首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Adoptive immunotherapy holds promise as a treatment for cancer and infectious diseases, but its development has been impeded by the lack of reproducible methods for generating therapeutic numbers of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs). As a result, there are only limited reports of expansion of antigen-specific CTLs to the levels required for clinical therapy. To address this issue, artificial antigen-presenting cells (aAPCs) were made by coupling a soluble human leukocyte antigen-immunoglobulin fusion protein (HLA-Ig) and CD28-specific antibody to beads. HLA-Ig-based aAPCs were used to induce and expand CTLs specific for cytomegalovirus (CMV) or melanoma. aAPC-induced cultures showed robust antigen-specific CTL expansion over successive rounds of stimulation, resulting in the generation of clinically relevant antigen-specific CTLs that recognized endogenous antigen-major histocompatibility complex complexes presented on melanoma cells. These studies show the value of HLA-Ig-based aAPCs for reproducible expansion of disease-specific CTLs for clinical approaches to adoptive immunotherapy.  相似文献   

2.
Cytotoxic CD8+ T cells are key effectors in the immunotherapy of malignant and viral diseases. However, autologous T cell responses to tumor antigens presented by self-MHC are usually weak and ineffective. Allo-restricted T cells represent a potent source of tumor-specific T cells for adoptive immunotherapy. This study reports in vivo anti-melanoma efficacy of the pTRP2-specific allo-restricted CTLs expanded from the BALB/c splenocytes by multiple stimulations with aAPCs made by coating H-2Kb-Ig/pTRP2 dimeric complexes, anti-CD28 antibody, 4-1BBL molecules and CD83 molecules to cell-sized latex beads. The induced allo-restricted CTLs exhibited specific lysis against RMA-S cells pulsed with the peptide pTRP2 and H-2Kb+ melanoma cells expressing TRP2, while a murine Lewis lung carcinoma cell line 3LL could not be recognized by the CTLs. The peptide-specific activity was inhibited by anti-H-2Kb monoclonal antibody Y3. Adoptive transfer of the allo-restricted CTLs specific for malignant melanoma expanded by the aAPCs can mediate effective anti-melanoma response in vivo. These results suggested that the specific allo-restricted CTLs expanded by aAPCs coated with an MHC-Ig/peptide complex, anti-CD28 antibody, 4-1BBL and CD83 could be a potential option of specific immunotherapy for patients with malignant melanoma. X.-l. Lu and X.-b. Jiang have contributed equally to this work. An erratum to this article can be found at  相似文献   

3.
Cytotoxic CD8 T cells are key effectors in the immunotherapy of malignant and viral diseases. However, the lack of efficient methods for their in vitro priming and expansion has become a bottleneck to the development of vaccines and adoptive transfer strategies. Synthetic artificial APCs (aAPCs) are now emerging as an attractive tool for eliciting and expanding CTL responses. We show that, by controlling the MHC density on aAPCs, high- or low-avidity tumor-directed human CTL lines can be raised effectively in vitro if costimulation via CD28 and IL-12 is provided. Compared with low-avidity CTL lines, high-avidity CTLs need 100- to 1000-fold less peptide for activation, bind more MHC tetramers, and, as expected, are superior in recognizing tumor cell lines expressing Ag. We believe that the possibility to raise Ag-specific T cells with predetermined avidity will be crucial for the future use of aAPCs in immunotherapeutical settings.  相似文献   

4.
Lili Y  Yi W  Ji Y  Yue S  Weimin S  Ming L 《PloS one》2012,7(5):e37513
Melanocyte-specific CD8(+) cytotoxic T lymphocytes (CTLs) play a pivotal role in vitiligo-induced depigmentation. Yet, the mechanisms underlying the high frequency of generalized autoimmune disorders associated with generalized vitiligo (GV) are unknown. We hypothesized that an imbalance between activated CD8(+) CTLs and regulatory T cells (Tregs) exists in patients with GV . Assessment of the circulating CD8(+) CTLs and Tregs by flow cytometric analysis revealed an obvious expansion of CD8(+) CTLs and a concomitant decrease in Treg cells in GV patients. The percentages of skin infiltrating CD8(+) CTLs and Tregs were evaluated by immunohistochemistry and revealed dramatically increased numbers of both CD8(+) CTLs and Tregs in the perilesional skin of GV patients. However, peripheral Tregs were impaired in their ability to suppress the proliferation and cytolytic capacity of autologous CD8(+) T cells, suggesting that a functional failure of Tregs and the hyper-activation of CD8(+) CTLs may contribute to progressive GV. Our data indicate that reduced numbers and impaired function of natural Tregs fail to control the widespread activation of CD8(+) CTLs, which leads to the destruction of melanocytes and contributes to the elevated frequency of various associated autoimmune diseases. This knowledge furthers our understanding of the mechanisms of immune tolerance that are impaired in GV patients and may aid in the future development of effective immunotherapy for GV patients.  相似文献   

