首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
dsRNA-binding domains (dsRBDs) characterize an expanding family of proteins involved in different cellular processes, ranging from RNA editing and processing to translational control. Here we present evidence that Ebp1, a cell growth regulating protein that is part of ribonucleoprotein (RNP) complexes, contains a dsRBD and that this domain mediates its interaction with dsRNA. Deletion of Ebp1's dsRBD impairs its localization to the nucleolus and its ability to form RNP complexes. We show that in the cytoplasm, Ebp1 is associated with mature ribosomes and that it is able to inhibit the phosphorylation of serine 51 in the eukaryotic initiation factor 2 alpha (eIF2alpha). In response to various cellular stress, eIF2alpha is phosphorylated by distinct protein kinases (PKR, PERK, GCN2, and HRI), and this event results in protein translation shut-down. Ebp1 overexpression in HeLa cells is able to protect eIF2alpha from phosphorylation at steady state and also in response to various treatments. We demonstrate that Ebp1 interacts with and is phosphorylated by the PKR protein kinase. Our results demonstrate that Ebp1 is a new dsRNA-binding protein that acts as a cellular inhibitor of eIF2alpha phosphorylation suggesting that it could be involved in protein translation control.  相似文献   

2.
An important defense against viral infection involves inhibition of translation by PKR phosphorylation of the alpha subunit of eIF2. Binding of viral dsRNAs to two dsRNA-binding domains (dsRBDs) in PKR leads to relief of an inhibitory region and activation of eIF2 kinase activity. Interestingly, while deletion of the regulatory region of PKR significantly induces activity in vitro, the truncated kinase does not inhibit translation in vivo, suggesting that these sequences carry out additional functions required for PKR control. To delineate these functions and determine the order of events leading to activation of PKR, we fused truncated PKR to domains of known function and assayed the chimeras for in vivo activity. We found that fusion of a heterologous dimerization domain with the PKR catalytic domain enhanced autophosphorylation and eIF2 kinase function in vivo. The dsRBDs also mediate ribosome association and we proposed that such targeting increases the localized concentration of PKR, enhancing interaction between PKR molecules. We addressed this premise by linking the truncated PKR to RAS sequences mediating farnesylation and membrane localization and found that the fusion protein was functional in vivo. These results indicate that cellular localization along with oligomerization enhances interaction between PKR molecules. Alanine substitution for the phosphorylation site, threonine 446, impeded in vivo and in vitro activity of the PKR fusion proteins, while aspartate or glutamate substitutions partially restored the function of the truncated kinase. These results indicate that both dimerization and cellular localization play a role in transient protein-protein interactions and that trans-autophosphorylation is the final step in the mechanism of activation of PKR.  相似文献   

3.
The translation initiation factor 2 alpha (eIF2alpha)-kinase, dsRNA-activated protein kinase (PKR), constitutes one of the major antiviral proteins activated by viral infection of vertebrates. PKR is activated by viral double-stranded RNA and subsequently phosphorylates the alpha-subunit of translation initiation factor eIF2. This results in overall down regulation of protein synthesis in the cell and inhibition of viral replication. Fish appear to have a PKR-like protein that has Z-DNA binding domains instead of dsRNA binding domains in the regulatory domain, and has thus been termed Z-DNA binding protein kinase (PKZ). We present the cloning of the Atlantic salmon PKZ cDNA and show its upregulation by interferon in Atlantic salmon TO cells and poly inosinic poly cytodylic acid in head kidney. We also demonstrate that recombinant Atlantic salmon PKZ, expressed in Escherichia coli, phosphorylates eIF2alphain vitro. This is the first demonstration that PKZ is able to phosphorylate eIF2alpha. PKZ activity, as measured by phosphorylation of eIF2alpha, was increased after addition of Z-DNA, but not by dsRNA. In addition, we show that wild-type Atlantic salmon PKZ, but not the kinase defective variant K217R, has a direct inhibitory effect on protein synthesis after transient expression in Chinook salmon embryo cells. Overall, the results support a role for PKZ, like PKR, in host defense against virus infection.  相似文献   

