首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
运用广义形态学性状对虎尾草亚科(Chloridoideae)进行系统发育分析。内类群包括虎尾草亚科52属的69种植物,代表虎尾草亚科的主要类群;芦竹亚科(Arundinoideae)扁芒草族(Danthonieae)的Centropodia和Danthonia被选作外类群。分支分析表明,虎尾草亚科是一个单系类群。其严格一致树包括A、B、C、D、E5个分支。两个大族画眉草族(Eragrostideae)和虎尾草族(Chlorideae)代表虎尾草亚科内部类群分化的两个方向,分开处理较合理。细穗草族(Leptureae)放到虎尾草族中较合理。冠芒草族(Pappophoreae)是虎尾草亚科的基部类群,与画眉草族近缘。我们的研究支持虎尾草亚科从旧世界向新世界扩散的地理分布假说,并提供了虎尾草亚科属上类群的系统发育关系的框架。  相似文献   

2.
Neotropical primates, traditionally grouped in the infraorder Platyrrhini, comprise 16 extant genera. Cladistic analyses based on morphological characteristics and molecular data resulted in topologic arrangements depicting disparate phylogenetic relationships, indicating that the evolution of gross morphological characteristics and molecular traits is not necessarily congruent. Here we present a phylogenetic arrangement for all neotropical primate genera obtained from DNA sequence analyses of the beta2-microglobulin gene. Parsimony, distance, and maximum likelihood analyses favored two families, Atelidae and Cebidae, each containing 8 genera. Atelids were resolved into atelines and pitheciines. The well-supported ateline clade branched into alouattine (Alouatta) and ateline (Ateles, Lagothrix, Brachyteles) clades. In turn, within the Ateline clade, Lagothrix and Brachyteles were well-supported sister groups. The pitheciines branched into well-supported callicebine (Callicebus) and pitheciine (Pithecia, Cacajao, Chiropotes) clades. In turn, within the pitheciine clade, Cacajao and Chiropotes were well-supported sister groups. The cebids branched into callitrichine (Saguinus, Leontopithecus, Callimico, Callithrix-Cebuella), cebine (Cebus, Saimiri), and aotine (Aotus) clades. While the callitrichine clade and the groupings of species and genera within this clade were all well supported, the cebine clade received only modest support, and the position of Aotus could not be clearly established. Cladistic analyses favored the proposition of 15 rather than 16 extant genera by including Cebuella pygmaea in the genus Callithrix as the sister group of the Callithrix argentata species group. These analyses also favored the sister grouping of Callimico with Callithrix and then of Leontopithecus with the Callithrix-Callimico clade.  相似文献   

3.
Legume subfamily Caesalpinioideae accommodates approximately 2250 species in 171 genera which traditionally are placed in four tribes: Caesalpinieae, Cassieae, Cercideae and Detarieae. The monophyletic tribe Detarieae includes the Amherstieae subclade which contains about 55 genera. Our knowledge of the relationships among those genera is good in some cases but for many other genera phylogenetic relationships have been unclear. The non-monophyletic nature of at least two amherstioid genera, Cynometra and Hymenostegia has also complicated the picture. During the course of a multi-disciplinary study of Hymenostegia sensu lato, which includes phylogenetic analyses based on matK and trnL data, we have recovered the “Scorodophloeus clade”, an exclusively tropical African clade of four genera which includes the eponymous genus Scorodophloeus, two undescribed generic segregates of Hymenostegia sensu lato, and the previously unsampled rare monospecific genus Micklethwaitia from Mozambique. Zenkerella is suggested as a possible sister genus to the Scorodophloeus clade. A distribution map is presented of the seven species that belong to the Scorodophloeus clade.  相似文献   

