose concentrations in INS-1 832/13 cells and enhanced acute glucose-stimulated insulin secretion in isolated rat islets. In the cell line the effects of oleanolic acid on insulin secretion were comparable to that of the sulfonylurea tolbutamide at basal glucose levels and with the incretin mimetic Exendin-4 under glucose-stimulated conditions, yet neither Ca(2+) nor cAMP rose in response to oleanolic acid. Chronic treatment with oleanolic acid increased total cellular insulin protein and mRNA levels. These effects may contribute to the anti-diabetic properties of this natural product.  相似文献   

10.
GABA has been proposed to inhibit insulin secretion through GABAB receptors (GABABRs) in pancreatic beta-cells. We investigated whether GABABRs participated in the regulation of glucose homeostasis in vivo. The animals used in this study were adult male and female BALB/C mice, mice deficient in the GABAB1 subunit of the GABABR (GABAB(-/-)), and wild types (WT). Blood glucose was measured under fasting/fed conditions and in glucose tolerance tests (GTTs) with a Lifescan Glucose meter, and serum insulin was measured by ELISA. Pancreatic insulin content and islet insulin were released by RIA. Western blots for the GABAB1 subunit in islet membranes and immunohistochemistry for insulin and GABAB1 were performed in both genotypes. BALB/C mice preinjected with Baclofen (GABABR agonist, 7.5 mg/kg ip) presented impaired GTTs and decreased insulin secretion compared with saline-preinjected controls. GABAB(-/-) mice showed fasting and fed glucose levels similar to WT. GABAB(-/-) mice showed improved GTTs at moderate glucose overloads (2 g/kg). Baclofen pretreatment did not modify GTTs in GABAB(-/-) mice, whereas it impaired normal glycemia reinstatement in WT. Baclofen inhibited glucose-stimulated insulin secretion in WT isolated islets but was without effect in GABAB(-/-) islets. In GABAB(-/-) males, pancreatic insulin content was increased, basal and glucose-stimulated insulin secretion were augmented, and impaired insulin tolerance test and increased homeostatic model assessment of insulin resistance index were determined. Immunohistochemistry for insulin demonstrated an increase of very large islets in GABAB(-/-) males. Results demonstrate that GABABRs are involved in the regulation of glucose homeostasis in vivo and that the constitutive absence of GABABRs induces alterations in pancreatic histology, physiology, and insulin resistance.  相似文献   

11.
Mitochondrial dysfunction due to oxidative stress and concomitant impaired beta-cell function may play a key role in type 2 diabetes. Preventing and/or ameliorating oxidative mitochondrial dysfunction with mitochondria-specific nutrients may have preventive or therapeutic potential. In the present study, the oxidative mechanism of mitochondrial dysfunction in pancreatic beta-cells exposed to sublethal levels of oleic acid (OA) and the protective effects of mitochondrial nutrients [R-alpha-lipoic acid (LA) and acetyl-L-carnitine (ALC)] were investigated. Chronic exposure (72 h) of insulinoma MIN6 cells to OA (0.2-0.8 mM) increased intracellular oxidant formation, decreased mitochondrial membrane potential (MMP), enhanced uncoupling protein-2 (UCP-2) mRNA and protein expression, and consequently, decreased glucose-induced ATP production and suppressed glucose-stimulated insulin secretion. Pretreatment with LA and/or ALC reduced oxidant formation, increased MMP, regulated UCP-2 mRNA and protein expression, increased glucose-induced ATP production, and restored glucose-stimulated insulin secretion. The key findings on ATP production and insulin secretion were verified with isolated rat islets. These results suggest that mitochondrial dysfunction is involved in OA-induced pancreatic beta-cell dysfunction and that pretreatment with mitochondrial protective nutrients could be an effective strategy to prevent beta-cell dysfunction.  相似文献   

