首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
We compared on eight dates during the ice-free period physicochemical properties and rates of phytoplankton and epipelic primary production in six arctic lakes dominated by soft bottom substrate. Lakes were classified as shallow ( < 2.5 m), intermediate in depth (2.5 m <  < 4.5 m), and deep ( > 4.5 m), with each depth category represented by two lakes. Although shallow lakes circulated freely and intermediate and deep lakes stratified thermally for the entire summer, dissolved oxygen concentrations were always >70% of saturation values. Soluble reactive phosphorus and dissolved inorganic nitrogen (DIN = NO3 –N + NH4 +–N) were consistently below the detection limit (0.05 μmol l−1) in five lakes. However, one lake shallow lake (GTH 99) periodically showed elevated values of DIN (17 μmol l−1), total-P (0.29 μmol l−1), and total-N (33 μmol l−1), suggesting wind-generated sediment resuspension. Due to increased nutrient availability or entrainment of microphytobenthos, GTH 99 showed the highest average volume-based values of phytoplankton chlorophyll a (chl a) and primary production, which for the six lakes ranged from 1.0 to 2.9 μg l−1 and 0.7–3.8 μmol C l−1 day−1. Overall, however, increased resulted in increased area-based values of phytoplankton chl a and primary production, with mean values for the three lake classes ranging from 3.6 to 6.1 mg chl a m−2 and 3.2–5.8 mmol C m−2 day−1. Average values of epipelic chl a ranged from 131 to 549 mg m−2 for the three depth classes, but levels were not significantly different due to high spatial variability. However, average epipelic primary production was significantly higher in shallow lakes (12.2 mmol C m−2 day−1) than in intermediate and deep lakes (3.4 and 2.4 mmol C m−2 day−1). Total primary production (6.7–15.4 mmol C m−2 day−1) and percent contribution of the epipelon (31–66%) were inversely related to mean depth, such that values for both variables were significantly higher in shallow lakes than in intermediate or deep lakes. Handling editor: L. Naselli-Flores  相似文献   

2.
The differences in pigment levels, photosynthetic activity and the chlorophyll fluorescence decrease ratio R Fd (as indicator of photosynthetic rates) of green sun and shade leaves of three broadleaf trees (Platanus acerifolia Willd., Populus alba L., Tilia cordata Mill.) were compared. Sun leaves were characterized by higher levels of total chlorophylls a + b and total carotenoids x + c as well as higher values for the weight ratio chlorophyll (Chl) a/b (sun leaves 3.23–3.45; shade leaves: 2.74–2.81), and lower values for the ratio chlorophylls to carotenoids (a + b)/(x + c) (with 4.44–4.70 in sun leaves and 5.04–5.72 in shade leaves). Sun leaves exhibited higher photosynthetic rates P N on a leaf area basis (mean of 9.1–10.1 μmol CO2 m−2 s−1) and Chl basis, which correlated well with the higher values of stomatal conductance G s (range 105–180 mmol m−2 s−1), as compared to shade leaves (G s range 25–77 mmol m−2 s−1; P N: 3.2–3.7 μmol CO2 m−2 s−1). The higher photosynthetic rates could also be detected via imaging the Chl fluorescence decrease ratio R Fd, which possessed higher values in sun leaves (2.8–3.0) as compared to shade leaves (1.4–1.8). In addition, via R Fd images it was shown that the photosynthetic activity of the leaves of all trees exhibits a large heterogeneity across the leaf area, and in general to a higher extent in sun leaves than in shade leaves.  相似文献   