4.
Ethanol exposure inhibits protein synthesis and causes cell death in the developing central nervous system. The double-stranded RNA (dsRNA)-activated protein kinase (PKR), a serine/threonine protein kinase, plays an important role in translational regulation and cell survival. PKR has been well known for its anti-viral response. Upon activation by viral infection or dsRNA, PKR phosphorylates its substrate, the alpha-subunit of eukaryotic translation initiation factor-2 (eIF2alpha) leading to inhibition of translation initiation. It has recently been shown that, in the absence of a virus or dsRNA, PKR can be activated by direct interactions with its protein activators, PACT, or its mouse homologue, RAX. We have demonstrated that exposure to ethanol increased the phosphorylation of PKR and eIF2alpha in the developing cerebellum. The effect of ethanol on PKR/eIF2alpha phosphorylation positively correlated to the expression of PACT/RAX in cultured neuronal cells. Using PKR inhibitors and PKR null mouse fibroblasts, we verified that ethanol-induced eIF2alpha phosphorylation was mediated by PKR. Overexpression of a wild-type RAX dramatically enhanced sensitivity to ethanol-induced PKR/eIF2alpha phosphorylation, as well as translational inhibition and cell death. In contrast, overexpression of a mutant (S18A) RAX inhibited ethanol-mediated PKR/eIF2alpha activation. Ethanol promoted PKR and RAX association in cells expressing wild-type RAX but not in cells expressing S18A RAX. S18A RAX functioned as a dominant negative protein and blocked ethanol-induced inhibition of protein synthesis and cell death. Our results suggest that the interactions between PKR and PACT/RAX modulate the effect of ethanol on protein synthesis and cell survival in the central nervous system.  相似文献   

5.
6.
Zhu R  Zhang YB  Zhang QY  Gui JF 《Journal of virology》2008,82(14):6889-6901
The double-stranded RNA (dsRNA)-dependent protein kinase PKR is thought to mediate a conserved antiviral pathway by inhibiting viral protein synthesis via the phosphorylation of the alpha subunit of eukaryotic initiation factor 2 (eIF2alpha). However, little is known about the data related to the lower vertebrates, including fish. Recently, the identification of PKR-like, or PKZ, has addressed the question of whether there is an orthologous PKR in fish. Here, we identify the first fish PKR gene from the Japanese flounder Paralichthys olivaceus (PoPKR). PoPKR encodes a protein that shows a conserved structure that is characteristic of mammalian PKRs, having both the N-terminal region for dsRNA binding and the C-terminal region for the inhibition of protein translation. The catalytic activity of PoPKR is further evidence that it is required for protein translation inhibition in vitro. PoPKR is constitutively transcribed at low levels and is highly induced after virus infection. Strikingly, PoPKR overexpression increases eIF2alpha phosphorylation and inhibits the replication of Scophthalmus maximus rhabdovirus (SMRV) in flounder embryonic cells, whereas phosphorylation and antiviral effects are impaired in transfected cells expressing the catalytically inactive PKR-K421R variant, indicating that PoPKR inhibits virus replication by phosphorylating substrate eIF2alpha. The interaction between PoPKR and eIF2alpha is demonstrated by coimmunoprecipitation assays, and the transfection of PoPKR-specific short interfering RNA further reveals that the enhanced eIF2alpha phosphorylation is catalyzed by PoPKR during SMRV infection. The current data provide significant evidence for the existence of a PKR-mediated antiviral pathway in fish and reveal considerable conservation in the functional domains and the antiviral effect of PKR proteins between fish and mammals.  相似文献   

