首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary Cytochrome oxidase activity was demonstrated in unfixed root segments from Lupinus albus at the ultrastructural level using the osmiophilic reagent 3,3-diaminobenzidine (DAB). Precipitate, the formation of which was completely inhibited by 0.01 M KCN, and observed almost entirely on mitochondrial cristae, is considered to be produced by cytochrome oxidase activity. Heterogeneity of mitochondria as to the intensity of the reaction in the same cell could not be established with certainity. However, mitochondria of the root tip cells and cells belonging to the plerome consistently did not show histochemically demonstrable cytochrome oxidase activity.  相似文献   

2.
Mitochondria complex II (succinate dehydrogenase, SDH) plays a central role in respiratory metabolism as a component of both the electron transport chain and the tricarboxylic acid cycle. We report the identification of an SDH assembly factor by analysis of T‐DNA insertions in At5g51040, a protein with unknown function that was identified by mass spectrometry analysis as a low abundance mitochondrial protein. This gene is co‐expressed with a number of genes encoding mitochondrial proteins, including SDH1‐1, and has low partial sequence similarity to human SDHAF2, a protein required for flavin‐adenine dinucleotide (FAD) insertion into SDH. In contrast to observations of other SDH deficient lines in Arabidopsis, the sdhaf2 line did not affect photosynthetic rate or stomatal conductance, but instead showed inhibition of primary root elongation with early lateral root emergence, presumably due to the low SDH activity caused by the reduced abundance of SDHAF2. Both roots and leaves showed succinate accumulation but different responses in the abundance of other organic acids and amino acids assayed. Isolated mitochondria showed lowered SDH1 protein abundance, lowered maximal SDH activity and less protein‐bound flavin‐adenine dinucleotide (FAD) at the molecular mass of SDH1 in the gel separation. The short root phenotype and SDH function of sdhaf2 was fully complemented by transformation with SDHAF2. Application of the SDH inhibitor, malonate, phenocopied the sdhaf2 root architecture in WT. Whole root respiratory assays showed no difference between WT and sdhaf2, but micro‐respirometry of the tips of roots clearly showed low oxygen consumption in sdhaf2 which could explain a metabolic deficit responsible for root tip growth.  相似文献   

3.
为了探讨羟基磷灰石纳米粒子(nHAP)对大鼠肝线粒体生物活性的影响,将nHAP直接作用于线粒体,在不同浓度和时间下测定线粒体标志酶琥珀酸脱氢酶(SDH)比活性,并与对照组进行比较。结果显示,当nHAP中水含量在10%以下时,线粒体生物活性未发现改变;当nHAP浓度递增时,在等时间段内,对线粒体SDH比活性呈逐步抑制作用;在不等时间段内,nHAP对线粒体SDH比活性的抑制作用与对照组相比较差异有显著性(p<0.05)。因此,nHAP对线粒体SDH比活性的抑制有浓度和时间的依赖性。  相似文献   

4.
The ultrastructural localization of succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activity in "dark" and "light" neurons of the intact rat's frontal brain cortex has been studied. The enzymes' activity was detected with using potassium ferricyanide as artificial acceptor of electrons. In the "light" cells SDH activity is localized in the mitochondria and plasma membranes. LDH activity is localized in the mitochondria, plasma membranes and hyaloplasm. SDH and LDH activity was not found in the "dark" cells.  相似文献   

5.
Succinic dehydrogenase (SDH) activity of the isolated mitochondria myocardial cells in chronic cardiac insufficiency was studied experimentally. The highest SDH values were found in the mitochondria of condensed type. The activity of the enzyme was low in the ordinary (orthodox) mitochondria. The medium SDH activity was registered in the intermediary type of mitochondria. The ordinary and the intermediary types of mitochondria prevailed in the fraction under study reflecting a fall of the SDH activity in the myocardial tissue. Biochemical study of the mitochondrial fraction revealed a slight dissociation between the tissue respiration and the oxidative phosphorilation. The low SDH activity values seen to indicatate the state of overstrain of the energy-producing structures.  相似文献   