3.
Eutrophication has become increasingly serious and noxious algal blooms have been of more frequent occurrence in the Yangtze River Estuary and in the adjacent East China Sea. In 2003 and 2004, four cruises were undertaken in three zones in the estuary and in the adjacent sea to investigate nitrate (NO3–N), ammonium (NH4–N), nitrite (NO2–N), soluble reactive phosphorus (SRP), dissolved reactive silica (DRSi), dissolved oxygen (DO), phytoplankton chlorophyll a (Chl a) and suspended particulate matter (SPM). The highest concentrations of DIN (NO3–N+NH4–N+NO2–N), SRP and DRSi were 131.6, 1.2 and 155.6 μM, respectively. The maximum Chl a concentration was 19.5 mg m−3 in spring. An analysis of historical and recent data revealed that in the last 40 years, nitrate and SRP concentrations increased from 11 to 97 μM and from 0.4 to 0.95 μM, respectively. From 1963 to 2004, N:P ratios also increased from 30–40 up to 150. In parallel with the N and P enrichment, a significant increase of Chl a was detected, Chl a maximum being 20 mg m−3, nearly four times higher than in the 1980s. In 2004, the mean DO concentration in bottom waters was 4.35 mg l−1, much lower than in the 1980s. In comparison with other estuaries, the Yangtze River Estuary was characterized by high DIN and DRSi concentrations, with low SRP concentrations. Despite the higher nutrient concentrations, Chl a concentrations were lower in the inner estuary (Zones 1 and 2) than in the adjacent sea (Zone 3). Based on nutrient availability, SPM and hydrodynamics, we assumed that in Zones 1 and 2 phytoplankton growth was suppressed by high turbidity, large tidal amplitude and short residence time. Furthermore, in Zone 3 water stratification was also an important factor that resulted in a greater phytoplankton biomass and lower DO concentrations. Due to hydrodynamics and turbidity, the open sea was unexpectedly more sensitive to nutrient enrichment and related eutrophication processes.  相似文献   

4.
Primary production rates, chlorophyll and phytoplankton biovolume were measured monthly from April 2003 to November 2004 in Lake Tana, a large tropical lake in the highlands of Ethiopia. The lake is characterised by low nutrient concentrations, and a low water transparency due to high silt load of the inflowing rivers during the rainy seasons (May–November) and daily resuspension of sediments in the inshore zone. The mean chlorophyll-a concentrations varied seasonally and ranged from 2.6 mg m−3 to 8.5 mg m−3 (mean: 4.5 mg m−3) in the offshore zone. Primary production was measured using the light–dark bottles technique. We incubated only at three depths, i.e. 0.6, 1.2 and 1.8 m. Therefore, we may have missed a substantial part of the depth production profile and probably also frequently missed P max. Gross primary production in the openwater averaged 2.43 g O2 m−2 d−1 and ranged between 0.03 g O2 m−2 d−1 and 10.2 g O2 m−2 d−1; production was significantly higher in the inshore zone. The highest production rates were observed in the post-rainy season (Oct–Nov), which coincided with a bloom of Microcystis and higher chlorophyll levels. This seasonal high production is probably caused by a relatively high nutrient availability in combination with favourable light conditions. The gross primary production rates of L. Tana are among the lowest compared with other tropical lakes. This will be partly the result of our underestimation of gross primary production by often missing P max. Another cause is the oligotrophic nature of the lake in combination with its relatively low water transparency. The gross primary production per unit chlorophyll in the openwater zone was in the same range as in 30 other tropical lakes and reservoirs. The higher primary production in the inshore zone is probably the result of the daily water column mixing (Z mixZ t) in this area, enhancing nutrient recycling. A large proportion of the annual primary production is realised in one of the four seasons only. This productive post-rainy season is relatively short (2 months) and therefore efficiency of transfer of matter between the first and second trophic level of the Lake ecosystem will be poor.  相似文献   

5.
A bloom of the cyanobacteria Microcystis aeruginosa was sampled over the summer and fall in order to determine if the spatial and temporal patterns in cell density, chlorophyll a (chl a) concentration, total microcystins concentration, and percent microcystins composition varied with environmental conditions in San Francisco Estuary. It was hypothesized that the seasonal variation in Microcystis cell density and microcystin concentration was ecologically important because it could influence the transfer of toxic microcystins into the aquatic food web. Sampling for Microcystis cell density, chl a concentration, total microcystins concentration and a suite of environmental conditions was conducted biweekly at nine stations throughout the freshwater tidal and brackish water regions of the estuary between July and November 2004. Total microcystins in zooplankton and clam tissue was also sampled in August and October. Microcystis cell density, chl a concentration and total microcystins concentration varied by an order of magnitude and peaked during August and September when and αB were high. Low streamflow and high water temperature were strongly correlated with the seasonal variation of Microcystis cell density, total microcystins concentration (cell)−1 and total microcystins concentration (chl a)−1 in canonical correlation analyses. Nutrient concentrations and ratios were of secondary importance in the analysis and may be of lesser importance to seasonal variation of the bloom in this nutrient rich estuary. The seasonal variation of Microcystis density and biomass was potentially important for the structure and function of the estuarine aquatic food web, because total microcystins concentration was high at the base of the food web in mesozooplankton, amphipod, clam, and worm tissue during the peak of the bloom. Handling editor: D. Hamilton  相似文献   

