首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 517 毫秒
1.
The methylotrophic yeasts Pichia pastoris and Pichia angusta (Hansenula polymorpha) were used for the comparative heterologous production of two model mammalian proteins of pharmaceutical interest, the NK1-fragment (22 kDa) of human hepatocyte growth factor and the extracellular domain (28 kDa) of mouse tissue factor (MTF). Both recombinant proteins were engineered to contain an N-terminal Strep- (WSHPQFEK) and a C-terminal His6-tag. In addition, both proteins contained the pre-pro-sequence of Saccharomyces cerevisiae mating factor alpha to allow secretion. Following vector construction, transformation and zeocin amplification, the best Pichia producers were identified in a screening procedure using Western blot and a Luminex xMAP™ based high-throughput method. Recombinant NK1-fragment and MTF were purified from culture supernatants of the best producers by affinity chromatography (Ni–nitrilotriacetic acid columns). Using P. pastoris as a host for the synthesis of NK1-fragment a protein yield of 5.7 mg/l was achieved. In comparable expression experiments P. angusta yielded 1.6 mg/l of NK1-fragment. NK1-fragment apparently was not glycosylated in either system. For the production of MTF, P. pastoris was also the superior host yielding 1.2 mg/l glycosylated recombinant protein whereas P. angusta was clearly less efficient (<0.2 mg/l MTF). For both expression systems no correlation between the amount of recombinant protein and the copy number of the chromosomally integrated heterologous genes was found. In P. pastoris strains less degradation of the two model recombinant proteins was observed. Altogether, this paper provides a structured protocol for rapidly identifying productive Pichia strains for the synthesis of full-length recombinant proteins.  相似文献   

2.
To improve the expression level of recombinant Drosophila melanogaster AChE (R-DmAChE) in Pichia pastoris, the cDNA of DmAChE was first optimized and synthesized based on the preferred codon usage of P. pastoris. The synthesized AChE cDNA without glycosylphosphatidylinositol (GPI) signal peptide sequence was then ligated to the P. pastoris expression vector, generating the plasmid pPIC9K/DmAChE. The linearized plasmid was homologously integrated into the genome of P. pastoris GS115 via electrotransformation. Finally seven transformants with high expression level of R-DmAChE activity were obtained. The highest production of R-DmAChE in shake-flask culture after 5-day induction by methanol was 718.50 units/mL, which was about three times higher than our previous expression level of native DmAChE gene in P. pastoris. Thus, these new strains with the ability to secret R-DmAChE in the medium could be used for production of R-DmAChE to decrease the cost of the enzyme expense for rapid detection of organophosphate and carbamate insecticide residues.  相似文献   

3.
Exendin-4 is a naturally occurring 39 amino acid peptide that is useful for the control of Type 2 diabetes. Recombinant Exendin-4, with an extra glycine at the carboxy-terminus (Exdgly), was expressed in the methylotropic yeast Pichia pastoris. A high proportion of the Exdgly molecules secreted into medium were found to be clipped, lacking the first two amino acids (His–Gly) from the N-terminus. Disruption of the P. pastoris homolog of the Saccharomyces cerevisiae dipeptidyl aminopeptidase (STE13) gene in Pichia genome resulted in a clone that expressed N-terminally intact Exdgly. Elimination of N-terminal clipping enhanced the yield and simplified the purification of Exdgly from P. pastoris culture supernatant.  相似文献   

4.
The phospholipase c (plc) gene from Bacillus cereus was cloned into the pPICZC vector and integrated into the genome of Pichia pastoris. The phospholipase C (PLC) when expressed in P. pastoris was fused to the -factor secretion signal peptide of Saccharomyces cerevisiae and secreted into a culture medium. Recombinant P. pastoris X-33 had a clear PLC band at 28.5 kDa and produced an extracellular PLC with an activity of 678 U mg–1 protein which was more than a recombinant P. pastoris GS115 (552 U mg–1 protein) or KM71H (539 U mg–1 protein). The PLCs were purified using a HiTrap affinity column with a specific activity of 1335 U mg–1 protein by P. pastoris GS115, 1176 U mg–1 protein by P. pastoris KM71H and 1522 U mg–1 protein by P. pastoris X-33. The three recombinant PLCs had high PLC activity in the low pH range of 4-5 and higher thermal stability (e.g. stable at 75 °C) than the wild-type PLC from B. cereus. Some organic solvents, surfactants and metal ions, e.g. methanol, acetone, Co2+ and Mn2+ etc., also influenced the activity of the recombinant PLCs.  相似文献   