5.
Artificial APCs (aAPCs) genetically modified to express selective costimulatory molecules provide a reproducible, cost-effective, and convenient method for polyclonal and Ag-specific expansion of human T cells for adoptive immunotherapy. Among the variety of aAPCs that have been studied, acellular beads expressing anti-CD3/anti-CD28 efficiently expand CD4+ cells, but not CD8+ T cells. Cell-based aAPCs can effectively expand cytolytic CD8+ cells, but optimal costimulatory signals have not been defined. 4-1BB, a costimulatory molecule expressed by a minority of resting CD8+ T cells, is transiently up-regulated by all CD8+ T cells following activation. We compared expansion of human cytolytic CD8+ T cells using cell-based aAPCs providing costimulation via 4-1BB vs CD28. Whereas anti-CD3/anti-CD28 aAPCs mostly expand naive cells, anti-CD3/4-1BBL aAPCs preferentially expand memory cells, resulting in superior enrichment of Ag-reactive T cells which recognize previously primed Ags and efficient expansion of electronically sorted CD8+ populations reactive toward viral or self-Ags. Using HLA-A2-Fc fusion proteins linked to 4-1BBL aAPCs, 3-log expansion of Ag-specific CD8+ CTL was induced over 14 days, whereas similar Ag-specific CD8+ T cell expansion did not occur using HLA-A2-Fc/anti-CD28 aAPCs. Furthermore, when compared with cytolytic T cells expanded using CD28 costimulation, CTL expanded using 4-1BB costimulation mediate enhanced cytolytic capacity due, in part, to NKG2D up-regulation. These results demonstrate that 4-1BB costimulation is essential for expanding memory CD8+ T cells ex vivo and is superior to CD28 costimulation for generating Ag-specific products for adoptive cell therapy.  相似文献   

6.
Extensive replicative capacity of human central memory T cells   总被引:3,自引:0,他引:3  
To characterize the replicative capacity of human central memory (T(CM)) CD4 T cells, we have developed a defined culture system optimized for the ex vivo expansion of Ag-specific CD4(+) T cells. Artificial APCs (aAPCs) consisting of magnetic beads coated with Abs to HLA class II and a costimulatory Ab to CD28 were prepared; peptide-charged HLA class II tetramers were then loaded on the beads to provide Ag specificity. Influenza-specific DR*0401 CD4 T(CM) were isolated from the peripheral blood of normal donors by flow cytometry. Peptide-loaded aAPC were not sufficient to induce resting CD4 T(CM) to proliferate. In contrast, we found that the beads efficiently promoted the growth of previously activated CD4 T(CM) cells, yielding cultures with >80% Ag-specific CD4 cells after two stimulations. Further stimulation with peptide-loaded aAPC increased purity to >99% Ag-specific T cells. After in vitro culture for 3-12 wk, the flu-specific CD4 T(CM) had surface markers that were generally consistent with an effector phenotype described for CD8 T cells, except for the maintenance of CD28 expression. The T(CM) were capable of 20-40 mean population doublings in vitro, and the expanded cells produced IFN-gamma, IL-2, and TNF-alpha in response to Ag, and a subset of cells also secreted IL-4 with PMA/ionomycin treatment. In conclusion, aAPCs expand T(CM) that have extensive replicative capacity, and have potential applications in adoptive immunotherapy as well as for studying the biology of human MHC class II-restricted T cells.  相似文献   