6.
Algal communities inhabiting four calamine mine spoils differing in time since cessation of exploitation and loaded with high concentrations of zinc (20,284–61,599 μg g−1 soil DW), lead (2,620–3,885 μg g−1 DW) and cadmium (104–232 μg g−1 DW) were studied. In dump soils of slightly alkaline pH (7.28–7.52) and low nutrient (, , ) concentrations, chlorophyll a content ranged from 0.41 to 2.27 μg g−1 soil DW. In total, 23 algal species were recorded. Chlorophyta were the dominant taxonomic group (42–55% of all identified species) followed by Cyanobacteria (28–36%) and Heterokontophyta (13–21%). The highest species richness (18) was observed in the oldest dump (120 years old) with natural succession, while in younger dumps it was lower (11–15). Total algal abundance ranged between 5.5 and 19.1 × 102 ind. g−1 soil DW, and values of Margalef’s diversity indices (1.59–2.25) were low. These results may suggest that both high concentrations of heavy metals and low nutrient content influenced the algal communities in all the dumps studied. The differences in algal microflora observed between tailing dumps may indicate that habitat quality improved with time and that algae isolated from Zn/Pb-loaded soils may be Zn/Pb-resistant ecotypes of ubiquitous species.  相似文献   

7.
The abundance and composition of phytoplankton were investigated at six stations along a transect from the Barguzin River inflow to the central basin of Lake Baikal in August 2002 to clarify the effect of the river inflow on the phytoplankton community in the lake. The water temperature in the epilimnion was high near the shore at Station 1 (17.3°C), probably due to the higher temperature of the river water, and gradually decreased offshore at Station 6 (14.5°C). Thermal stratification developed at Stations 2–6, and a thermocline was observed at a 17–22-m depth at Stations 2–4 and an 8–12-m depth at Stations 5 and 6. The concentrations of nitrogen and phosphorus nutrients in the epilimnion at all stations were <1.0 μmol N l−1 and <0.16 μmol P l−1, respectively. Relatively high concentrations of nutrients (0.56–7.38 μmol N l−1 and 0.03–0.28 μmol P l−1) were detected in the deeper parts of the euphotic zone. Silicate was not exhausted at all stations (>20 μmol Si l−1). The chlorophyll a (chl. a) concentration was high (>10 μg l−1) near the shore at Station 1 and low (<3 μg l−1) at five other stations. The <2 μm fraction of chl. a in Stations 2–6 ranged between 0.80 and 1.85 μg l−1, and its contribution to total chl. a was high (>60%). In this fraction, picocyanobacteria were abundant at all stations and ranged between 5 × 104 and 5 × 105 cells ml−1. In contrast, chl. a in the >2 μm fraction varied significantly (0.14–11.17 μg l−1), and the highest value was observed at Station 1. In this fraction, the dominant phytoplankton was Aulacoseira and centric diatoms at Station 1 and Cryptomonas, Ankistrodesmus, Asterionella, and Nitzschia at Stations 2–6. The present study demonstrated the dominance of picophytoplankton in the pelagic zone, while higher abundance of phytoplankton dominated by diatoms was observed in the shallower littoral zone. These larger phytoplankters in the littoral zone probably depend on nutrients from the Barguzin River.  相似文献   

8.
The branching zooxanthellate soft coral Sinularia flexibillis releases antimicrobial and toxic compounds with potential pharmaceutical importance. As photosynthesis by the symbiotic algae is vital to the host, the light-dependency of the coral, including its specific growth rate (μ day−1) and the physiological response to a range of light intensities (10–1,000 μmol quanta m−2 s−1) was studied for 12 weeks. Although a range of irradiances from 100 to 400 μmol quanta m−2 s−1 was favorable for S. flexibilis, based on chlorophyll content, a light intensity around 100 μmol quanta m−2 s−1 was found to be optimal. The contents of both zooxanthellae and chlorophyll a were highest at 100 μmol quanta m−2 s−1. The specific budding rate showed almost the same pattern as the specific growth rate. The concentration of the terpene flexibilide, produced by this species, increased at high light intensities (200–600 μmol quanta m−2 s−1).  相似文献   