5.
An expression vector constructed from genes of Pichia pastoris was applied for heterologous gene expression in Saccharomyces cerevisiae. Recombinant hepatitis B surface antigen was synthesized by cloning hepatitis B virus ‘S’ gene under the control of glyceraldehyde-3-phosphate dehydrogenase (GAP) promoter of Pichia pastoris in Saccharomyces cerevisiae. Hepatitis B surface antigen was constitutively expressed, was stable and exhibited ∼20–22 nm particle formation. Stability and absence of toxicity to the host with the expression vector indicates the expression system can be applied for large-scale production.  相似文献   

6.
The cDNA encoding sucrose-fructan 6-fructosyltransferase (6-SFT) from barley (Hordeum vulgare) has been expressed in the methylotrophic yeast Pichia pastoris, using a translational fusion into vector pPICZαC, containing the N-terminal signal sequence of Saccharomyces cerevisiae α-factor to allow entry into the secretory pathway. Transformed Pichia produced and secreted a functional 6-SFT which had characteristics similar to the barley enzyme, but had a pronounced additional 1-SST activity when incubated with sucrose.  相似文献   

7.
To explore a new approach of high expression of -amino acid oxidase (DAAO) in Pichia pastoris, a gene encoding DAAO from Trigonopsis variabilis (TvDAAO gene) deleted intron was prepared by PCR amplification and cloned into the intracellular expression vector pPIC3.5K. The expression plasmid pPIC3.5K-DAAO linearized by SalI was transformed into Pichia pastoris strain GS115 (hismut+). By means of MM and MD plates and PCR, the recombinant P. pastoris strains (his+mut+) were obtained. Activity assay and SDS-PAGE demonstrated that DAAO was intracellularly expressed in P. pastoris with the induction of methanol. The recombinant strain PD27 with the highest expression of DAAO was screened through activity assay and its high-density fermentation was carried out in a 1-l fermentor. Activity assay and SDS-PAGE demonstrated that DAAO was intracellularly expressed in P. pastoris with the induction of methanol. The recombinant cells with high expression of DAAO were screened and the high-density fermentation was carried out in a 1-l fermentor. Interestingly, the DAAO expression level reached up to 473 U/g dry cell weight in fermentation yield. Finally, 1-hexanol was used to break recombinant cells and the specific activity of DAAO was 1.46 U/mg protein in crude extraction.  相似文献   

8.
Bovine follicle-stimulating hormone (bFSH), a pituitary gonadotropin, is a heterodimer hormone that consists of a common α-subunit non-covalently associated with the hormone-specific β-subunit. Unfortunately, expression levels of recombinant bFSH or its subunits are invariably low. We report here the secretory expression of biologically active bFSHα and bFSHβ subunit in the methylotrophic yeast Hansenula polymorpha. A slightly higher level of expression of recombinant bFSH subunits was achieved by using the Saccharomyces cerevisiae-derived calnexin (ScCne1) as a chaperone in engineered H. polymorpha strains. The preliminary data also suggested that bFSH subunits expressed in H. polymorpha appeared to be less-glycosylated. This isoform had been shown to be 80% increase in in vivo bioactivity compared with the hyperglycosylated Pichia pastoris-derived recombinant bFSHα/β. More sophisticated applications of bFSH would profit from the assembled less-glycosylated heterodimer.  相似文献   