4.
We have conducted the first comprehensive molecular phylogeny of the tribe Cichlasomatini including all valid genera as well as important species of questionable generic status. To recover the relationships among cichlasomatine genera and to test their monophyly we analyzed sequences from two mitochondrial (16S rRNA, cytochrome b) and one nuclear marker (first intron of S7 ribosomal gene) totalling 2236 bp. Our data suggest that all genera except Aequidens are monophyletic, but we found important disagreements between the traditional morphological relationships and the phylogeny based on our molecular data. Our analyses support the following conclusions: (a) Aequidens sensu stricto is paraphyletic, including also Cichlasoma (CA clade); (b) Krobia is not closely related to Bujurquina and includes also the Guyanan Aequidens species A. potaroensis and probably A. paloemeuensis (KA clade). (c) Bujurquina and Tahuantinsuyoa are sister groups, closely related to an undescribed genus formed by the 'Aequidens'pulcher-'Aequidens'rivulatus groups (BTA clade). (d) Nannacara (plus Ivanacara) and Cleithracara are found as sister groups (NIC clade). Acaronia is most probably the sister group of the BTA clade, and Laetacara may be the sister group of this clade. Estimation of divergence times suggests that the divergence of Cichlasomatini started around 44Mya with the vicariance between coastal rivers of the Guyanas (KA and NIC clades) and remaining cis-andean South America, followed by evolution of the Acaronia-Laetacara-BTA clade in Western Amazon, and the CA clade in the Eastern Amazon. Vicariant divergence has played importantly in evolution of cichlasomatine genera, with dispersal limited to later range extension of species within genera.  相似文献   

5.
基于核基因c-mos的鸫亚科部分鸟类系统发生关系   总被引:1,自引:1,他引:0  
采用分子系统学方法对鸫亚科Turdinae 11属21种鸟类的核基因c-mos进行了系统发生分析.所测序列经对位排列后共572个位点,其中核苷酸变异位点111个,简约信息位点71个.以太平鸟Bombycilla garrulus作外群,采用邻接法、最大简约法和最大似然法分别构建其系统发生树.重建的系统发生树显示:所研究鸫亚科21种鸟类分成2个支系,第1个支系包括鸫属Turdus和地鸫属Zoothera.第2个支系包括红尾鸲属Phoenicurus、矶鸫属Monticola、水鸲属Rhyacornis、鸲属Tarsiger、溪鸲属Chainarrornis、石即鸟属Saxicola、燕尾属Enivurus、歌鸲属Luscinia和鹊鸲属Copsychus.红尾鸲属为并系类群,水鸲属和溪鸲属聚到这一支系;歌鸲属与燕尾属互为姐妹群,再与鸲属聚合构成另一支系;宝兴歌鸫Turdus mupinensis独立于鸫属及地鸫属之外,形成单独一个分支.  相似文献   

6.
Coryloideae consists of four genera: Corylus, Ostryopsis, Carpinus, and Ostrya. While both molecular and non-molecular data support the close relationship of Carpinus and Ostrya, the monophyly of the two genera has remained controversial. In this study, sequences of the nuclear nitrate reductase (Nia) were used to test the naturalness of the two genera. Ostrya species form a robust clade, supporting the monophyly of the genus. The clade, however, is located between Carpinus cordata and the remaining species of Carpinus, indicating that Carpinus is paraphyletic, and Ostrya has evolved from within Carpinus. Within Carpinus, section Distegocarpus is polyphyletic, whereas section Carpinus is a clade where subsections Polyneurae and Carpinus are more closely related to each other than either is to subsection Monbeigianae.  相似文献   

7.
Collections of fleas from terrestrial Sciuridae from New Mexico and Montana yielded 2 species of acarid mites: Acarus monopsyllus from Ceratophyllus ciliatus and Paraceroglyphus cynomydis n. sp. from 4 species of Oropsylla. The genera Acarus, Paraceroglyphus, and Trichopsyllopus form a clade distinct from other genera of flea-associated mites, with Paraceroglyphus the sister group of the other 2 genera. Paraceroglyphus cynomydis is the sister group of a clade comprising P. xenopsylla and possibly P. californicus, with P. meles as the nearest outgroup.  相似文献   

