首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 343 毫秒
1.
2.
Oxidized analogs of cholesterol (oxysterols) are produced through both enzymatic and non-enzymatic pathways and have been shown to perturb membrane properties in vitro and in vivo. In the present study, the membrane behavior of two naturally occurring oxysterols, 25-hydroxycholesterol and 7-ketocholesterol, was examined in two model systems. The presence of an additional oxygen moiety was found to alter membrane properties compared to native cholesterol and to each other in lipid monolayers, composed of either pure sterol or sterol–glycerophospholipid and sterol–sphingomyelin binary films, as well as in mixed multilamellar vesicles. The ability of oxysterols to condense phosphatidylcholine and sphingomyelin films, their capacity to cause changes in in-plane elasticity moduli, and their propensity to form detergent-resistant membrane domains were all found to be dependant on the location of the oxygen functionality in the oxysterol, the chemical nature of the phospholipid in the model systems, and the oxysterol/phospholipid ratio in the membrane. The findings described in this study with respect to their biophysical/biophysiological implications provide additional insight into the activity of cytotoxic oxysterols in model membranes.  相似文献   

3.
PURPOSE OF REVIEW: Oxysterols, oxidation products of cholesterol, mediate numerous and diverse biological processes. The objective of this review is to explain some of the biochemical and cell biological properties of oxysterols based on their membrane biophysical properties and their interaction with integral and peripheral membrane proteins. RECENT FINDINGS: According to their biophysical properties, which can be distinct from those of cholesterol, oxysterols can promote or inhibit the formation of membrane microdomains or lipid rafts. Oxysterols that inhibit raft formation are cytotoxic. The stereo-specific binding of cholesterol to sterol-sensing domains in cholesterol homeostatic pathways is not duplicated by oxysterols, and some oxysterols are poor substrates for the pathways that detoxify cells of excess cholesterol. The cytotoxic roles of oxysterols are, at least partly, due to a direct physical effect on membranes involved in cholesterol-induced cell apoptosis and raft mediated cell signaling. Oxysterols regulate cellular functions by binding to oxysterol binding protein and oxysterol binding protein-related proteins. Oxysterol binding protein is a sterol-dependent scaffolding protein that regulates the extracellular signal-regulated kinase signaling pathway. According to a recently solved structure for a yeast oxysterol binding protein-related protein, Osh4, some members of this large family of proteins are likely sterol transporters. SUMMARY: Given the association of some oxysterols with atherosclerosis, it is important to identify the mechanisms by which their association with cell membranes and intracellular proteins controls membrane structure and properties and intracellular signaling and metabolism. Studies on oxysterol binding protein and oxysterol binding protein-related proteins should lead to new understandings about sterol-regulated signal transduction and membrane trafficking pathways in cells.  相似文献   

4.
5.
Side chain oxysterols are cholesterol derivatives thought to signal the abundance of cell cholesterol to homeostatic effector proteins. Here, we investigated how plasma membrane (PM) cholesterol might regulate 27-hydroxycholesterol (HC) biosynthesis in cultured fibroblasts. We showed that PM cholesterol was a major substrate for 27-HC production. Biosynthesis commenced within minutes of loading depleted cells with cholesterol, concurrent with the rapid inactivation of hydroxy-3-methylglutaryl CoA reductase (HMGR). 27-HC production rose ∼30-fold in normal and Niemann-Pick C1 fibroblasts when PM cholesterol was increased by ∼60%. 27-HC production was also stimulated by 1-octanol, which displaces PM cholesterol from its phospholipid complexes and thereby increases its activity (escape tendency) and elevates its intracellular abundance. Conversely, lysophosphatidylserine and U18666A inhibited 27-HC biosynthesis and the inactivation of HMGR, presumably by reducing the activity of PM cholesterol and, therefore, its circulation to mitochondria. We conclude that, in this in vitro system, excess (active) PM cholesterol rapidly reaches mitochondria where, as the rate-limiting substrate, it stimulates 27-HC biosynthesis. The oxysterol product then promotes the rapid degradation of HMGR, along with other homeostatic effects. The regulation of 27-HC production by the active excess of PM cholesterol can thus provide a feedback mechanism in the homeostasis of PM cholesterol.  相似文献   