9.
Diel variations in urea decomposing activity in the euphotic zone of brackish Lake Nakaumi were measured under fixed light intensity. The decomposition rate of urea was 17 to 44 μ mol urea m−3 h−1 in the light and 10 to 27 μ mol urea m−3 h−1 in the dark. Higher decomposition rates were obtained in the upper euphotic zone. A clear diel periodicity in the urea decomposition rate was observed, with high rates from 1200 to 1600 and low rates from 0000 to 0400. Chlorophyll a specific decomposing activity ranged from 12 to 21 μg urea C mg chl.a −1 h−1 in the light and 7 to 13 μg urea C mg chl.a −1 h−1 in the dark. In the light, high values were obtained from 1600 to 2000 and low values from 0400 to 0800. The diel change in specific decomposing activity exhibited a similar pattern to that of the photosynthetic assimilation number, following the diel change in photosynthetic activity. Received: March 10, 1999 / Accepted: October 22, 1999  相似文献   

10.
The effect of light intensity (50–300 μmol photons m−2 s−1) and temperature (15–50°C) on chlorophyll a, carotenoid and phycobiliprotein content in Arthronema africanum biomass was studied. Maximum growth rate was measured at 300 μmol photons m−2 s−1 and 36°C after 96 h of cultivation. The chlorophyll a content increased along with the increase in light intensity and temperature and reached 2.4% of dry weight at 150 μmol photons m−2 s−1 and 36°C, but it decreased at higher temperatures. The level of carotenoids did not change significantly under temperature changes at illumination of 50 and 100 μmol photons m−2 s−1. Carotenoids were about 1% of the dry weight at higher light intensities: 150 and 300 μmol photons m−2 s−1. Arthronema africanum contained C-phycocyanin and allophycocyanin but no phycoerythrin. The total phycobiliprotein content was extremely high, more than 30% of the dry algal biomass, thus the cyanobacterium could be deemed an alternative producer of C-phycocyanin. A highest total of phycobiliproteins was reached at light intensity of 150 μmol photons m−2 s−1 and temperature of 36°C, C-phycocyanin and allophycocyanin amounting, respectively, to 23% and 12% of the dry algal biomass. Extremely low (<15°C) and high temperatures (>47°C) decreased phycobiliprotein content regardless of light intensity.  相似文献   

11.
The ability of spring barley (Hordeum vulgare cv. Akcent) to adjust the composition and function of the photosynthetic apparatus to growth irradiances of 25–1200 μmol m−2 s−1 was studied by gas exchange and chlorophyll a fluorescence measurements and high-performance liquid chromatography. The increased growth irradiance stimulated light- and CO2-saturated rates of CO2 assimilation expressed on a leaf area basis up to 730 μmol m−2 s−1 (HL730), whereas at an irradiance of 1200 μmol m−2 s−1 (EHL1200) both rates decreased significantly. Further, the acclimation to EHL1200 was associated with an extremely high chlorophyll a/b ratio (3.97), a more than doubled xanthophyll cycle pool (VAZ) and a six-fold higher de-epoxidation state of the xanthophyll cycle pigments as compared to barley grown under 25 μmol m−2 s−1 (LL25). EHL1200 plants also exhibited a long-term inhibition of Photosystem II (PS II) photochemical efficiency (F v/F m). Photosynthetic capacity, chlorophyll a/b and VAZ revealed a linear trend of dependence on PS II excitation pressure in a certain range of growth irradiances (100–730 μmol m−2 s−1). The deviation from linearity of these relationships for EHL1200 barley is discussed. In addition, the role of increased VAZ and/or accumulation of zeaxanthin and antheraxanthin in acclimation of barley to high irradiance is studied with respect to regulation of non-radiative dissipation and/or photochemical efficiency within PS II. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Periphyton (epilithon) gross primary production (GPP) was estimated using the DCMU-fluorescence method in the Yenisei River. In the unshaded littoral zone, chlorophyll a concentration (Chl a) and GPP value varied from 0.83 to 973.74 mg m−2and 2–304,425 O2 m−2 day−1 (0.64–95 133 mg C m−2 day−1), respectively. Positive significant correlation (r = 0.8) between daily GPP and periphyton Chl a was found. Average ratio GPP:Chl a for periphyton was 36.36 mg C mg Chl a m−2 day−1. The obtained GPP values for the Yenisei River have a high significant correlation with values predicted by a conventional empirical model for stream periphyton. We concluded that the DCMU-fluorescence method can be successfully used for measuring of gross primary production of stream phytoperiphyton at least as another useful tool for such studies.  相似文献   