8.
9.
The complex distributions of morphological character states in the Indo-Pacific palm tribe Areceae (Arecaceae; Arecoideae) are potentially challenging for the delimitation of its genera. In the first exhaustive sampling of all 65 genera of the Areceae, we examined relationships of two of the tribe's most problematic genera, Heterospathe and Rhopaloblaste, using portions of the low-copy nuclear genes phosphoribulokinase (PRK) and RNA-polymerase II subunit B (RPB2). Both genera fell within a highly supported clade comprising all Areceae genera, but are clearly unrelated. Rhopaloblaste was strongly supported as monophyletic and is most closely related to Indian Ocean genera. Heterospathe was resolved with strong support within a clade of western Pacific genera, but with the monotypic Alsmithia nested within it. Ptychosperma micranthum, which has previously been included in both Heterospathe and Rhopaloblaste, is excluded from these and from Ptychosperma, supporting its recent placement in a new genus Dransfieldia. Morphological comparisons indicate that the crownshaft is putatively synapomorphic for the Areceae with numerous reversals within the clade and some independent origins elsewhere. The putative diagnostic characters of Heterospathe show high levels of homoplasy, and the genus can only be distinguished by a suite of characters, whereas Rhopaloblaste is more clearly defined. Our results have implications not only for the two genera in focus, but have also been influential for the new classification of the Areceae.  相似文献   

10.
The family Cobitidae represents a characteristic element of the Eurasian ichthyofauna. Despite diverse features of sexual dimorphism, comparably few morphological characters have been utilized for taxonomic studies resulting in many unresolved puzzles. Here we present the phylogenetic relationships of Cobitidae as inferred from the mitochondrial cytochrome b gene and the nuclear gene RAG-1. Analyses of both markers show a group of eight nominal genera, which all occur in Europe and eastern, northern and western Asia, forming a monophyletic lineage (northern clade) while all other clades inhabit South and Southeast Asia (southern lineages). While all eight southern lineages correspond to genera as defined by morphological studies, only four lineages were reliably recovered within the northern clade, and of these only one (Sabanejewia) corresponds to a formerly considered genus. The genera Cobitis, Iksookimia and Niwa?lla were polyphyletic. A comparison of the two markers shows several incongruities within the northern clade and mitochondrial introgression at least in the genus Misgurnus. Mapping the characters of sexual dimorphism on our cladogram, we identified five character states that are diagnostic for certain lineages. Estimations of the divergence times dated the separation of the northern clade from the southern lineages to the middle Eocene (46 MYA) and the origin of "Cobitis"misgurnoides, the basal taxon of the northern clade, during early Oligocene (30-35 MYA). The geographic distribution of the major clades supports recently developed hypotheses about the river history of East Asia and further suggests that a range expansion of the northern clade in late Miocene (15 MYA) led to the colonisation of Europe by three already distinct genera.  相似文献   

11.
Macaranga and Mallotus (Euphorbiaceae s.s.) are two closely related, large paleo(sub)tropical genera. To investigate the phylogenetic relationships between and within them and to determine the position of related genera belonging to the subtribe Rottlerinae, we sequenced one plastid (trnL-F) and three nuclear (ITS, ncpGS, phyC) markers for species representative of these genera. The analyses demonstrated the monophyly of Macaranga and the paraphyly of Mallotus and revealed three highly supported main clades. The genera Cordemoya and Deuteromallotus and the Mallotus sections Hancea and Oliganthae form a basal Cordemoya s.l. clade. The two other clades, the Macaranga clade and the Mallotus s.s. clade (the latter with Coccoceras, Neotrewia, Octospermum, and Trewia), are sister groups. In the Macaranga clade, two basal lineages (comprising mostly sect. Pseudorottlera) and a crown group with three geographically homogenous main clades were identified. The phylogeny of the Mallotus s.s. clade is less clear because of internal conflict in all four data sets. Many of the sections and informal infrageneric groups of Macaranga and Mallotus do not appear to be monophyletic. In both the Macaranga and Mallotus s.s. clades, the African and/or Madagascan taxa are nested in Asian clades, suggesting migrations or dispersals from Asia to Africa and Madagascar.  相似文献   