7.
CD8(+) cytotoxic T-lymphocytes (CTLs) have been proven, in multiple animal models, to be the most powerful antiviral and antitumor components of the immune system. We have developed a protocol to activate and expand tumor and virus peptide-specific CD8(+) T-lymphocytes from the peripheral blood of healthy, human trophic leukemia virus-1 (HTLV-1) seronegative human leucocyte antigen (HLA)-A*0201 individuals. A combination of density-based separation and culture conditions was employed to isolate dendritic cells (DCs), which are the most potent antigen-presenting cells (APCs), and T-lymphocytes. The DCs were pulsed with HLA-A*0201 binding peptides and cultured with autologous T-lymphocytes to generate peptide-specific CTLs. The CTLs were generated against a nine-amino-acid peptide from the Tax protein of HTLV-1. The CTLs were expanded according to a restimulation schedule employing peptide-pulsed autologous monocytes and low-dose interleukin-2 (IL-2) to numbers in excess of 100 x 10(6) cells following 5 weeks of culture. Expanded cells contained primarily CD3(+) T-cells, of which CD8(+) T-lymphocytes constituted greater than two-thirds of the cell population. Obtained CTLs exhibited potent antigen-specific lysis of peptide-pulsed target cells in a dose-dependent fashion in in vitro (51)Cr release cytotoxicity assay. This antigen-specific killing was shown to be HLA class I restricted and mediated by CD8(+) T-lymphocytes. Since the T-lymphocytes were obtained from HTLV-1 seronegative donors, the generation of peptide-specific CTLs represents reliable and reproducible elicitation of a primary immune response in vitro against naive antigens and subsequent expansion of generated CTLs for adoptive immunotherapy. (c) 1996 John Wiley & Sons, Inc.  相似文献   

8.
Cytotoxic T lymphocytes (CTLs) specific for the Epstein-Barr virus (EBV) latent membraneprotein 2 (LMP2) antigen are important reagents for the treatment of some EBV-associated malignancies,such as EBV-positive Hodgkin's disease and nasopharyngeal carcinoma.However,the therapeutic amount ofCTLs is often hampered by the limited supply of antigen-presenting cells.To address this issue,an artificialantigen-presenting cell (aAPC) was made by coating a human leukocyte antigen (HLA)-pLMP2 tetramericcomplex,anti-CD28 antibody and CD54 molecule to a cell-sized latex bead,which provided the dual signalsrequired for T cell activation.By co-culture of the HLA-A2-LMP2 bearing aAPC and peripheral bloodmononuclear cells from HLA-A2 positive healthy donors,LMP2 antigen-specific CTLs were induced andexpanded in vitro.The specificity of the aAPC-induced CTLs was demonstrated by both HLA-A2-LMP2tetramer staining and cytotoxicity against HLA-A2-LMP2 bearing T2 cell,the cytotoxicity was inhibited bythe anti-HLA class Ⅰ antibody (W6/32).These results showed that LMP2 antigen-specific CTLs could beinduced and expanded in vitro by the HLA-A2-LMP2-bearing aAPC.Thus,aAPCs coated with an HLA-pLMP2 complex,anti-CD28 and CD54 might be promising tools for the enrichment of LMP2-specificCTLs for adoptive immunotherapy.  相似文献   

9.
Therapeutic numbers of antigen-specific cytotoxic T lymphocytes (CTLs) are key effectors in successful adoptive immunotherapy. However, efficient and reproducible methods to meet the qualification remain poor. To address this issue, we designed the artificial antigen-presenting cell (aAPC) system based on poly(lactic-co-glycolic acid) (PLGA). A modified emulsion method was used for the preparation of PLGA particles encapsulating interleukin-2 (IL-2). Biotinylated molecular ligands for recognition and co-stimulation of T cells were attached to the particle surface through the binding of avidin–biotin. These formed the aAPC system. The function of aAPCs in the proliferation of specific CTLs against human Flu antigen was detected by enzyme-linked immunospot assay (ELISPOT) and MTT staining methods. Finally, we successfully prepared this suitable aAPC system. The results show that IL-2 is released from aAPCs in a sustained manner over 30 days. This dramatically improves the stimulatory capacity of this system as compared to the effect of exogenous addition of cytokine. In addition, our aAPCs promote the proliferation of Flu antigen-specific CTLs more effectively than the autologous cellular APCs. Here, this aAPC platform is proved to be suitable for expansion of human antigen-specific T cells.  相似文献   