13.
The decrease of biodiversity related to the phenomena of global climate change is stimulating the scientific community towards a better understanding of the relationships between biodiversity and ecosystem functioning. In ecosystems where marked biodiversity changes occur at seasonal time scales, it is easier to relate them with ecosystem functioning. The objective of this work is to analyse the relationship between phytoplankton diversity and primary production in St. André coastal lagoon – SW Portugal. This lagoon is artificially opened to the sea every year in early spring, exhibiting a shift from a marine dominated to a low salinity ecosystem in winter. Data on salinity, temperature, nutrients, phytoplankton species composition, chlorophyll a (Chl a) concentration and primary production were analysed over a year. Modelling studies based on production-irradiance curves were also conducted. A total of 19 taxa were identified among diatoms, dinoflagellates and euglenophyceans, the less abundant group. Lowest diversities (Shannon–Wiener index) were observed just before the opening to the sea. Results show a negative correlation (p<0.05) between diversity and chlorophyll a (Chl a) concentration (0.2–40.3 mg Chl a m−3). Higher Chl a values corresponded to periods when the community was dominated by the dinoflagellate Prorocentrum minimum (>90% of cell abundance) and production was maximal (up to 234.8 mg C m−3 h−1). Maximal photosynthetic rates (Pmax) (2.0–22.5 mg C mg Chl a−1 h−1) were higher under lower Chl a concentrations. The results of this work suggest that decreases in diversity are associated with increases in biomass and production, whereas increases correspond to opposite trends. It is suggested that these trends, contrary to those observed in terrestrial and in some benthic ecosystems, may be a result of low habitat diversity in the water column and resulting competitive pressure. The occurrence of the highest photosynthetic rates when Chl a is low, under some of the highest diversities, suggests a more efficient use of irradiance under low biomass–high diversity conditions. Results suggest that this increased efficiency is not explained by potential reductions in nutrient limitation and intraspecific competition under lower biomasses and may be a result of niche complementarity.  相似文献   

14.
This article synthesizes several studies carried out at Fourleague Bay and connecting waterways of the western Terrebonne interdistributary basin of the Mississippi River delta plain, which is strongly impacted by the Atchafalaya River. Hydrologic and nutrient fluxes were measured over two tidal cycles in February, April, and September of 1982. Synoptic water quality sampling of nutrients, sediments, salinity, and chlorophyll a was carried out from April 1986 to August 1991 (17 events), during 1994 (12 events), and from 2000 to 2002 (8 events). Hydrology and nutrient dynamics of the region were controlled by winds associated with cold fronts and Atchafalaya River discharge during winter–spring, and tidal forces during summer–fall. Less than 5% of the water discharged from the Atchafalaya River entered Fourleague Bay, but nonetheless was the dominant source of nutrients, especially nitrate + nitrite (NO x ), and sediments. Nitrate + nitrite concentrations entering Fourleague Bay ranged from 33.3 to 118.0 μM, with highest levels occurring during peak river discharge. Fourleague Bay was a sink for DIN, with retention rates ranging from 184.4 to 704.2 μg-at m−2 h−1, but both a source and sink for DIP, with retention rates ranging from −2.7 to 14.9 μg-at m−2 h−1. Concentrations of DIN and DIP in the bay ranged from below detection limits to 49.0 and 29.1 μM, respectively, while chlorophyll a ranged from 6.1 to 49.4 μg/l. In the wetlands surrounding Fourleague Bay, chlorophyll a generally mirrored NO x and TSS, and generally peaked 2–15 km from riverine sources.  相似文献   