12.
The congenital fusion of carpels, or syncarpy, is considered a key innovation as it is found in more than 80% of angiosperms. Within the magnoliids however, syncarpy has rarely evolved. Two alternative evolutionary origins of syncarpy were suggested in order to explain the evolution of this feature: multiplication of a single carpel vs. fusion of a moderate number of carpels. The magnoliid family Annonaceae provides an ideal situation to test these hypotheses as two African genera, Isolona and Monodora, are syncarpous in an otherwise apocarpous family with multicarpellate and unicarpellate genera. In addition to syncarpy, the evolution of six other morphological characters was studied. Well-supported phylogenetic relationships of African Annonaceae and in particular those of Isolona and Monodora were reconstructed. Six plastid regions were sequenced and analyzed using maximum parsimony and Bayesian inference methods. The Bayesian posterior mapping approach to study character evolution was used as it accounts for both mapping and phylogenetic uncertainty, and also allows multiple state changes along the branches. Our phylogenetic analyses recovered a fully resolved clade comprising twelve genera endemic to Africa, including Isolona and Monodora, which was nested within the so-called long-branch clade. This is the largest and most species-rich clade of African genera identified to date within Annonaceae. The two syncarpous genera were inferred with maximum support to be sister to a clade characterized by genera with multicarpellate apocarpous gynoecia, supporting the hypothesis that syncarpy arose by fusion of a moderate number of carpels. This hypothesis was also favoured when studying the floral anatomy of both genera. Annonaceae provide the only case of a clear evolution of syncarpy within an otherwise apocarpous magnoliid family. The results presented here offer a better understanding of the evolution of syncarpy in Annonaceae and within angiosperms in general.  相似文献   

13.
Phylogenetic relationships among gekkotan lizards were estimated from five nuclear protein-coding genes in separate and combined analyses using maximum parsimony, maximum likelihood and Bayesian analyses. All analyses recovered a monophyletic trans-Atlantic gecko clade (Phyllodactylidae) consisting of the genera Asaccus, Haemodracon, Homonota, Phyllodactylus, Phyllopezus, Ptyodactylus, Tarentola and Thecadactylus . No other phylogenetic or taxonomic hypotheses have proposed linking these genera, which have been consistently grouped with other taxa outside of the clade. In this paper, we determine the relationships of this new clade to other major gekkotan groups, evaluate previous phylogenetic hypotheses regarding constituent members of this novel clade, and critically examine the use of historically important morphological characters in gekkotan systematics as they relate to this novel clade, specifically — phalangeal formulae, hyoid morphology and external structure of the toe-pads.  相似文献   

14.
Euptychiina is the most species‐rich subtribe of Neotropical Satyrinae, with over 450 known species in 47 genera (14 monotypic). Here, we use morphological characters to examine the phylogenetic relationships within Euptychiina. Taxonomic sampling included 105 species representing the majority of the genera, as well as five outgroups. A total of 103 characters were obtained: 45 from wing pattern, 48 from genitalia and 10 from wing venation. The data matrix was analysed using maximum parsimony under both equal and extended implied weights. Euptychiina was recovered as monophyletic with ten monophyletic genera, contrasting previous DNA sequence‐based phylogenies that did not recover the monophyly of the group. In agreement with sequence‐based hypotheses, however, three main clades were recognized: the ‘Megisto clade’ with six monophyletic and three polyphyletic genera, the ‘Taygetis clade’ with nine genera of which three were monophyletic, and the ‘Pareuptyhia clade’ with four monophyletic and two polyphyletic genera. This is the first morphology‐based phylogenetic hypothesis for Euptychiina and the results will be used to complement molecular data in a combined analysis and to provide critical synapomorphies for clades and genera in this taxonomically confused group.  相似文献   