7.
T L Ung  C Cao  J Lu  K Ozato  T E Dever 《The EMBO journal》2001,20(14):3728-3737
The protein kinase PKR (dsRNA-dependent protein kinase) phosphorylates the eukaryotic translation initiation factor eIF2alpha to downregulate protein synthesis in virus-infected cells. Two double-stranded RNA binding domains (dsRBDs) in the N-terminal half of PKR are thought to bind the activator double-stranded RNA, mediate dimerization of the protein and target PKR to the ribosome. To investigate further the importance of dimerization for PKR activity, fusion proteins were generated linking the PKR kinase domain to heterologous dimerization domains. Whereas the isolated PKR kinase domain (KD) was non-functional in vivo, expression of a glutathione S-transferase-KD fusion, or co-expression of KD fusions containing the heterodimerization domains of the Xlim-1 and Ldb1 proteins, restored PKR activity in yeast cells. Finally, coumermycin-mediated dimerization of a GyrB-KD fusion protein increased eIF2alpha phosphorylation and inhibited reporter gene translation in mammalian cells. These results demonstrate the critical importance of dimerization for PKR activity in vivo, and suggest that a primary function of double-stranded RNA binding to the dsRBDs of native PKR is to promote dimerization and activation of the kinase domain.  相似文献   

8.
Responding to viral infection, the interferon-induced, double-stranded RNA (dsRNA)–activated protein kinase PKR phosphorylates translation initiation factor eIF2α to inhibit cellular and viral protein synthesis. To overcome this host defense mechanism, many poxviruses express the protein E3L, containing an N-terminal Z-DNA binding (Zα) domain and a C-terminal dsRNA-binding domain (dsRBD). While E3L is thought to inhibit PKR activation by sequestering dsRNA activators and by directly binding the kinase, the role of the Zα domain in PKR inhibition remains unclear. Here, we show that the E3L Zα domain is required to suppress the growth-inhibitory properties associated with expression of human PKR in yeast, to inhibit PKR kinase activity in vitro, and to reverse the inhibitory effects of PKR on reporter gene expression in mammalian cells treated with dsRNA. Whereas previous studies revealed that the Z-DNA binding activity of E3L is critical for viral pathogenesis, we identified point mutations in E3L that functionally uncouple Z-DNA binding and PKR inhibition. Thus, our studies reveal a molecular distinction between the nucleic acid binding and PKR inhibitory functions of the E3L Zα domain, and they support the notion that E3L contributes to viral pathogenesis by targeting PKR and other components of the cellular anti-viral defense pathway.  相似文献   

9.
Dey M  Cao C  Dar AC  Tamura T  Ozato K  Sicheri F  Dever TE 《Cell》2005,122(6):901-913
The antiviral protein kinase PKR inhibits protein synthesis by phosphorylating the translation initiation factor eIF2alpha on Ser51. Binding of double-stranded RNA to the regulatory domains of PKR promotes dimerization, autophosphorylation, and the functional activation of the kinase. Herein, we identify mutations that activate PKR in the absence of its regulatory domains and map the mutations to a recently identified dimerization surface on the kinase catalytic domain. Mutations of other residues on this surface block PKR autophosphorylation and eIF2alpha phosphorylation, while mutating Thr446, an autophosphorylation site within the catalytic-domain activation segment, impairs eIF2alpha phosphorylation and viral pseudosubstrate binding. Mutational analysis of catalytic-domain residues preferentially conserved in the eIF2alpha kinase family identifies helix alphaG as critical for the specific recognition of eIF2alpha. We propose an ordered mechanism of PKR activation in which catalytic-domain dimerization triggers Thr446 autophosphorylation and specific eIF2alpha substrate recognition.  相似文献   