10.
Multiple paths for activation of naive CD8+ T cells: CD4-independent help   总被引:2,自引:0,他引:2  
CD8(+) CTLs play a pivotal role in immune responses against many viruses and tumors. Two models have been proposed. The "three-cell" model focuses on the role of CD4(+) T cells, proposing that help is only provided to CTLs by CD4(+) T cells that recognize Ag on the same APC. The sequential "two-cell" model proposes that CD4(+) T cells can first interact with APCs, which in turn activate naive CTLs. Although these models provide a general framework for the role of CD4(+) T cells in mediating help for CTLs, a number of issues are unresolved. We have investigated the induction of CTL responses using dendritic cells (DCs) to immunize mice against defined peptide Ags. We find that help is required for activation of naive CTLs when DCs are used as APCs, regardless of the origin or MHC class I restriction of the peptides we studied in this system. However, CD8(+) T cells can provide self-help if they are present at a sufficiently high precursor frequency. The important variable is the total number of T cells responding, because class II-knockout DCs pulsed with two noncompeting peptides are effective in priming.  相似文献   

11.
Adoptive cell transfer (ACT) of antigen-specific CD8(+) cytotoxic T lymphocytes (CTLs) is a promising treatment for a variety of malignancies (1). CTLs can recognize malignant cells by interacting tumor antigens with the T cell receptors (TCR), and release cytotoxins as well as cytokines to kill malignant cells. It is known that less-differentiated and central-memory-like (termed highly reactive) CTLs are the optimal population for ACT-based immunotherapy, because these CTLs have a high proliferative potential, are less prone to apoptosis than more differentiated cells and have a higher ability to respond to homeostatic cytokines (2-7). However, due to difficulties in obtaining a high number of such CTLs from patients, there is an urgent need to find a new approach to generate highly reactive Ag-specific CTLs for successful ACT-based therapies. TCR transduction of the self-renewable stem cells for immune reconstitution has a therapeutic potential for the treatment of diseases (8-10). However, the approach to obtain embryonic stem cells (ESCs) from patients is not feasible. Although the use of hematopoietic stem cells (HSCs) for therapeutic purposes has been widely applied in clinic (11-13), HSCs have reduced differentiation and proliferative capacities, and HSCs are difficult to expand in in vitro cell culture (14-16). Recent iPS cell technology and the development of an in vitro system for gene delivery are capable of generating iPS cells from patients without any surgical approach. In addition, like ESCs, iPS cells possess indefinite proliferative capacity in vitro, and have been shown to differentiate into hematopoietic cells. Thus, iPS cells have greater potential to be used in ACT-based immunotherapy compared to ESCs or HSCs. Here, we present methods for the generation of T lymphocytes from iPS cells in vitro, and in vivo programming of antigen-specific CTLs from iPS cells for promoting cancer immune surveillance. Stimulation in vitro with a Notch ligand drives T cell differentiation from iPS cells, and TCR gene transduction results in iPS cells differentiating into antigen-specific T cells in vivo, which prevents tumor growth. Thus, we demonstrate antigen-specific T cell differentiation from iPS cells. Our studies provide a potentially more efficient approach for generating antigen-specific CTLs for ACT-based therapies and facilitate the development of therapeutic strategies for diseases.  相似文献   

12.
A number of tumor studies have indicated a link between CD4 help and the magnitude and persistence of CTL activity; however, the mechanisms underlying this have been largely unclear. To evaluate and determine the mechanisms by which CD4(+) T cells synergize with CD8(+) T cells to prevent tumor growth, we used the novel technique of monitoring in vivo CTL by labeling target cells with CFSE. This approach was supported by the direct visualization of CTL using peptide-MHC tetramers to follow tumor-specific T cells. The data presented demonstrate that while cotransfer of Ag-specific CD4(+) T cells was not required for the generation of CTLs, because adoptive transfer of CD8(+) T cells alone was sufficient, CD4(+) T cells were required for the maintenance of CD8(+) T cell numbers. Our data suggest that there is a correlation among the number of CD8(+) T cells, in vivo CTL function, and IFN-gamma production, with no evidence of a partial or nonresponsive phenotype among tetramer-positive cells. We also show that CD4(+) T cells are required for CD8(+) T cell infiltration of the tumor.  相似文献   