9.
Thermostable lipases are important biocatalysts, showing many interesting properties with industrial applications. Previously, a thermophilic Bacillus sp. strain L2 that produces a thermostable lipase was isolated. In this study, the gene encoding for mature thermostable L2 lipase was cloned into a Pichia pastoris expression vector. Under the control of the methanol-inducible alcohol oxidase (AOX) promoter, the recombinant L2 lipase was secreted into the culture medium driven by the Saccharomyces cerevisiae α-factor signal sequence. After optimization the maximum recombinant lipase activity achieved in shake flasks was 125 U/ml. The recombinant 44.5 kDa L2 lipase was purified 1.8-fold using affinity chromatography with 63.2% yield and a specific activity of 458.1 U/mg. Its activity was maximal at 70 °C and pH 8.0. Lipase activity increased 5-fold in the presence of Ca2+. L2 lipase showed a preference for medium to long chain triacylglycerols (C10–C16), corn oil, olive oil, soybean oil, and palm oil. Stabilization at high temperature and alkaline pH as well as its broad substrate specificity offer great potential for application in various industries that require high temperature operations.  相似文献   

10.
An efficient yeast gene expression system with GAL10 promoter that does not require galactose as an inducer was developed using Δgal80 mutant strain of Saccharomyces cerevisiae. We constructed several combinations of gal mutations (Δgal1, Δgal80, Δmig1, Δmig2, and Δgal6) of S. cerevisiae and tested for their effect on efficiency of recombinant protein production by GAL10 promoter using a lipase, Candida antarctica lipase B (CalB), as a reporter. While the use of Δgal1 mutant strain required the addition of a certain amount of galactose to the medium, Δgal80 mutant strain did not require galactose. Furthermore, it was found that the recombinant CalB could be produced more efficiently (1.6-fold at 5 L-scale fermentation) in Δgal80 mutant strain than in the Δgal1 mutant. The Δgal80 mutant strain showed glucose repressible mode of expression of GAL10 promoter. Using Δgal80 mutant strain of S. cerevisiae, CalB was efficiently produced in a glucose-only fermentation at volumes up to 500 L.  相似文献   

11.
Cytochrome b5 (b5) has been shown to modulate many cytochrome P450 (CYP)-dependent reactions. In order to elucidate the mechanism of such modulations, it is necessary to evaluate not only the effect of native b5 on CYP-catalyzed reactions, but also that of the apo-cytochrome b5 (apo-b5). Therefore, the apo-b5 protein was prepared using a heterologous expression in Escherichia coli. The gene for rabbit b5 was constructed from synthetic oligonucleotides using polymerase chain reaction (PCR), cloned into pUC19 plasmid and amplified in DH5α cells. The gene sequence was verified by DNA sequencing. The sequence coding b5 was cleaved from pUC19 by NdeI and XhoI restriction endonucleases and subcloned to the expression vector pET22b. This vector was used to transform E. coli BL-21 (DE3) Gold cells by heat shock. Expression of b5 was induced with isopropyl β-d-1-thiogalactopyranoside (IPTG). The b5 protein, produced predominantly in its apo-form, was purified from isolated membranes of E. coli cells by chromatography on a column of DEAE–Sepharose. Using such procedures, the homogenous preparation of apo-b5 protein was obtained. Oxidized and reduced forms of the apo-b5 reconstituted with heme exhibit the same absorbance spectra as native b5. The prepared recombinant apo-b5 reconstituted with heme can be reduced by NADPH:CYP reductase. The reconstituted apo-b5 is also fully biologically active, exhibiting the comparable stimulation effect on the CYP3A4 enzymatic activity towards oxidation of 1-phenylazo-2-hydroxynaphthalene (Sudan I) as native rabbit and human b5.  相似文献   

12.
For several years, interferon α-1, also known as interferon α-D, has been studied for treatment of various viral diseases, such as hepatic fibrosis caused by hepatitis B, herpes simplex virus keratitis, and bovine respiratory diseases in calves. Currently, recombinant human interferon α-D (rHuIFNαD) is expressed intracellularly in Escherichia coli or secreted by Bacillus subtilis and Saccharomyces cerevisiae. In this report, we describe the process of obtaining a relatively high-yield secretion of biologically active recombinant rHuIFNαD using the Pichia pastoris system. The process produced as high as 0.7 mg of purified protein per 20 ml of shake culture of rHuIFNαD with better bioactivity than the commercially available rHuIFNαD molecule produced in E. coli.  相似文献   