15.
We report the first records of the White-naped Seedeater Dolospingus fringilloides for Guyana, provide new information on its natural history and plumage sequences, and clarify its systematic relationships based on DNA sequence data. Dolospingus is a rare and patchily distributed endemic of white-sand scrub of the Guianan shield region. Phylogenetic analyses of a broad sampling of emberizine cytochrome b sequences identified a 'seed finch' clade consisting of the genera Sporophila , Oryzoborus and Dolospingus with 100% bootstrap support. More intensive maximum-likelihood (ML) and Bayesian analyses conducted with a reduced data set indicated strong support for the same 'seed finch' clade, but could not distinguish the three genera. In the optimal ML trees, Dolospingus and Oryzoborus were nested within Sporophila , and the two Oryzoborus sequences did not cluster together. However, resolution within the seed-finch clade was weak, so the possibility that all three genera are monophyletic cannot be excluded on the basis of the available molecular data. Thus, whether to group these genera on the basis of genetic similarity or retain them on the basis of diagnostic bill and skull differences will remain a matter of preference until a more fully resolved phylogeny of the seed-finch clade is achieved.  相似文献   

16.
Using characters from mitochondrial DNA to construct maximum parsimony and maximum likelihood trees, we performed a phylogenetic analysis on representative species of 14 genera: 12 that belong to the treefrog family Rhacophoridae and two, Amolops and Rana, that are not rhacophorids. Our results support a phylogenetic hypothesis that depicts a monophyletic family Rhacophoridae. In this family, the Malagasy genera Aglyptodactylus, Boophis, Mantella, and Mantidactylus form a well-supported sister clade to all other rhacophorid genera, and Mantella is the sister taxon to Mantidactylus. Within the Asian/African genera, the genus Buergeria forms a well-supported clade of four species. The genera, except for Chirixalus, are generally monophyletic. An exception to this is that Polypedates dennysii clusters with species of Rhacophorus, suggesting that the taxonomy of the rhacophorids should be revised to reflect this relationship. Chirixalus is not monophyletic. Unexpectedly, there is strong support for Chirixalus doriae from Southeast Asia forming a clade with species of the African genus Chiromantis, suggesting that Chiromantis dispersed to Africa from Asia. Also, there is strong support for the sister taxon relationship of Chirixalus eiffingeri and Chirixalus idiootocus apart from other congeners.  相似文献   

17.
Most of the recognized species of the genus Dionda inhabit drainages of the Gulf of Mexico from central Mexico to central Texas, USA, and have been considered a monophyletic group based on morphological, osteological, and allozyme investigations. Phylogenetic relationships of 15 species of Dionda and 34 species from closely related genera were inferred from one mitochondrial (cytb) and three nuclear gene sequences (S7, Rhodopsin, Rag1) totaling 4487 nucleotides. Separate analyses of all four genes yield congruent phylogenies; however the 15 putative species of Dionda evaluated were never recovered as a monophyletic group when species from nine related genera were included in the analyses. Among the ingroup taxa, one well-supported and highly divergent clade is consistently recognized and consists of six recognized and three undescribed northern species currently recognized in the genus Dionda. These nine species inhabit present or past tributaries of the Rio Grande basin of northern Mexico and southern USA, and were recovered as a basal clade in all analyses. Another large, also strongly supported clade, consisting of seven genera, include five southern recognized species currently in the genus Dionda, forming the sister group to the Codoma clade. These five species comprise the "Southern Dionda clade" and inhabit headwaters of the Pánuco-Tamesí drainage and some adjacent coastal rivers in the Tampico Embayment. The consistent and repeated identification of eight different clades recovered in most of the separate gene analyses strongly supports a division of the non-natural genus Dionda. A new genus, Tampichthys, is proposed for the clade of species endemic to east-central Mexico and formerly in Dionda. Tampichthys and the putative monotypic genus Codoma are more related to Mexican species of the genera Cyprinella and Notropis than to other species referred to Dionda sensu stricto.  相似文献   