13.
Genetically sensitive mice (i.e. H-2(d) haplotype) infected with a natural mouse pathogen named ectromelia virus (EV) can develop a mousepox. Virus replicates well in the skin, next in the draining lymph nodes (DLNs) and then in the spleen and liver, where it may induce extensive necrosis with strong inflammatory reaction. It is well known from the studies defined on some other viruses that a correlation, functional link and powerful help exist between MHC class I-restricted CD8(+) and MHC class II-restricted CD4(+) virus-specific cytotoxic T lymphocytes (CTLs). However, in the case of mousepox the role of CD4(+) CTLs is still controversial and some reports support the notion that induction of EV-specific CD4(+) CTLs is nonessential for the generation of virus-specific immune response. Consequently, this study was designed to evaluate EV-specific CD8(+) and CD4(+) CTL activity in the DLNs, spleen, skin and conjunctivae of BALB/c (H-2(d)) mice at 7 and 14 days p.i. with Moscow strain of EV. By using bulk cytotoxicity assay and immunosurgery of effector T cells with mAb specific for CD4(+) and/or CD8(+) T cells our data show that EV-specific CD8(+) CTLs predominated in DLNs and spleen at 7 days (67 and 66% of total CTLs, respectively) and 14 days p.i. (63 and 69% of total CTLs, respectively). In contrast, we found that EV clearance from the cutaneous lesions during mousepox is CD4(+) CTL-dependent at 7 days p.i. (59% of total CTLs), whereas at 14 days p.i. CD8(+) CTLs predominated in the epidermis, accounting for 72% of the total EV-specific CTLs. Our studies showed that the population of EV-specific CTLs is heterogeneous and contains cells of both phenotypes: CD8(+) and CD4(+). However, these effector cells did not express a similar tendency in cytotoxic activity in the DLNs, spleen and skin in comparison to the conjunctivae where EV-specific CD8(+) and CD4(+) CTLs were not detected at 7 days p.i. and at peak of mousepox conjunctivitis (14 days p.i.). Our results are discussed in terms of the value of EV to study antiviral CTL responses in the genetically susceptible host.  相似文献   

14.
Induction of antitumor immunity involves the presence of both CD8(+) CTLs and CD4(+) Th cells specific for tumor-associated Ags. Attempts to eradicate cancer by adoptive T cell transfer have been limited due to the difficulty of generating T cells with defined Ag specificity. The current study focuses on the generation of CTL and Th cells against the tumor-associated Ag HER2 using autologous dendritic cells (DC) derived from CD34(+) hematopoietic progenitor cells which have been retrovirally transduced with the human epidermal growth factor receptor 2 (HER2) gene. HER2-transduced DC elicited HER2-specific CD8(+) CTL that lyse HER2-overexpressing tumor cells in context of distinct HLA class I alleles. The induction of both HLA-A2 and -A3-restricted HER2-specific CTL was verified on a clonal level. In addition, retrovirally transduced DC induced CD4(+) Th1 cells recognizing HER2 in context with HLA class II. HLA-DR-restricted CD4(+) T cells were cloned that released IFN-gamma upon stimulation with DC pulsed with the recombinant protein of the extracellular domain of HER2. These data indicate that retrovirally transduced DC expressing the HER2 molecule present multiple peptide epitopes and subsequently elicit HER2-specific CTL and Th1 cells. The method of stimulating HER2-specific CD8(+) and CD4(+) T cells with retrovirally transduced DC was successfully implemented for generating HER2-specific CTL and Th1 clones from a patient with HER2-overexpressing breast cancer. The ability to generate and expand HER2-specific, HLA-restricted CTL and Th1 clones in vitro facilitates the development of immunotherapy regimens, in particular the adoptive transfer of both autologous HER2-specific T cell clones in patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