6.
7.
In this study we report the first comparison of the mitochondrial protein import and processing events in two different tissues from the same organism. Both spinach leaf and root mitochondria were able to import and process the in vitro transcribed and translated Neurospora crassa F1 subunit of ATP synthase to the mature size product. Temperature optimum for protein import, 20 °C, was considerably lower than that found in other systems. In spinach leaf mitochondria, the processing peptidase has been shown to constitute an integral part of the bc1 complex of the respiratory chain. In accordance with these results, the majority of the processing activity in root mitochondria was also localized in the membrane. However, although the same amount of the processing peptidase was present per mg of membrane protein in both leaf and root mitochondria, as determined immunologically, the specific processing activity was several-fold higher in roots. Furthermore, in contrast to the processing enzyme in leaf, a portion of the processing activity could be disassociated from the root membrane with relatively weak salt treatment. The processing event in both the leaf and root membranes was always accompanied by a degradation of the F1 precursor. The degradation activity was found to be several-fold higher in roots than in leaves and was also partially dissociated from the membrane after salt treatment. Both the processing and degradation activities were inhibited by orthophenanthroline, a known metalloprotease inhibitor. These results show tissue-specific differencies of the processing event catalyzed by the bc1 complex and indicate the presence of two populations of the processing peptidase in root mitochondria.  相似文献   

8.
Summary In order to elucidate the problem of which cells are involved in calcium transport and to estimate the role of mitochondria in calcium transport in the avian shell gland, the fine structure and the Ca-ATPase, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide (NAD+)-dependent isocitrate dehydrogenase (NAD+-ICDH) activity of the shell gland of egg-laying Japanese quails were examined. The surface epithelial cells, consisting of ciliated cells with cilia and microvilli and non-ciliated cells with microvilli, had many large and electron-dense granules. The tubular-gland cells occupied the proprial layer and lacked secretory granules. When an egg was in the shell gland, the well-developed mitochondria of tubular-gland cells characteristically tended to accumulate in the apical cytoplasm, while they were scattered throughout the cytoplasm when an egg was not in the shell gland. Intense Ca-ATPase activity was found on the microvilli of tubular-gland cells, and moderate activity was found on the lateral-cell surface. In the surface epithelial cells, the basolateral cell surface showed moderate enzymatic activity. Both SDH and NAD+-ICDH activity were found in tubular-gland cells when an egg was in the shell gland. These results strongly suggest that calcium for eggshell calcification is actively transported by the tubular-gland (depending on Ca-ATPase activity) and that the mitochondria of gland cells may play an important role in this process as an energy source.  相似文献   

9.
The effect of substitution of KCl for sucrose in the reaction medium on succinate oxidation and hydrogen peroxide generation was investigated in the mitochondria isolated from stored taproots of sugar beet (Beta vulgaris L.). In a sucrose-containing medium, oxidation of succinate was inhibited by oxaloacetate; this inhibition was especially pronounced upon a decrease in substrate concentration and eliminated in the presence of glutamate, which removed oxaloacetate in the course of transamination. Irrespective of succinate concentration, substitution of KCl for sucrose in the medium considerably enhanced suppression of succinate oxidation apparently as a result of slow activation of succinate dehydrogenase (SDH) by its substrate. In this case, mitochondria showed the symptoms of uncoupling, lower values of membrane potential (ΔΨ), respiratory control (RC), and ADP/O induced by electrophoretic transport of potassium via K+ channel of mitochondria. KCl-dependent suppression of succinate oxidation by taproot mitochondria was accompanied by a considerable inhibition of H2O2 production as compared with the sucrose-containing medium. These results indicate that in the presence of potassium ions, ΔΨ dissipates, suppression of succinate oxidation by oxaloacetate increases, and succinate-dependent generation of ROS in sugar beet mitochondria is inhibited. A possible physiological role of oxaloacetate-restricted SDH activity in the suppression of respiration of storage organs protecting mitochondria from oxidative stress is discussed.  相似文献   