10.
11.
Phosphorylation of serine 51 residue on the alpha-subunit of eukaryotic initiation factor 2 (eIF2alpha) inhibits the guanine nucleotide exchange (GNE) activity of eIF2B, presumably, by forming a tight complex with eIF2B. Inhibition of the GNE activity of eIF2B leads to impairment in eIF2 recycling and protein synthesis. We have partially purified the wild-type (wt) and mutants of eIF2alpha in which the serine 51 residue was replaced with alanine (51A mutant) or aspartic acid (51D mutant) in the baculovirus system. Analysis of these mutants has provided novel insight into the role of 51 serine in the interaction between eIF2 and eIF2B. Neither mutant was phosphorylated in vitro. Both mutants decreased eIF2alpha phosphorylation occurring in hemin and poly(IC)-treated reticulocyte lysates due to the activation of double-stranded RNA-dependent protein kinase (PKR). However, addition of 51D, but not 51A mutant eIF2alpha protein promoted inhibition of the GNE activity of eIF2B in hemin-supplemented rabbit reticulocyte lysates in which relatively little or no endogenous eIF2alpha phosphorylation occurred. The 51D mutant enhanced the inhibition in GNE activity of eIF2B that occurred in hemin and poly(IC)-treated reticulocyte lysates where PKR is active. Our results show that the increased interaction between eIF2 and eIF2B protein, occurring in reticulocyte lysates due to increased eIF2alpha phosphorylation, is decreased significantly by the addition of mutant 51A protein but not 51D. Consistent with the idea that mutant 51D protein behaves like a phosphorylated eIF2alpha, addition of this partially purified recombinant subunit, but not 51A or wt eIF2alpha, increases the interaction between eIF2 and 2B proteins in actively translating hemin-supplemented lysates. These findings support the idea that phosphorylation of the serine 51 residue in eIF2alpha promotes complex formation between eIF2alpha(P) and eIF2B and thereby inhibits the GNE activity of eIF2B.  相似文献   

12.
The interferon (IFN)-inducible, double-stranded RNA activated protein kinase (PKR) is a dual-specificity kinase, which has an essential role in the regulation of protein synthesis by phosphorylating the translation eukaryotic initiation factor 2 (eIF2). Here, we show the tyrosine (Tyr) phosphorylation of PKR in response to type I or type II IFNs. We show that PKR physically interacts with either Jak1 or Tyk2 in unstimulated cells and that these interactions are increased in IFN-treated cells. We also show that PKR acts as a substrate of activated Jaks, and is phosphorylated at Tyr 101 and Tyr 293 both in vitro and in vivo. Moreover, we provide strong evidence that both the induction of eIF2alpha phosphorylation and inhibition of protein synthesis by IFN are impaired in cells lacking Jak1 or Tyk2, which corresponds to a lack of induction of PKR tyrosine phosphorylation. We conclude that PKR tyrosine phosphorylation provides an important link between IFN signalling and translational control through the regulation of eIF2alpha phosphorylation.  相似文献   

13.
Dar AC  Dever TE  Sicheri F 《Cell》2005,122(6):887-900
In response to binding viral double-stranded RNA byproducts within a cell, the RNA-dependent protein kinase PKR phosphorylates the alpha subunit of the translation initiation factor eIF2 on a regulatory site, Ser51. This triggers the general shutdown of protein synthesis and inhibition of viral propagation. To understand the basis for substrate recognition by and the regulation of PKR, we determined X-ray crystal structures of the catalytic domain of PKR in complex with eIF2alpha. The structures reveal that eIF2alpha binds to the C-terminal catalytic lobe while catalytic-domain dimerization is mediated by the N-terminal lobe. In addition to inducing a local unfolding of the Ser51 acceptor site in eIF2alpha, its mode of binding to PKR affords the Ser51 site full access to the catalytic cleft of PKR. The generality and implications of the structural mechanisms uncovered for PKR to the larger family of four human eIF2alpha protein kinases are discussed.  相似文献   

14.
Indomethacin, a cyclooxygenase‐1 and ‐2 inhibitor widely used in the clinic for its potent anti‐inflammatory/analgesic properties, possesses antiviral activity against several viral pathogens; however, the mechanism of antiviral action remains elusive. We have recently shown that indomethacin activates the double‐stranded RNA (dsRNA)‐dependent protein kinase R (PKR) in human colon cancer cells. Because of the important role of PKR in the cellular defence response against viral infection, herein we investigated the effect of indomethacin on PKR activity during infection with the prototype rhabdovirus vesicular stomatitis virus. Indomethacin was found to activate PKR in an interferon‐ and dsRNA‐independent manner, causing rapid (< 5 min) phosphorylation of eukaryotic initiation factor‐2 α‐subunit (eIF2α). These events resulted in shutting off viral protein translation and blocking viral replication (IC50 = 2 μM) while protecting host cells from virus‐induced damage. Indomethacin did not affect eIF2α kinases PKR‐like endoplasmic reticulum‐resident protein kinase (PERK) and general control non‐derepressible‐2 (GCN2) kinase, and was unable to trigger eIF2α phosphorylation in the presence of PKR inhibitor 2‐aminopurine. In addition, small‐interfering RNA‐mediated PKR gene silencing dampened the antiviral effect in indomethacin‐treated cells. The results identify PKR as a critical target for the antiviral activity of indomethacin and indicate that eIF2α phosphorylation could be a key element in the broad spectrum antiviral activity of the drug.  相似文献   