15.
During January 1989, phytoplankton biomass and species composition were studied in a north / south transect at the Weddell / Scotia Confluence (47°W), between 57° and 61°30′S. Results showed a diatom bloom in the Scotia Sea (chlorophyll a 1.9 μg l−1, particulate organic carbon 239 μg l−1), dominated by Fragilariopsis cylindrus, Dactyliosolen antarcticus and Chaetoceros dichaeta. Low chlorophyll a / phaeopigments ratios (about 1.4) and silicate concentrations (15 μmol l−1) suggested that this was an advanced bloom phase, probably linked to high grazing pressure. Minimum chlorophyll a values of 0.1–0.2 μg l−1 and particulate organic carbon 46 μg l−1 were found at the Weddell / Scotia Front and in a subsurface layer of the Weddell Sea Water. In the southern part of the transect (61°30′S), in the Weddell Sea, a second surface maximum was found (chlorophyll a 0.9 μg l−1, particulate organic carbon 120 μg l−1), but with a different species composition, with Cryptomonas sp. dominant. Our results show a succession within the diatom community in the Weddell / Scotia Confluence Waters when comparing the three EPOS legs. In the Weddell Sea from spring to summer, nanoflagellates, with only a minor contribution from diatoms, persist over a long period with little change in the community structure. We suggest that the frontal system, together with the receding ice edge and the grazing pressure of either krill or protozooplankton, are mainly responsible for the phytoplankton distribution patterns found. Received: 3 July 1996 / Accepted: 3 November 1996  相似文献   

16.
Shallow lakes often alternate between two possible states: one clear with submerged macrophytes, and another one turbid, dominated by phytoplankton. A third type of shallow lakes, the inorganic turbid, result from high contents of suspended inorganic material, and is characterized by low phytoplankton biomass and macrophytes absence. In our survey, the structure and photosynthetic properties (based on 14C method) of phytoplankton were related to environmental conditions in these three types of lakes in the Pampa Plain. The underwater light climate was characterized. Clear-vegetated lakes were more transparent (K d 4.5–7.7 m−1), had high DOC concentrations (>45 mg l−1), low phytoplankton Chl a (1.6–2.7 μg l−1) dominated by nanoflagellates. Phytoplankton productivity and photosynthetic efficiency (α ~ 0.03 mgC mgChla −1 h−1 W−1 m2) were relatively low. Inorganic-turbid lakes showed highest K d values (59.8–61.4 m−1), lowest phytoplankton densities (dominated by Bacillariophyta), and Chl a ranged from 14.6 to 18.3 μg l−1. Phytoplankton-turbid lakes showed, in general, high K d (4.9–58.5 m−1) due to their high phytoplankton abundances. These lakes exhibited the highest Chl a values (14.2–125.7 μg l−1), and the highest productivities and efficiencies (maximum 0.56 mgC mgChla −1 h−1 W−1 m2). Autotrophic picoplankton abundance, dominated by ficocianine-rich picocyanobacteria, differed among the shallow lakes independently of their type (0.086 × 105–41.7 × 105 cells ml−1). This article provides a complete characterization of phytoplankton structure (all size fractions), and primary production of the three types of lakes from the Pampa Plain, one of the richest areas in shallow lakes from South America. Handling editor: J. Padisak  相似文献   

17.
To understand the characteristics of the ecosystem in Japanese lowland marsh, we investigated chlorophyll-a (Chl. a), photosynthesis and respiration of a phytoplankton community in a brownish-colored pond in Naka-ikemi marsh, Tsuruga, Fukui Prefecture. Chl. a concentrations and volumetric gross primary production rates ranged between 1.3–57.0 μg Chl. a l−1 and 148–1619 μg C l−1 day−1 during the study period. Higher values of Chl. a and primary production rates were clearly observed from June to September, when the dominant algae were the phytoflagellates, Peridinium (Dinophyceae) and Cryptomonas (Cryptophyceae), with swimming ability. The trophic status of the pond water of Naka-ikemi marsh was defined as being in eutrophic condition based on the biomass and productivity of phytoplankton. However, depths of Z 1% showing the productive layer in this study site were relatively narrower than those observed in the hyper-eutrophic Lake Suwa with frequent cyanobacterial water bloom. Factor-attenuating underwater light intensity in Naka-ikemi marsh was presumed to be colored dissolved organic matter. Thus, not only phytoplankton primary production, but also allochthonous organic matter supplied from the catchment area seems to be the dominant factor in the whole energy budget of the pond. In conclusion, we regarded the pond ecosystem in Naka-ikemi marsh to be in a eutrophic–dystrophic condition.  相似文献   