6.
7.
Mutations in the Niemann-Pick disease genes cause lysosomal cholesterol accumulation and impaired low density lipoprotein (LDL) cholesterol esterification. These findings have been attributed to a block in cholesterol movement from lysosomes to the site of the sterol regulatory machinery. In this study we show that Niemann-Pick type C1 (NPC1) and Niemann-Pick type C2 (NPC2) mutants have increased cellular cholesterol, yet they are unable to suppress LDL receptor activity and cholesterol biosynthesis. Cholesterol overload in both NPC1 and NPC2 mutants results from the failure of LDL cholesterol tobothsuppresssterolregulatoryelement-bindingprotein-dependent gene expression and promote liver X receptor-mediated responses. However, the severity of the defect in regulation of sterol homeostasis does not correlate with endoplasmic reticulum cholesterol levels, but rather with the degree to which NPC mutant fibroblasts fail to appropriately generate 25-hydroxycholesterol and 27-hydroxycholesterol in response to LDL cholesterol. Moreover, we demonstrate that treatment with oxysterols reduces cholesterol in NPC mutants and is able to correct the NPC1I1061T phenotype, the most prevalent NPC1 disease genotype. Our findings support a role for NPC1 and NPC2 in the regulation of sterol homeostasis through generation of LDL cholesterol-derived oxysterols and have important implications for the treatment of NPC disease.  相似文献   

8.
Massey JB  Pownall HJ 《Biochemistry》2005,44(43):14376-14384
Oxygenated derivatives of cholesterol, oxysterols, have different physicochemical properties and three-dimensional shapes. The kinetics of microsolubilization of dimyristoylphosphatidylcholine (DMPC) multilamellar vesicles by apolipoprotein A-I (apoA-I) to form discoidal high-density lipoproteins (rHDL) was dramatically affected by oxysterol chemical structure. Under the experimental conditions of varying oxysterol chemical structure, sterol concentration, and the lipid phase state of DMPC, the kinetics varied over 3 orders of magnitude. Some oxysterols behaved similarly to cholesterol and increased the rate of microsolubilization; however, they were not as effective as cholesterol. Other oxysterols greatly inhibited this process. In general, there was no correlation of the rates with membrane fluidity as measured by fluorescence polarization. The rate of DMPC microsolubilization by apoA-I is highly dependent upon the presence of lattice defects in the membrane surface that occur due to imperfect packing of coexisting lipid phases. The differential ability of various oxysterols to induce the formation of an ordered lipid phase is the probable basis for their effects on the rates of DMPC microsolubilization. There was no effect of oxysterol chemical structure on the structure of the equilibrium rHDL products; however, there was a dramatic effect of sterol concentration on rHDL particle size. Different oxysterols regulate the kinetics of apoA-I membrane association by altering structural microheterogeneity at the membrane surface. However, once the kinetic barrier is overcome, the particle sizes of rHDL products formed are determined solely by the amount of sterol presence.  相似文献   

9.
10.
11.
12.
Mass spectrometric detection of cholesterol oxidation in bovine sperm   总被引:1,自引:0,他引:1  
We report on the presence and formation of cholesterol oxidation products (oxysterols) in bovine sperm. Although cholesterol is the most abundant molecule in the membrane of mammalian cells and is easily oxidized, this is the first report on cholesterol oxidation in sperm membranes as investigated by state-of-the-art liquid chromatographic and mass spectrometric methods. First, oxysterols are already present in fresh semen samples, showing that lipid peroxidation is part of normal sperm physiology. After chromatographic separation (by high-performance liquid chromatography), the detected oxysterol species were identified with atmospheric pressure chemical ionization mass spectrometry in multiple-reaction-monitoring mode that enabled detection in a broad and linear concentration range (0.05-100 pmol for each oxysterol species detected). Second, exposure of living sperm cells to oxidative stress does not result in the same level and composition of oxysterol species compared with oxidative stress imposed on reconstituted vesicles from protein-free sperm lipid extracts. This suggests that living sperm cells protect themselves against elevated oxysterol formation. Third, sperm capacitation induces the formation of oxysterols, and these formed oxysterols are almost completely depleted from the sperm surface by albumin. Fourth, and most importantly, capacitation after freezing/thawing of sperm fails to induce both the formation of oxysterols and the subsequent albumin-dependent depletion of oxysterols from the sperm surface. The possible physiological relevance of capacitation-dependent oxysterol formation and depletion at the sperm surface as well as the omission of this after freezing/thawing semen is discussed.  相似文献   