15.
CD8(+) T cells are thought to play an important role in protective immunity to tuberculosis. Although several nonprotein ligands have been identified for CD1-restricted CD8(+) CTLs, epitopes for classical MHC class I-restricted CD8(+) T cells, which most likely represent a majority among CD8(+) T cells, have remained ill defined. HLA-A*0201 is one of the most prevalent class I alleles, with a frequency of over 30% in most populations. HLA-A2/K(b) transgenic mice were shown to provide a powerful model for studying induction of HLA-A*0201-restricted immune responses in vivo. The Ag85 complex, a major component of secreted Mycobacterium tuberculosis proteins, induces strong CD4(+) T cell responses in M. tuberculosis-infected individuals, and protection against tuberculosis in Ag85-DNA-immunized animals. In this study, we demonstrate the presence of HLA class I-restricted, CD8(+) T cells against Ag85B of M. tuberculosis in HLA-A2/K(b) transgenic mice and HLA-A*0201(+) humans. Moreover, two immunodominant Ag85 peptide epitopes for HLA-A*0201-restricted, M. tuberculosis-reactive CD8(+) CTLs were identified. These CD8(+) T cells produced IFN-gamma and TNF-alpha and recognized Ag-pulsed or bacillus Calmette-Guérin-infected, HLA-A*0201-positive, but not HLA-A*0201-negative or uninfected human macrophages. This CTL-mediated killing was blocked by anti-CD8 or anti-HLA class I mAb. Using fluorescent peptide/HLA-A*0201 tetramers, Ag85-specific CD8(+) T cells could be visualized in bacillus Calmette-Guérin-responsive, HLA-A*0201(+) individuals. Collectively, our results demonstrate the presence of HLA class I-restricted CD8(+) CTL against a major Ag of M. tuberculosis and identify Ag85B epitopes that are strongly recognized by HLA-A*0201-restricted CD8(+) T cells in humans and mice. These epitopes thus represent potential subunit components for the design of vaccines against tuberculosis.  相似文献   

16.
Dendritic cells (DCs) are potent APCs and attractive vectors for cancer immunotherapy. Using the B16 melanoma, a poorly immunogenic experimental tumor that expresses low levels of MHC class I products, we investigated whether DCs loaded ex vivo with apoptotic tumor cells could elicit combined CD4(+) and CD8(+) T cell dependent, long term immunity following injection into mice. The bone marrow-derived DCs underwent maturation during overnight coculture with apoptotic melanoma cells. Following injection, DCs migrated to the draining lymph nodes comparably to control DCs at a level corresponding to approximately 0.5% of the injected inoculum. Mice vaccinated with tumor-loaded DCs were protected against an intracutaneous challenge with B16, with 80% of the mice remaining tumor-free 12 wk after challenge. CD4(+) and CD8(+) T cells were efficiently primed in vaccinated animals, as evidenced by IFN-gamma secretion after in vitro stimulation with DCs loaded with apoptotic B16 or DCs pulsed with the naturally expressed melanoma Ag, tyrosinase-related protein 2. In addition, B16 melanoma cells were recognized by immune CD8(+) T cells in vitro, and cytolytic activity against tyrosinase-related protein 2(180-188)-pulsed target cells was observed in vivo. When either CD4(+) or CD8(+) T cells were depleted at the time of challenge, the protection was completely abrogated. Mice receiving a tumor challenge 10 wk after vaccination were also protected, consistent with the induction of tumor-specific memory. Therefore, DCs loaded with cells undergoing apoptotic death can prime melanoma-specific helper and CTLs and provide long term protection against a poorly immunogenic tumor in mice.  相似文献   

17.
Antiviral CD8(+) T cells are thought to play a significant role in limiting the viremia of human and simian immunodeficiency virus (HIV and SIV, respectively) infections. However, it has not been possible to measure the in vivo effectiveness of cytotoxic T cells (CTLs), and hence their contribution to the death rate of CD4(+) T cells is unknown. Here, we estimated the ability of a prototypic antigen-specific CTL response against a well-characterized epitope to recognize and kill infected target cells by monitoring the immunodominant Mamu-A*01-restricted Tat SL8 epitope for escape from Tat-specific CTLs in SIVmac239-infected macaques. Fitting a mathematical model that incorporates the temporal kinetics of specific CTLs to the frequency of Tat SL8 escape mutants during acute SIV infection allowed us to estimate the in vivo killing rate constant per Tat SL8-specific CTL. Using this unique data set, we show that at least during acute SIV infection, certain antiviral CD8(+) T cells can have a significant impact on shortening the longevity of infected CD4(+) T cells and hence on suppressing virus replication. Unfortunately, due to viral escape from immune pressure and a dependency of the effectiveness of antiviral CD8(+) T-cell responses on the availability of sufficient CD4(+) T cells, the impressive early potency of the CTL response may wane in the transition to the chronic stage of the infection.  相似文献   