18.
At the present time, there is still a lack of information about environmental parameters modulating variations on bacterial diversity in temperate lakes, particularly from Portugal. Fermentelos Lake (Central Portugal) is a shallow water body that sustains an important wetland area. The strong nutrient inputs from agriculture and industrial runoffs have led to its current eutrophic status. The present work aimed to understand which factors modulate the seasonal bacterioplankton diversity at this lake using 16S rRNA PCR-denaturing gradient gel electrophoresis (DGGE) and multivariate analysis. Environmental data demonstrated eutrophic features throughout all samples with nitrate concentrations reaching 12.0 mg N (NO3 ) l−1 in March 2006, while the highest conductivity (609 μS cm−1), soluble reactive phosphorus (0.37 mg l−1), total suspended solids (87.2 mg l−1) and chlorophyll a (286.6 μg l−1) levels were recorded in August 2007. Over the past two decades there was a general increase in nitrate, pH and conductivity levels at this lake, suggesting the eutrophication process is still in progress. Multivariate analysis showed that summer versus winter DGGE patterns could be established for bacterial assemblages and were mainly defined by water temperature and chlorophyll a. Actinobacteria were dominant throughout the study period although a general preference for higher temperature, pH, total suspended solids, conductivity, soluble reactive phosphorus (SRP) and chlorophyll a levels was observed. The highest concentrations of nitrogen sources were related to Bacteroidetes and phototrophic eukaryote (cryptophycean) dominance. The expansion of Betaproteobacteria, Alphaproteobacteria and Cyanobacteria phylotypes was generally associated to high temperature, pH, conductivity and SRP values.  相似文献   

19.
The distribution of phytoplankton biomass and primary production were studied during summer 1993 at 16 stations from 65 to 72°N off West Greenland, ranging more than 900 km. Hydrography, nutrients and chlorophyll a profiles revealed a significant change in structure from south to north. Nitrate was depleted in the euphotic zone at most stations except close to the ice edge (West Ice) or close to outflow from large glaciers. The vertical distribution of phosphate followed that of nitrate, but was never depleted. Despite two stations with relatively high surface concentrations, silica showed the same distribution as the other two nutrients. In the south, chlorophyll a concentration and primary production were lower than north of Disko Bay (69°N), associated with a well-mixed versus a salinity-generated stratification, respectively. In Vaigat, a high-production station was identified, (st. 910, 69°52′69N–51°30′61W) with a chlorophyll a concentration in the euphotic zone of >13 μg l−1 and an area primary production of 3.2 g C m−2 day−1. This is seldom encountered in arctic waters and was presumably due to nutrient-rich melt-water originating from the Iluliíssat Glacier. The overall primary production for the studied area was 67–3207 mg C m−2 day−1 (mean ± SD=341± 743 mg C m−2 day−1), which is within the range of the few results published for West Greenland and eastern Canadian Arctic waters. Accepted: 24 October 1998  相似文献   

20.
Seasonal changes in the microphytoplankton assemblages were examined in the coastal zone of Bozcaada Island with regard to some major physical and chemical variables. Samples were collected from May 2000 to December 2001 at four stations. A total of 108 dinoflagellates, 102 diatoms, 1 chrysophycean, 3 dictyochophycean, and 1 prasinophycean species were identified and quantified during the study period. Diatoms and dinoflagellates were the most important in terms of species number and abundance. The maximum values of total microphytoplankton were observed at 0.5 m depth (46.2 × 103 cells l−1 at st. 3) in May as this was the month when the diatom Pseudo-nitzschia pungens bloomed. Chlorophyll (chl) a concentration ranged between 0.08 (August) and 0.78 μg l−1 (February). May was another important month in which chlorophyll a increased (0.41–0.47 μg l−1). Species diversity values (Hlog2) ranged from 1.66 bits (June, 20 m) to 4.11 bits (November, 0.5 m). The increase was attributed to a more balanced distribution of abundance among species. The amounts of nitrate + nitrite (0.6−3.7 μg-at N l−1), phosphate (0.2−0.6 μg-at P l−1) and silicate (0.7−2.5 μg-at Si l−1) were recorded on each sampling occasion. Nutrient concentrations and chl a values of the research area were found to be poorer than those of the many other coastal areas in the northeastern Mediterranean. The mean atomic ratio of nitrogen to phosphorus varied from 1.3 (June) to 12.9 (February). This ratio was lower than the Redfield ratio of 16 for ocean phytoplankton, and phytoplankton was potentially limited by nitrogen for most of the months. The result of this study confirms and emphasizes the oligotrophic nature of the eastern Mediterranean.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号