13.
14.
Shan H  Pang J  Li S  Chiang TB  Wilson WK  Schroepfer GJ 《Steroids》2003,68(3):221-233
Oxygenated derivatives of cholesterol have important functions in many biochemical processes. These oxysterols are difficult to study because of their low physiological concentrations, the facile formation of cholesterol autoxidation artifacts, and lack of information on their chromatographic behavior. Focusing on metabolites and autoxidation products of cholesterol, we have documented the chromatographic mobilities of 35 oxysterols under a variety of conditions: eight solvent systems for thin-layer chromatography on silica gel, several mobile phases for reversed-phase high-performance liquid chromatography (HPLC), and two types of stationary phase for capillary gas chromatography (GC) using trimethylsilyl derivatives. Notable differences in selectivity could be obtained by modifying the stationary or mobile phases. Separations of oxysterol pairs isomeric at side-chain carbons or C-7 were achieved on normal-phase, reversed-phase, chiral, or silver-ion HPLC columns. Chromatographic behavior is also described for side-chain hexadeuterated and heptafluorinated oxysterols, which are useful as standards in isotope dilution analyses and autoxidation studies, respectively. The overall results are relevant to many problems of oxysterol analysis, including the initial separation of oxysterols from cholesterol, determination of highly polar and nonpolar oxysterols, separation of isomeric pairs, selection of derivatization conditions for GC analysis, and quantitation of the extent of cholesterol autoxidation.  相似文献   

15.
16.
Massey JB  Pownall HJ 《Biochemistry》2006,45(35):10747-10758
Oxysterols, derivatives of cholesterol that contain a second oxygen moiety, are intermediates in cholesterol catabolism, regulators of lipid metabolism, and toxic sterols with proatherogenic effects. In model membranes, cholesterol and eight selected oxysterols were compared by fluorescence probe techniques that measure changes in bilayer order and phase behavior and by the formation of detergent-resistant membranes (DRM). The oxysterols were modified on the sterol nucleus or on the isooctyl side chain. The model membranes consisted of dipalmitoyl phosphatidylcholine (DPPC) and mixtures of dioleoyl phosphatidylcholine with DPPC and with sphingomyelin. The different oxysterols induced changes in membrane properties according to the differences in their structures. Whereas the effects of some oxysterols on membrane order, fluorescence probe microenvironment, and DRM formation were similar to those of cholesterol, others had little or no effect. An empirical correlation ranking the oxysterols by their ability to modify membrane biophysical properties when compared to cholesterol led to a significant structure/function relationship between the biophysical measurements and an important cellular phenomenon, apoptosis. 7beta-Hydroxycholesterol, which is the most cytotoxic of the eight selected oxysterols, was one of the least cholesterol-like with respect to modification of membrane properties. The results suggest that an underlying mechanism for oxysterol-induced apoptosis in cells, e.g., monocyte/macrophages, should include their biophysical effects on membranes, such as the regulation of the formation and composition of sterol-rich membrane domains.  相似文献   

17.
Oxysterols, oxidized metabolites of cholesterol, are endogenous small molecules that regulate lipid metabolism, immune function, and developmental signaling. Although the cell biology of cholesterol has been intensively studied, fundamental questions about oxysterols, such as their subcellular distribution and trafficking pathways, remain unanswered. We have therefore developed a useful method to image intracellular 20(S)-hydroxycholesterol with both high sensitivity and spatial resolution using click chemistry and fluorescence microscopy. The metabolic labeling of cells with an alkynyl derivative of 20(S)-hydroxycholesterol has allowed us to directly visualize this oxysterol by attaching an azide fluorophore through cyclo-addition. Unexpectedly, we found that this oxysterol selectively accumulates in the Golgi membrane using a pathway that is sensitive to ATP levels, temperature, and lysosome function. Although previous models have proposed nonvesicular pathways for the rapid equilibration of oxysterols between membranes, direct imaging of oxysterols suggests that a vesicular pathway is responsible for differential accumulation of oxysterols in organelle membranes. More broadly, clickable alkynyl sterols may represent useful tools for sterol cell biology, both to investigate the functions of these important lipids and to decipher the pathways that determine their cellular itineraries.  相似文献   