13.
Apolipoprotein E3 (ApoE3) is an important apolipoprotein in plasma and plays a critical role in lipid transport and cholesterol homeostasis. As the only natural source of this protein, human blood cannot provide large-scale ApoE3 for research and applications. Therefore, in our study, a Pichia pastoris expression system was first used to obtain a high-level expression of secreted, recombinant human ApoE3 (rhApoE3).The full-length sequence encoding ApoE3, gained by RT-PCR, was inserted into the pPICZαC vector and transformed into P. pastoris strain X33, and then the high expression transformants with zeocin resistance were obtained. The growth conditions of the transformant strains were optimized in 50 ml conical tubes including pH and inducing time. After induction with methanol, the expression level of rhApoE3 was 120 mg/L in 80 L fermentor. RhApoE3 was purified more than 94% purity using SP Sepharose ion exchange chromatography and source™ 30RPC. A preliminary biochemical characterization of purified rhApoE3 was performed by analyzing the ability of inhibiting PDGF-induced proliferation of rat coronary artery smooth muscle cells (SMCs), and the results demonstrated that the function of purified rhApoE3 was similar to natural human ApoE3.  相似文献   

14.
Summary A synthetic gene encoding aprotinin (bovine pancreatic trypsin, inhibitor) was fused to theSaccharomyces cerevisiae prepro alpha mating factor leader sequence at the dibasic amino acid processing site.Pichia pastoris strains were developed to'express one or multiple copies of a methanol-inducible expression cassette containing the gene fusion.P. pastoris containing a single copy of the vector secreed approximately 150 mg/l of immunoreactive protein. A construct bearing five copies of the expression cassette secreted 930 mg/l of aprotinin. The purified aprotinin molecule was equipoten with the native molecule in a trypsin inhibition assay. Protein sequence analysis showed that the alpha factor-aprotinin fusion was not processed at the basic amino acid residues Lys-Arg. Instead, recombinant aprotinin had additional N-terminal amino acids derived from prepro alpha factor. The N-terminal extension was variably 11 or 4 amino acids. Inclusion of the spacer DNA sequence encoding Glu and Ala between aprotinin and the Lys-Arg processing site led to the secretion of a biologically active aprotinin containing only a Glu-Ala N-terminal extension.  相似文献   

15.
The expression of the mouse α-amylase gene in the methylotrophic yeast,P. pastoris was investigated. The mouse α-amylase gene was inserted into the multi-cloning site of a Pichia expression vector, pPIC9, yielding a new expression vector pME624. The plasmid pME624 was digested withSalI orBglII, and was introduced intoP. pastoris strain GS115 by the PEG1000 method. Fifty-three transformants were obtained by the transplacement of pME624 digested withSalI orBglII into theHIS 4 locus (38 of Mut+ clone) or into theAOX1 locus (45 of Muts clone). Southern blot was carried out in 11 transformants, which showed that the mouse α-amylase gene was integrated into thePichia chromosome. When the second screening was performed in shaker culture, transformant G2 showed the highest α-amylase activity, 290 units/ml after 3-day culture, among 53 transformants. When this expression level of the mouse α-amylase gene is compared with that in recombinantSaccharomyces cerevisiae harboring a plasmid encoding the same mouse α-amylase gene, the specific enzyme activity is eight fold higher than that of the recombinantS. cerevisiae.  相似文献   

16.
17.
β-Mannanase catalyzes endo-wise hydrolysis of the backbone of mannan and heteromannan, which are abundant in the cell wall structure of ungerminated leguminous seeds. The mature β-mannanase originated from Bacillus subtilis was expressed in Pichia pastoris, a methylotrophic yeast, using the leader peptide sequence of Saccharomyces cerevisiae α-factor. The cultivation of β-mannanase expressing Pichia pastoris yields up to 1.8 g/L protein. In the supernatant the activity of the 40 kDa—total mannanase attained a level of 1102.0 IU/mL. The properties of the β-mannanase were characterized. Optimum pH and temperature for the recombinant enzyme were 5.5 and 50°C respectively. The enzyme was stable at pH 5.0–10.0 and maintained over 30% original activity after incubating at 70°C for 30 min. __________ Translated from China Biotechnology, 2005, 26(7): 52–56 [译自: 中国生物工程杂志]  相似文献   