18.
Phylogenetic analysis of chloroplast DNA restriction site data for 76 of the 302 genera of Heliantheae sensu lato using 16 restriction endonucleases reveals that subtribe Ecliptinae is polyphyletic and that its genera are distributed in four different lineages. The ecliptinous genera Squamopappus, Podachaenium, Verbesina, and Tetrachyron (of the Neurolaeninae), along with other members of subtribe Neurolaeninae are the basalmost clades of the paleaceous Heliantheae. The mostly temperate species of subtribe Ecliptinae (exemplified by Balsamorhiza, Borrichia, Chrysogonum, Engelmannia, Silphium, Vigethia, and Wyethia) are strongly nested in a clade with the Mesoamerican monotypic genus Rojasianthe as basal. The genera characterized by marcescent ray corollas traditionally classified in subtribe Zinniinae constitute a strongly supported group sister to Acmella, Spilanthes, and Salmea. The largest clade of ecliptinous genera is the most recently derived group within Heliantheae sampled. This large group of mostly Neotropical lowland genera (variously characterized by their winged cypselae, foliaceous phyllaries, and opposite phyllotaxy and exemplified by Perymenium, Wedelia, and Zexmenia) has been and continues to be the most challenging group from a taxonomic standpoint. The study provides new insights as to their relationships that will have a positive impact in future monographic studies of the group. The genera of the Espeletiinae form a monophyletic clade and are sister to members of the Milleriinae and Melampodiinae. This result is consistent with their traditional taxonomic placement with genera such as Smallanthus with which they share a tendency for functionally staminate disc flowers. The phylogenetically enigmatic genus Montanoa is sister to Melampodium. Members of subtribe Galinsoginae are clustered in two main lineages that correspond to the traditional division of the subtribe based on pappus characteristics. There is no support for the monophyly of subtribe Galinsoginae, and the same results indicate some of its genera are paraphyletic.  相似文献   

19.
Chloroplast trnL/F and nuclear ribosomal ITS and ETS sequence data were used to analyze phylogenetic relationships among members of tribe Mimuleae (Scrophulariaceae) and other closely related families in Lamiales. The results of these analyses led to the following conclusions. (1) The Australian genera Glossostigma and Peplidium and the taxonomically isolated Phryma join four genera of tribe Mimuleae to form a well-supported clade that is distinct from other families in the Lamiales. We refer to that clade as the subfamily Phrymoideae. (2) The genera Mazus and Lancea (tribe Mimuleae) together form a well-supported clade that we recognize as the subfamily Mazoideae. Mazoideae is weakly supported as sister to Phrymoideae. We assign Mazoideae and Phrymoideae to a redefined family Phrymaceae. (3) Mimulus is not monophyletic, because members of at least six other genera have been derived from within it. In light of the molecular evidence, it is clear that species of Phrymaceae (about 190 species) have undergone two geographically distinct radiations; one in western North America (about 130 species) and another in Australia (about 30 species). Phylogenetic interpretations of morphological evolution and biogeographical patterns are discussed.  相似文献   

20.
Cladistic analyses of plastid DNA sequences rbcL and trnL-F are presented separately and combined for 48 genera of Amaryllidaceae and 29 genera of related asparagalean families. The combined analysis is the most highly resolved of the three and provides good support for the monophyly of Amaryllidaceae and indicates Agapanthaceae as its sister family. Alliaceae are in turn sister to the Amaryllidaceae/Agapanthaceae clade. The origins of the family appear to be western Gondwanaland (Africa), and infrafamilial relationships are resolved along biogeographic lines. Tribe Amaryllideae, primarily South African, is sister to the rest of Amaryllidaceae; this tribe is supported by numerous morphological synapomorphies as well. The remaining two African tribes of the family, Haemantheae and Cyrtantheae, are well supported, but their position relative to the Australasian Calostemmateae and a large clade comprising the Eurasian and American genera, is not yet clear. The Eurasian and American elements of the family are each monophyletic sister clades. Internal resolution of the Eurasian clade only partially supports currently accepted tribal concepts, and few conclusions can be drawn on the relationships of the genera based on these data. A monophyletic Lycorideae (Central and East Asian) is weakly supported. Galanthus and Leucojum (Galantheae pro parte) are supported as sister genera by the bootstrap. The American clade shows a higher degree of internal resolution. Hippeastreae (minus Griffinia and Worsleya) are well supported, and Zephyranthinae are resolved as a distinct subtribe. An Andean clade marked by a chromosome number of 2n = 46 (and derivatives thereof) is resolved with weak support. The plastid DNA phylogenies are discussed in the context of biogeography and character evolution in the family.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号