12.
Exposure of rat pancreatic islets to 20 mM leucine for 24 h reduced insulin release in response to glucose (16.7 and 22.2 mM). Insulin release was normal when the same islets were stimulated with leucine (40 mM) or glyburide (1 microM). To investigate the mechanisms responsible for the different effect of these secretagogues, we studied several steps of glucose-induced insulin secretion. Glucose utilization and oxidation rates in leucine-precultured islets were similar to those of control islets. Also, the ATP-sensitive K(+) channel-independent pathway of glucose-stimulated insulin release, studied in the presence of 30 mM K(+) and 250 microM diazoxide, was normal. In contrast, the ATP-to-ADP ratio after stimulation with 22.2 mM glucose was reduced in leucine-exposed islets with respect to control islets. The decrease of the ATP-to-ADP ratio was due to an increase of ADP levels. In conclusion, prolonged exposure of pancreatic islets to high leucine levels selectively impairs glucose-induced insulin release. This secretory abnormality is associated with (and might be due to) a reduced ATP-to-ADP ratio. The abnormal plasma amino acid levels often present in obesity and diabetes may, therefore, affect pancreatic islet insulin secretion in these patients.  相似文献   

13.
To clarify mechanism behind the abnormal glucose tolerance, observed in hyperthyroidism, we studied genomic and nongenomic effects of thyroid hormone on insulin secretion using a rat model of hyperthyroidism. Male Sprague-Dawley rats were intraperitoneally injected with vehicle, low (100 microg/kg) or high dose (600 microg/kg) of thyroxin (T(4)) for 2 weeks. Rats treated with high dose, but not low dose, of T(4), showed an increase in serum T(3) levels, and a decrease in body weight as compared to control rats. In rats treated with either dose of T(4), fasting blood glucose levels were increased, but serum insulin levels were similar to those of controls. After an oral glucose load, blood glucose levels were increased in rats treated with high dose, but not low dose, of T(4). Serum insulin levels after the oral glucose load were decreased in rats treated with either dose of T(4). After an intravenous glucose load, blood glucose levels were comparable among groups, but serum insulin levels tended to be low in T(4)-treated rats. Steady-state blood glucose levels were comparable among groups. The insulin secretory responses to high glucose (20mM) or arginine (10mM) of the isolated pancreas was decreased in rats treated with high dose, but not low dose, of T(4). Mean insulin secretory response to glucose and arginine were decreased by 40.1% and by 60.4% in high-dose-T(4)-treated rats. Addition of T(3) in the perfusion medium decreased glucose-induced insulin release. Ratios of proinsulin mRNA levels to beta-actin mRNA were decreased in the islets of T(4)-treated rats (0.45 +/- 0.07 vs control 0.61 +/- 0.03, p < 0.05). Levels of TR (thyroid hormone nuclear receptor) alpha1 + cErb Aalpha2 mRNA, but not TRbeta1, were decreased in the pancreatic islets of T(4)-treated rats. Calculated islet area was increased, but the number of beta-cells determined immunohistochemically was not increased in T(4)-treated rats, nor the volume density of insulin positive islets. We concluded that a deficient pancreatic beta-cell response to glucose, rather than insulin resistance, was responsible for abnormal glucose tolerance in this model of hyperthyroidism. Thyroid hormone causes a decrease in glucose-induced insulin secretion. We observed nongenomic and genomic effects of thyroid hormone on glucose-induced insulin secretion.  相似文献   

14.
Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion.  相似文献   

15.
Voltage-gated potassium currents (Kv), primarily due to Kv2.1 channels, are activated by glucose-stimulated pancreatic beta cell depolarization, but the exact role (or roles) of this channel in regulating insulin secretion remains uncertain. Here we report that, compared with controls, Kv2.1 null mice have reduced fasting blood glucose levels and elevated serum insulin levels. Glucose tolerance is improved and insulin secretion is enhanced compared to control animals, with similar results in isolated islets in vitro. Isolated Kv2.1(-/-) beta cells have residual Kv currents, which are decreased by 83% at +50 mV compared with control cells. The glucose-induced action potential (AP) duration is increased while the firing frequency is diminished, similar to the effect of specific toxins on control cells but substantially different from the effect of the less specific blocker tetraethylammonium. These results reveal the specific role of Kv2.1 in modulating glucose-stimulated APs of beta cells, exposing additional important currents involved in regulating physiological insulin secretion.  相似文献   