18.
Various yeast strains were examined for the microbial reduction of ethyl-3-oxo-3-phenylpropanoate (OPPE) to ethyl-(S)-3-hydroxy-3-phenylpropanoate (S-HPPE), which is the chiral intermediate for the synthesis of a serotonin uptake inhibitor, Fluoxetine. Kluyveromyces lactis KCTC 7133 was found as the most efficient strain in terms of high yield (83% at 50 mM) and high optical purity ee > 99% of S-HPPE. Based on the protein purification, activity analysis and the genomic analysis, a fatty acid synthase (FAS) was identified as the responsible β-ketoreductase. To increase the productivity, a recombinant Pichia pastoris GS115 over-expressing FAS2 (α-subunit of FAS) of K. lactis KCTC7133 was constructed. In the optimized media condition, the recombinant P. pastoris functionally over-expressed the FAS2. Recombinant P. pastoris showed 2.3-fold higher reductase activity compared with wild type P. pastoris. With the recombinant P. pastoris, the 91% yield of S-HPPE was achieved at 50 mM OPPE maintaining the high optical purity of the product (ee > 99%).  相似文献   

19.
A recombinant form of hirudin (HIR), a potent thrombin inhibitor derived from the leechHirudo medicinalis,was cloned and expressed in the methylotrophic yeastPichia pastoris.The HIR gene was inserted into theP. pastorispPic9K expression vector such that the gene's expression is under alcohol oxidase (AOX1) promoter control and the HIR coding sequence is fused to theSaccharomyces cerevisiaepre-pro α-mating factor signal sequence. ATn903Kanrdeterminant andHis4+gene are also present on pPic9K, affording a method for selecting chromosomal integrants of the HIR gene. Following electroporation of the DNA into theP. pastorisstrain GS115 (his-4), His+transformants were recovered and plated on medium containing increasing concentrations of the aminoglycoside antibiotic G418. The resulting His+G418-resistant transformants were grown in shake flasks and screened for those that secreted recombinant hirudin (rHIR) to the growth medium. Clones exhibiting rHIR production and secretion were retained for fermentation studies where optimization of growth conditions was found to dramatically increase rHIR expression. One clone that was retained for further characterization secreted rHIR at a level of 1.5 g/liter. Using a straightforward two-step chromatography procedure, the rHIR was purified to >97% with a recovery yield of 63%. The purified rHIR had the predicted N-terminal amino acid sequence and exhibited the same thrombin inhibition kinetics as a variety of HIR isoforms produced in other heterologous systems. Based on these data,P. pastorisoffers an efficient system for production and purification of multigram quantities of biologically active rHIR for structure/function analyses.  相似文献   

20.
Wang X  Li G  Deng Y  Yu X  Chen F 《Archives of microbiology》2006,184(6):419-424
Halotolerant yeast, Pichia farinosa, is a valuable yeast strain in fermentation industry because it produces high yield of glycerol and xylitol, and can tolerate both contamination and high-density growth during fermentation. However, the lack of genetic manipulation tools makes it less popular as a gene engineering strain. Expression systems commonly used in other yeast systems, such as Saccharomyces cerevisiae and Pichia pastoris cannot be used in P. farinosa because it translates universal Leu codon CUG as Ser. Here we reported a modified expression vector and a transformation system with enhanced efficiency in P. farinosa. The results showed that cells of OD600 0.8–1.0 with DTT treatment can obtain high transformation efficiency. The optimized electroporation condition was 900 V, 25 μF, and 200 Ω. The DNA concentration did not influence the transformation. Our system provides the potential not only for applying P. farinosa as an industrial strain of gene engineering, but also for studying gene function in its native host.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号