10.
In order to elucidate the problem of which cells are involved in calcium transport and to estimate the role of mitochondria in calcium transport in the avian shell gland, the fine structure and the Ca-ATPase, succinate dehydrogenase (SDH) and nicotinamide adenine dinucleotide (NAD+)-dependent isocitrate dehydrogenase (NAD+-ICDH) activity of the shell gland of egg-laying Japanese quails were examined. The surface epithelial cells, consisting of ciliated cells with cilia and microvilli and non-ciliated cells with microvilli, had many large and electron-dense granules. The tubular-gland cells occupied the proprial layer and lacked secretory granules. When an egg was in the shell gland, the well-developed mitochondria of tubular-gland cells characteristically tended to accumulate in the apical cytoplasm, while they were scattered throughout the cytoplasm when an egg was not in the shell gland. Intense Ca-ATPase activity was found on the microvilli of tubular-gland cells, and moderate activity was found on the lateral-cell surface. In the surface epithelial cells, the basolateral cell surface showed moderate enzymatic activity. Both SDH and NAD+-ICDH activity were found in tubular-gland cells when an egg was in the shell gland. These results strongly suggest that calcium for eggshell calcification is actively transported by the tubular-gland (depending on Ca-ATPase activity) and that the mitochondria of gland cells may play an important role in this process as an energy source.  相似文献   

11.
Mitochondrial respiratory complex II contains four subunits: a flavoprotein (SDH1), an iron-sulphur subunit (SDH2) and two membrane anchor subunits (SDH3 and SDH4). We have found that in Arabidopsis thaliana SDH1 and SDH3 are encoded by two, and SDH4 by one nuclear genes, respectively. All these encoded polypeptides are found to be imported into isolated plant mitochondria. While both SDH1 proteins are highly conserved when compared to their counterparts in other organisms, SDH3 and SDH4 share little similarity with non-plant homologues. Expression of SDH1-1, SDH3 and SDH4 genes was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the second SDH1 gene (SDH1-2) is expressed at a low level.  相似文献   

12.
The succinate dehydrogenase (SDH) activity of hyphae of the vesicular-arbuscular (VA) mycorrhizal fungus Glomus mosseae (Nicol. & Gerd.) Gerdmann and Trappe, in symbiotic association with leek (Allium porrum L.) roots, was investigated by histochemical staining in situ. Leek seedlings were transplanted to sand culture and inoculated with spores of G. mosseae placed just below the base of the stem. At intervals (14, 25, 35 and 60 days) after transplanting, the growth medium of seedlings was flooded with nitro blue tetrazolium chloride solution, thereby displacing the nutrient solution. This allowed sites of SDH activity of external and internal fungal structures of the mycorrhizas to be stained without physically disturbing the symbiotic system. After counterstaining harvested roots and mycelium with acid fuchsin, it was possible to differentiate clearly metabolically active and inactive regions of the fungus. The lengths of external hyphae and infected root both increased nearly exponentially, and were in constant proportion (1.4 m hyphae per cm of infected root) for up to 60 days. The percentage length of external hyphae with SDH activity remained almost constant (80%). In each infected length of root there was a gradation of SDH activity from inactive distal (older) hyphae to uniformly active proximal (younger) hyphae. These findings are discussed in relation to the symbiotic activity of the mycobiont.Deceased  相似文献   

13.
目的探讨α-生育酚对神经元线粒体的保护作用。方法将神经元细胞进行分组,分为:(1)正常对照组,(2)单纯氧自由基损伤组,(3)α-生育酚保护组。利用Fenton反应造成神经元细胞氧自由基损伤,用激光共聚焦显微镜观察各组神经元JC-1染色结果,并检测各组神经元琥珀酸脱氢酶(SDH)和细胞色素氧化酶(CCO)活性。结果(1)JC-1染色结果分析:α-生育酚保护组神经元线粒体功能强于单纯氧自由基损伤组。(2)SDH和CCO酶活性分析:α-生育酚保护组神经元SDH和CCO酶活性高于单纯氧自由基损伤组。结论α-生育酚可以有效对抗氧自由基对神经元线粒体的损伤。  相似文献   