15.
Phosphorylation of the alpha (alpha) subunit of the eukaryotic translation initiation factor 2 (eIF2) leads to the inhibition of protein synthesis in response to diverse stress conditions, including viral infection. The eIF2alpha kinase PKR has been shown to play an essential role against vesicular stomatitis virus (VSV) infection. We demonstrate here that another eIF2alpha kinase, the endoplasmic reticulum-resident protein kinase PERK, contributes to cellular resistance to VSV infection. We demonstrate that mouse embryonic fibroblasts (MEFs) from PERK(-/-) mice are more susceptible to VSV-mediated apoptosis than PERK(+/+) MEFs. The higher replication capacity of VSV in PERK(-/-) MEFs results from their inability to attenuate viral protein synthesis due to an impaired eIF2alpha phosphorylation. We also show that VSV-infected PERK(-/-) MEFs are unable to fully activate PKR, suggesting a cross talk between the two eIF2alpha kinases in virus-infected cells. These findings further implicate PERK in virus infection, and provide evidence that the antiviral and antiapoptotic roles of PERK are mediated, at least in part, via the activation of PKR.  相似文献   

16.
Initiation of translation from most cellular mRNAs occurs via scanning; the 40 S ribosomal subunit binds to the m(7)G-cap and then moves along the mRNA until an initiation codon is encountered. Some cellular mRNAs contain internal ribosome entry sequences (IRESs) within their 5'-untranslated regions, which allow initiation independently of the 5'-cap. This study investigated the ability of cellular stress to regulate the activity of IRESs in cellular mRNAs. Three stresses were studied that cause the phosphorylation of the translation initiation factor, eIF2alpha, by activating specific kinases: (i) amino acid starvation, which activates GCN2; (ii) endoplasmic reticulum (ER) stress, which activates PKR-like ER kinase, PERK kinase; and (iii) double-stranded RNA, which activates double-stranded RNA-dependent protein kinase (PKR) by mimicking viral infection. Amino acid starvation and ER stress caused transient phosphorylation of eIF2alpha during the first hour of treatment, whereas double-stranded RNA caused a sustained phosphorylation of eIF2alpha after 2 h. The effects of these treatments on IRES-mediated initiation were investigated using bicistronic mRNA expression vectors. No effect was seen for the IRESs from the mRNAs for the chaperone BiP and the protein kinase Pim-1. In contrast, translation mediated by the IRESs from the cationic amino acid transporter, cat-1, and of the cricket paralysis virus intergenic region, were stimulated 3- to 10-fold by all three treatments. eIF2alpha phosphorylation was required for the response because inactivation of phosphorylation prevented the stimulation. It is concluded that cellular stress can stimulate translation from some cellular IRESs via a mechanism that requires the phosphorylation of eIF2alpha. Moreover, there are distinct regulatory patterns for different cellular mRNAs that contain IRESs within their 5'-untranslated regions.  相似文献   

17.
Wu S  Kaufman RJ 《Biochemistry》2004,43(34):11027-11034
The double-stranded (ds) RNA-activated protein kinase PKR phosphorylates the alpha-subunit of the eukaryotic initiation factor 2 (eIF2alpha) and inhibits translation initiation. PKR contains two dsRNA binding domains in its amino terminus and a kinase domain in its carboxy terminus. dsRNA binding activates PKR from a latent state by inducing dimerization and trans-autophosphorylation. Recent studies show that PKR is also activated by caspase cleavage to remove the inhibitory dsRNA binding domains. In this report, we show that the isolated kinase domain of PKR is a constitutively active monomeric kinase that has an activity similar to that of wild-type PKR. We used a solid-phase kinase assay system to show that PKR does not transfer its own phosphate to either PKR or eIF2alpha but rather uses the gamma-phosphate from ATP. In addition, the isolated autophosphorylated kinase domain of PKR phosphorylated intact monomeric PKR in trans in a reaction that did not require dsRNA binding. However, this trans-phosphorylation did not occur at the critical Thr446/451 sites and was not sufficient to induce dimerization and/or activation of PKR. The results show that dsRNA binding domains of PKR are not only required for dimerization of PKR but also required for phosphorylation of Thr446/451 sites of PKR. The results imply that even though the isolated kinase domain of PKR phosphorylates intact PKR and eIF2alpha, it is unable to activate PKR.  相似文献   