16.
17.
Sir2 and insulin/IGF-1 are the major pathways that impinge upon aging in lower organisms. In Caenorhabditis elegans a possible genetic link between Sir2 and the insulin/IGF-1 pathway has been reported. Here we investigate such a link in mammals. We show that Sirt1 positively regulates insulin secretion in pancreatic β cells. Sirt1 represses the uncoupling protein (UCP) gene UCP2 by binding directly to the UCP2 promoter. In β cell lines in which Sirt1 is reduced by SiRNA, UCP2 levels are elevated and insulin secretion is blunted. The up-regulation of UCP2 is associated with a failure of cells to increase ATP levels after glucose stimulation. Knockdown of UCP2 restores the ability to secrete insulin in cells with reduced Sirt1, showing that UCP2 causes the defect in glucose-stimulated insulin secretion. Food deprivation induces UCP2 in mouse pancreas, which may occur via a reduction in NAD (a derivative of niacin) levels in the pancreas and down-regulation of Sirt1. Sirt1 knockout mice display constitutively high UCP2 expression. Our findings show that Sirt1 regulates UCP2 in β cells to affect insulin secretion.  相似文献   

18.
The effect of dehydroepiandrosterone (DHEA) on pancreatic islet function of aged rats, an animal model with impaired glucose-induced insulin secretion, was investigated. The following parameters were examined: morphological analysis of endocrine pancreata by immunohistochemistry; protein levels of insulin receptor, IRS-1, IRS-2, PI 3-kinase, Akt-1, and Akt-2; and static insulin secretion in isolated pancreatic islets. Pancreatic islets from DHEA-treated rats showed an increased beta-cell mass accompanied by increased Akt-1 protein level but reduced IR, IRS-1, and IRS-2 protein levels and enhanced glucose-stimulated insulin secretion. The present results suggest that DHEA may be a promising drug to prevent diabetes during aging.  相似文献   

19.
Uncoupling protein-2 (UCP2) regulates insulin secretion by controlling ATP levels in beta-cells. Although UCP2 deficiency improves glycemic control in mice, increased expression of UCP2 interferes with glucose-stimulated insulin secretion. These observations link UCP2 to beta-cell dysfunction in type 2 diabetes with a perplexing evolutionary role. We found higher residual serum insulin levels and blunted lipid metabolic responses in fasted ucp2(-/-) mice, supporting the concept that UCP2 evolved to suppress insulin effects and to accommodate the fuel switch to fatty acids during starvation. In the absence of UCP2, fasting initially promotes peripheral lipolysis and hepatic fat accumulation at less than expected rates but culminates in protracted steatosis, indicating diminished hepatic utilization and clearance of fatty acids. We conclude that UCP2-mediated control of insulin secretion is a physiologically relevant mechanism of the metabolic response to fasting.  相似文献   

20.
An adipokine resistin, a small cysteine-rich protein, is one of the major risk factors of insulin resistance. In the present study, transiently resistin-expressing mice using adenovirus method showed an impaired glucose tolerance due to insulin resistance. We found that resistin-expressing mice exhibited impaired insulin secretory response to glucose. In addition, in vitro treatment with resistin for 1 day induced insulin resistance in pancreatic islets and impaired glucose-stimulated insulin secretion by elevating insulin release at basal glucose (2.8 mM) and suppressing insulin release at stimulatory glucose (8.3 mM). In addition, resistin inhibited insulin-induced phosphorylation of Akt in islets as well as other insulin target organs. Furthermore, resistin induced SOCS-3 expression in beta-cells. In conclusion, resistin induces insulin resistance in islet beta-cells at least partly via induction of SOCS-3 expression and reduction of Akt phosphorylation and impairs glucose-induced insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号