14.
We describe a cytochemical staining procedure for succinate dehydrogenase (SDH) activity in pre-ovulatory mouse oocytes. The oocytes were embedded in low gelling temperature agarose and treated with caffeine before cytochemical staining in the presence of nitro blue tetrazolium (NBT), phenazinemethosulfate (PMS), and succinate. This resulted in intense staining of the oocytes by formazan precipitate. The level of aspecific formazan production in the absence of succinate was very low. We applied the procedure to oocytes matured in vitro and found that the location of the formazan precipitate as a result of SDH activity correlated well with the location of mitochondria. The chromatin of the cytochemically stained oocytes could subsequently be analyzed by means of the DNA-specific fluorochrome DAPI. In pre-ovulatory oocytes, we found a correlation between chromatin organization and the location of mitochondria: in oocytes with an intact germinal vesicle the mitochondria were uniformly distributed in the cytoplasm, as shown by fine grains of formazan precipitate. In oocytes with condensed chromatin the mitochondria apparently had clustered, because the formazan precipitate was more coarse in these cells.  相似文献   

15.
A probable mechanism of alteration of the isoenzyme composition of succinate dehydrogenase (SDH) due to differential expression of genes encoding subunit A was considered. The alteration of SDH activity during maize seed germination was investigated, and its maximal activity on day 4-5 of germination was found. The alteration of the sdh1-1 and sdh1-2 gene expression level during maize seed germination was evaluated using the quantitative polymerase chain reaction method. The presence of four forms of the studied enzymes, providing multiple SDH functions was found in maize inflorescence using electrophoresis in polyacrylamide gel.  相似文献   

16.
Salivary gland stages ("sporozoites") of Babesia ovis and Theileria annulata (Apicomplexa: Piroplasmea) in female ixodid ticks were studied for ultracytochemical activity of the respiratory enzymes, succinic dehydrogenase (SDH), and cytochrome oxidase. Both SDH and cytochrome oxidase were demonstrated in the sporozoites and the mitochondria in these stages. Identified in this way the final reaction product of SDH was located mainly at the inner side of the mitochondrial boundary, though it was also visible in the internal space of the organelle. Cytochrome oxidase activity always was confined to the wall of mitochondria. This enzyme was demonstrated also in the erythrocyte stage of B. ovis. The cytochemical results indicate respiratory potential of the piroplasmean stages studied. Cristate or typical protozoan mitochondria have not been observed in sporozoites of Babesia or Theileria. This report is the first demonstration of mitochondria, or mitochondrialike activity in Babesia.  相似文献   

17.
The alkylating agent 3-Bromopyruvate (3-BrPA) has been used as an anti-tumoral drug due to its anti-proliferative property in hepatomas cells. This propriety is believed to disturb glycolysis and respiration, which leads to a decreased rate of ATP synthesis. In this study, we evaluated the effects of the alkylating agent 3-BrPA on the respiratory states and the metabolic steps of the mitochondria of mice liver, brain and in human hepatocarcinoma cell line HepG2. The mitochondrial membrane potential (ΔΨm), O2 consumption and dehydrogenase activities were rapidly dissipated/or inhibited by 3-BrPA in respiration medium containing ADP and succinate as respiratory substrate. 3-BrPA inhibition was reverted by reduced glutathione (GSH). Respiration induced by yeast soluble hexokinase (HK) was rapidly inhibited by 3-BrPA. Similar results were observed using mice brain mitochondria that present HK naturally bound to the outer mitochondrial membrane. When the adenine nucleotide transporter (ANT) was blocked by the carboxyatractiloside, the 3-BrPA effect was significantly delayed. In permeabilized human hepatoma HepG2 cells that present HK type II bound to mitochondria (mt-HK II), the inhibiting effect occurred faster when the endogenous HK activity was activated by 2-deoxyglucose (2-DOG). Inhibition of mt-HK II by glucose-6-phosphate retards the mitochondria to react with 3-BrPA. The HK activities recovered in HepG2 cells treated or not with 3-BrPA were practically the same. These results suggest that mitochondrially bound HK supporting the ADP/ATP exchange activity levels facilitates the 3-BrPA inhibition reaction in tumors mitochondria by a proton motive force-dependent dynamic equilibrium between sensitive and less sensitive SDH in the electron transport system.  相似文献   