18.
Taylor SS  Haste NM  Ghosh G 《Cell》2005,122(6):823-825
The antiviral RNA-dependent protein kinase, PKR, binds to viral double-stranded RNA in the cell and halts protein synthesis by phosphorylating the alpha subunit of the translation initiation factor eIF2. In this issue of Cell, two complementary papers Dar et al. (2005) and Dey et al. (2005) address the interaction between PKR and eIF2alpha. The structures of eIF2alpha bound to PKR reveal that PKR forms a dimer, the interface of which is essential for kinase activation, and demonstrate how this protein substrate docks to its kinase. The structures, coupled with mutagenesis analysis, also demonstrate how phosphorylation of the activation loop can allosterically couple two distal regions, the dimerization and substrate recognition interfaces.  相似文献   

19.
The reversible phosphorylation of the alpha-subunit of eukaryotic translation initiation factor 2 (eIF2alpha) is a well-characterized mechanism of translational control in response to a wide variety of cellular stresses, including viral infection. Beside PKR, the eIF2alpha kinase GCN2 participates in the cellular response against viral infection by RNA viruses with central nervous system tropism. PKR has also been involved in the antiviral response against HIV-1, although this antiviral effect is very limited due to the distinct mechanisms evolved by the virus to counteract PKR action. Here we report that infection of human cells with HIV-1 conveys the proteolytic cleavage of GCN2 and that purified HIV-1 and HIV-2 proteases produce direct proteolysis of GCN2 in vitro, abrogating the activation of GCN2 by HIV-1 RNA. Transfection of distinct cell lines with a plasmid encoding an HIV-1 cDNA clone competent for a single round of replication resulted in the activation of GCN2 and the subsequent eIF2alpha phosphorylation. Moreover, transfection of GCN2 knockout cells or cells with low levels of phosphorylated eIF2alpha with the same HIV-1 cDNA clone resulted in a marked increase of HIV-1 protein synthesis. Also, the over-expression of GCN2 in cells led to a diminished viral protein synthesis. These findings suggest that viral RNA produced during HIV-1 infection activates GCN2 leading to inhibition of viral RNA translation, and that HIV-1 protease cleaves GCN2 to overcome its antiviral effect.  相似文献   

20.
PKR (double-stranded RNA-dependent protein kinase) is an important component of host defense to virus infection. Binding of dsRNA to two dsRBDs (double-stranded RNA binding domains) of PKR modulates its own kinase activation. How structural features of natural target RNAs, such as bulges and loops, have an effect on the binding to two dsRBDs of PKR still remains unclear. By using ITC and NMR, we show here that both the bulge and loop of TAR RNA are necessary for the high affinity binding to dsRBD1-dsRBD2 of PKR with 1:1 stoichiometry. The binding site for the dsRBD1-dsRBD2 spans from upper bulge to lower stem of the TAR RNA, based on chemical shift mapping. The backbone resonances in the 40 kDa TAR.dsRBD1-dsRBD2 were assigned. NMR chemical shift perturbation data suggest that the beta1-beta2 loop of the dsRBD1 interacts with the TAR RNA, whereas that of the dsRBD2 is less involved in the TAR RNA recognition. In addition, the residues of the interdomain linker between the dsRBD1 and the dsRBD2 also show large chemical perturbations indicating that the linker is involved in the recognition of TAR RNA. The results presented here provide the biophysical and spectroscopic basis for high-resolution structural studies, and show how local RNA structural features modulate recognition by dsRBDs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号