18.
The GD2 ganglioside expressed on neuroectodermal tumor cells has been used as a target for passive and active immunotherapy in patients with malignant melanoma and neuroblastoma. We have reported that immunization of mice with a 47-LDA mimotope of GD2, isolated from a phage display peptide library with anti-GD2 mAb 14G2a, induces MHC class I-restricted CD8(+) T cell responses to syngeneic neuroblastoma tumor cells. The cytotoxic activity of the vaccine-induced CTLs was independent of GD2 expression, suggesting recognition of a novel tumor-associated Ag cross-reacting with 47-LDA. Glycan microarray and immunoblotting studies using 14G2a mAb demonstrated that this Ab is highly specific for the entire carbohydrate motif of GD2 but also cross-reacts with a 105 kDa glycoprotein expressed by GD2(+) and GD2(-) neuroblastoma and melanoma cells. Functional studies of tumor cells grown in three-dimensional collagen cultures with 14G2a mAb showed decreases in matrix metalloproteinase-2 activation, a process regulated by the 105 kDa-activated leukocyte cell adhesion molecule (ALCAM/CD166). A recombinant CD166 glycoprotein was shown to be recognized by 14G2a Ab and inhibition of CD166 expression by RNA interference ablated the cell sensitivity to lysis by 47-LDA-induced CD8(+) T cells in vitro and in vivo. The binding of 14G2a to CD166 was not disruptable by a variety of exo- and endo-glycosidases, implying recognition of a non-glycan epitope on CD166. These results suggest that the vaccine-induced CTLs recognize a 47-LDA cross-reactive epitope expressed by CD166, and reveal a novel mechanism of induction of potent tumor-specific cellular responses by mimotopes of tumor-associated carbohydrate Ags.  相似文献   

19.
CD8+ cytotoxic T lymphocytes (CTLs) are preferred immune cells for targeting cancer. During cancer progression, CTLs encounter dysfunction and exhaustion due to immunerelated tolerance and immunosuppression within the tumor microenvironment (TME), with all favor adaptive immune-resistance. Cancer-associated fibroblasts (CAFs), macrophage type 2 (M2) cells, and regulatory T cells (Tregs) could make immunologic barriers against CD8 + T cell-mediated antitumor immune responses. Thus, CD8 + T cells are needed to be primed and activated toward effector CTLs in a process called tumor immunity cycle for making durable and efficient antitumor immune responses. The CD8 + T cell priming is directed essentially as a corroboration work between cells of innate immunity including dendritic cells (DCs) and natural killer (NK) cells with CD4 + T cells in adoptive immunity. Upon activation, effector CTLs infiltrate to the core or invading site of the tumor (so-called infiltrated–inflamed [I–I] TME) and take essential roles for killing cancer cells. Exogenous reactivation and/or priming of CD8 + T cells can be possible using rational immunotherapy strategies. The increase of the ratio for costimulatory to coinhibitory mediators using immune checkpoint blockade (ICB) approach. Programmed death-1 receptor (PD-1)–ligand (PD-L1) and CTL-associated antigen 4 (CTLA-4) are checkpoint receptors that can be targeted for relieving exhaustion of CD8 + T cells and renewing their priming, respectively, and thereby eliminating antigen-expressing cancer cells. Due to a diverse relation between CTLs with Tregs, the Treg activity could be dampened for increasing the number and rescuing the functional potential of CTLs to induce immunosensitivity of cancer cells.  相似文献   

20.
Since virus-specific cytotoxic T lymphocytes (CTLs) play a critical role in preventing the spread of hepatitis C virus (HCV), vaccine-based HCV-specific CTL induction could be a promising strategy to treat HCV-infected patients. In this study, we tried to identify HCV2a-derived epitopes, which can induce human leukocyte antigen (HLA)-A24-restricted and peptide-specific CTLs. Peripheral blood mononuclear cells of HCV2a-infected patients or healthy donors were stimulated in vitro with HCV2a-derived peptides, which were prepared based on the HLA-A24 binding motif. As a result, three peptides (HCV2a 576-584, HCV2a 627-635, and HCV2a 1085-1094) efficiently induced peptide-specific CTLs from HLA-A24(+) HCV2a-infected patients as well as healthy donors. The cytotoxicity was exhibited by peptide-specific CD8(+) T cells in an HLA-A24-restricted manner. In addition, the HCV2a 627-635 peptide was frequently recognized by immunoglobulin G of HCV2a-infected patients. These results indicate that the identified three HCV2a peptides might be applicable to peptide-based immunotherapy for HLA-A24(+) HCV2a-infected patients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号