18.
The kinetics of succinate (SDH) and lactate (LDH) dehydrogenases were determined in single muscle fibres in unfixed sections of the gastrocnemius of dystrophic mdx mice (with an X-linked genetic disorder lacking a cytoskeletal protein, dystrophin) and age-matched C57BL/10 control mice. Quantitative gel substrate-film techniques and a real-time image analysis system were used. Three main fibre types were observed in regenerated mdx gastrocnemius and in corresponding controls: small fibres (S) with high SDH and LDH initial reaction velocities and activities, large fibres (L) with low activities of these dehydrogenases and intermediate-sized fibres (I) with intermediate enzyme activities. The small and intermediate fibres in both mdx and control muscles exhibited respectively high and moderate subsarcolemmal SDH and LDH activities attributable to accumulated mitochondria. The ratios of the initial velocities of the intrinsic enzyme reactions in the sarcoplasm, excluding the subsarcolemmal regions, of mdx muscle fibres compared to those in control fibres were 0.958 (S), 1.09 (I) and 0.959 (L) for SDH, and 1.03 (S), 1.06 (I) and 1.07 (L) for LDH. A parameter a, a measure of the diffusion of LDH out of muscle sections during incubation on gel substrate films, was found to be 0.981 and 1.00 in mdx and control muscles, respectively. Thus there are no significant differences in the activities and microenvironments of the enzymes between regenerated mdx muscle fibres and normal control muscle fibres. These data suggest that dystrophin deficiency in mdx muscles has no effects on the interactions of LDH with cytoskeletal proteins or on SDH activities in mitochondria whose number and morphology differ in mdx muscle fibres compared to those in normal controls. SDH and LDH activities were also found in the mitochondria clustered on two longitudinally directed poles of each central nucleus in regenerated mdx muscle fibres. They were proportional to the activities in the sarcoplasm excluding the subsarcolemmal regions. Accepted: 12 October 1999  相似文献   

19.
Z Ia Rubleva 《Tsitologiia》1985,27(6):652-655
The ultrastructural localization of succinate dehydrogenase (SDH) activity was revealed in astrocyte-like cells of 26 days old nervous tissue organotypic cultures. The Kerpel-Fronius and Hajos (1968) technique was employed using potassium ferricyanide as an artificial acceptor of electrons. The localization of the reaction product was seen more often in cells with long, thread-like mitochondria. The appearance of such organelles with a large membrane length and high enzymatic activity is suggested to reflect one of the mechanisms of adaptation of nervous tissue cells providing the adequate level of the energy supply under in vitro conditions.  相似文献   

20.
In mitochondria isolated from growing (70–85 days) and dormant (stored for 8–12 weeks) sugar beet (Beta vulgaris L.) roots, activities of superoxide dismutase (SOD) and enzymes of the ascorbate-glutathione cycle were determined. The activity of SOD, the enzyme involved in superoxide detoxification, was much higher in mitochondria of the growing root, whereas activities of ascorbate peroxidase (APO) and glutathione reductase (GR), key enzymes of the ascorbate-glutathione cycle involved in the hydrogen peroxide degradation, increased substantially in mitochondria of dormant storage roots. Catalase (CAT) activity was detected in the fraction of root mitochondria purified in the sucrose density gradient, which activity was inhibited by cyanide by 85–90% and much weaker, by aminotriazol (by 30–35%). Submitochondrial localization of APO and CAT was analyzed using proteinase K. It was established that a substrate-binding APO center is localized on the external side of the inner membrane, whereas CAT is localized in the mitochondrial matrix. A possible role of mitochondria as ROS (hydrogen peroxide) acceptors in the cells of storage parenchyma of the stored root is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号