18.
Almost all the cholesterol in cellular membranes is associated with phospholipids in simple stoichiometric complexes. This limits the binding of sterol ligands such as filipin and perfringolysin O (PFO) to a small fraction of the total. We offer a simple mathematical model that characterizes this complexity. It posits that the cholesterol accessible to ligands has two forms: active cholesterol, which is that not complexed with phospholipids; and extractable cholesterol, that which ligands can capture competitively from the phospholipid complexes. Simulations based on the model match published data for the association of PFO oligomers with liposomes, plasma membranes, and the isolated endoplasmic reticulum. The model shows how the binding of a probe greatly underestimates cholesterol abundance when its affinity for the sterol is so weak that it competes poorly with the membrane phospholipids. Two examples are the understaining of plasma membranes by filipin and the failure of domain D4 of PFO to label their cytoplasmic leaflets. Conversely, the exaggerated staining of endolysosomes suggests that their cholesterol, being uncomplexed, is readily available. The model is also applicable to the association of cholesterol with intrinsic membrane proteins. For example, it supports the hypothesis that the sharp threshold in the regulation of homeostatic endoplasmic reticulum proteins by cholesterol derives from the cooperativity of their binding to the sterol weakly held by the phospholipids. Thus, the model explicates the complexity inherent in the binding of ligands like PFO and filipin to the small accessible fraction of membrane cholesterol.  相似文献   

19.
Oxysterols, cholesterol homeostasis, and Alzheimer disease   总被引:5,自引:2,他引:3  
Aberrant cholesterol metabolism has been implicated in Alzheimer disease (AD) and other neurological disorders. Oxysterols and other cholesterol oxidation products are effective ligands of liver X activated receptor (LXR) nuclear receptors, major regulators of genes subserving cholesterol homeostasis. LXR receptors act as molecular sensors of cellular cholesterol concentrations and effectors of tissue cholesterol reduction. Following their interaction with oxysterols, activation of LXRs induces the expression of ATP-binding cassette, sub-family A member 1, a pivotal modulator of cholesterol efflux. The relative solubility of oxysterols facilitates lipid flux among brain compartments and egress across the blood-brain barrier. Oxysterol-mediated LXR activation induces local apoE biosynthesis (predominantly in astrocytes) further enhancing cholesterol re-distribution and removal. Activated LXRs invoke additional neuroprotective mechanisms, including induction of genes governing bile acid synthesis (sterol elimination pathway), apolipoprotein elaboration, and amyloid precursor protein processing. The latter translates into attenuated beta-amyloid production that may ameliorate amyloidogenic neurotoxicity in AD brain. Stress-induced up-regulation of the heme-degrading enzyme, heme oxygenase-1 in AD-affected astroglia may impact central lipid homeostasis by promoting the oxidation of cholesterol to a host of oxysterol intermediates. Synthetic oxysterol-mimetic drugs that activate LXR receptors within the CNS may provide novel therapeutics for management of AD and other neurological afflictions characterized by deranged tissue cholesterol homeostasis.  相似文献   

20.
Bis(Monoacylglycero) Phosphate (BMP) is a unique phospholipid localized in late endosomes, a critical cellular compartment in low density lipoprotein (LDL)-cholesterol metabolism. In previous work, we demonstrated the important role of BMP in the regulation of macrophage cholesterol homeostasis. BMP exerts a protective role against the pro-apoptotic effect of oxidized LDL (oxLDL) by reducing the production of deleterious oxysterols. As the intracellular sterol traffic in macrophages is in part regulated by oxysterol binding protein (OSBP) and OSBP-related proteins (ORPs), we investigated the role of ORP11, localized at the Golgi-late endosomes interface, in the BMP-mediated protection from oxLDL/oxysterol cytotoxicity. Stably silencing of ORP11 in mouse RAW264.7 macrophages via a shRNA lentiviruses system had no effect on BMP production. However, ORP11 knockdown abrogated the protective action of BMP against oxLDL induced apoptosis. In oxLDL treated control cells, BMP enrichment was associated with reduced generation of 7-oxysterols, while these oxysterol species were abundant in the ORP11 knock-down cells. Of note, BMP enrichment in ORP11 knock-down cells was associated with a drastic increase in free cholesterol and linked to a decrease of cholesterol efflux. The expression of ATP-binding cassette-transporter G1 (ABCG1) was also reduced in the ORP11 knock-down cells. These observations demonstrate a cooperative function of OPR11 and BMP, in intracellular cholesterol trafficking in cultured macrophages. We suggest that BMP favors the egress of cholesterol from late endosomes via an ORP11-dependent mechanism, resulting in a reduced production of cytotoxic 7-oxysterols.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号