首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 410 毫秒
1.
The present experiments show that N-[3H]-methylcarbamylcholine ([3H]MCC) binds specifically and with high affinity to rat hippocampus, frontal cortex, and striatum. The highest maximal density of binding sites was apparent in frontal cortex and the lowest in hippocampus. [3H]MCC binding was potently inhibited by nicotinic, but not muscarinic, agonists and by the nicotinic antagonist dihydro-beta-erythroidine in all three brain regions studied. The effect of unlabeled MCC on acetylcholine (ACh) release from slices of rat brain was tested. The drug significantly enhanced spontaneous ACh release from slices of hippocampus and frontal cortex, but not from striatal slices. This effect of MCC to increase ACh release from rat hippocampus and frontal cortex was antagonized by the nicotinic antagonists dihydro-beta-erythroidine and d-tubocurarine, but not by alpha-bungarotoxin or by the muscarinic antagonist atropine. The MCC-induced increase in spontaneous ACh release from hippocampal and frontal cortical slices was not affected by tetrodotoxin. The results suggest that MCC might alter cholinergic transmission in rat brain by a direct activation of presynaptic nicotinic receptors on the cholinergic terminals. That this alteration of ACh release is apparent in hippocampus and frontal cortex, but not in striatum, suggests that there may be a regional specificity in the regulation of ACh by nicotinic receptors in rat brain.  相似文献   

2.
Our aim was to study the specific role of the postsynaptic D(1) receptors on dopaminergic response and analyze the metabolized dopamine (DA) in the rat striatum. We used male Wistar rats to evaluate the effects of different doses of a D(1) agonist (SKF-38393) and a D(1) antagonist (SCH-23390), and their co-administration. The levels of DA and L-3, 4-dihydroxyphenylacetic acid (DOPAC) were measured using high performance liquid chromatography. The systemic injection of SKF-38393 alone at 1, 5 and 10 mg/kg did not alter the DA and DOPAC levels or the DOPAC/DA ratio. In contrast, injection of SCH-23390 alone at 0.25, 0.5 and 1 mg/kg significantly increased the DA and DOPAC levels, as well as the DOPAC/DA ratio, compared with the respective control groups. The co-administration of SCH-23390+SKF-38393 did not alter the DA or DOPAC levels, but it did significantly inhibit the SCH-23390-induced increase of the DA and DOPAC levels. The SCH-23390+SKF-38393 and the SCH-23390-only groups showed an increase in the DOPAC/DA ratio. The co-administration of SCH-23390+PARGYLINE significantly decreased the DOPAC levels and the DOPAC/DA ratio compared with the control and SCH-23390 groups. Taken together, our results showed that selective inhibition with SCH-23390 produced an increase in metabolized DA via striatal monoamine oxidase. These findings also contribute to the understanding of the role of postsynaptic D(1) receptors in the long-loop negative feedback system in the rat striatum.  相似文献   

3.
The ability of different receptors to mediate inhibition of cyclic AMP accumulation due to a variety of agonists was examined in rat striatal slices. In the presence of 1 mM 3-isobutyl-1-methylxanthine, dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation by RU 24926, carbachol, and morphine (all at 10(-8)-10(-5) M), respectively, inhibited the increase in cyclic AMP accumulation in slices of rat striatum due to dopamine D-1 receptor stimulation by 1 microM SKF 38393. In contrast, these inhibitory agents were unable to reduce the ability of a number of other agonists, including isoprenaline, prostaglandin E1, 2-chloroadenosine, vasoactive intestinal polypeptide, and cholera toxin, to increase cyclic AMP levels in striatal slices. These results suggest that in rat striatum either dopamine D-2, muscarinic cholinergic, and opiate receptors are only functionally linked to dopamine D-1 receptors or that the D-1 and D-2 receptors linked to adenylate cyclase lie on the cells, distinct from other receptors capable of elevating striatal cyclic AMP levels.  相似文献   

4.
In this work, we characterized the active site in the alpha-melanotropin hormone (alpha-MSH) sequence responsible for the enhancement of cAMP production in incubated striatal slices by using different alpha-MSH fragments. We also analyzed the effects of the co-incubation of the SCH23390, a dopaminergic D(1) antagonist, with the MSH fragments, to study the involvement of the D(1) receptor on this induction. A rise was observed in the levels of cAMP after addition of the 6 microM fragments MSH((1-10)), and 0.6 and 6 microM MSH((5-13)); however, the values were lower than those induced by 6 microM alpha-MSH. On the contrary, the addition of MSH((9-13)), MSH((7-11)), or MSH((6-9)) did not affect the cAMP content. The presence of 10 microM SCH23390 blocked the effect of the fragments on cAMP production. We conclude that the biologic activity of alpha-MSH, as observed through the levels of cAMP, declines when the length of its polypeptide chain is shortened, and that the presence of glutamic acid in the molecule, as well as the core sequence, are of importance for fragments' activity.  相似文献   

5.
1. Taurine applied to mouse brain slices evokes a long-lasting enhancement (LLE) of corticostriatal synaptic transmission, LLETAU.2. The occurrence of LLETAU was significantly decreased in the presence of the specific antagonists at either D1 (SCH23390) or D2 (raclopride) dopamine (DA) receptors.3. LLETAU was prevented by scopolamine, a muscarinic antagonist, and significantly suppressed by the nicotinic antagonist mecamylamine.4. Thus, dopaminergic and cholinergic mechanisms, in concert with the taurine transporter and glycine receptors, contribute critically to the induction of corticostriatal LLETAU.  相似文献   

6.
Dopamine (DA) acts as gut motility modulator, via D1- and D2-like receptors, but its effective role is far from being clear. Since alterations of the dopaminergic system could lead to gastrointestinal dysfunctions, a characterization of the enteric dopaminergic system is mandatory. In this study, we investigated the role of DA and D1- and D2-like receptors in the contractility of the circular muscle of mouse distal colon by organ-bath technique. DA caused relaxation in carbachol-precontracted circular muscle strips, sensitive to domperidone, D2-like receptor antagonist, and mimicked by bromocriptine, D2-like receptor agonist. 7-Chloro-8-hydroxy-3-methyl-1-phenyl-2,3,4,5-tetrahydro-1H-3-benzazepine hydrochloride (SCH-23390), D1-like receptor antagonist, neural toxins, L-NAME (nitric oxide (NO) synthase inhibitor), 2′-deoxy-N6-methyl adenosine 3′,5′-diphosphate diammonium salt (MRS 2179), purinergic P2Y1 antagonist, or adrenergic antagonists were ineffective. DA also reduced the amplitude of neurally evoked cholinergic contractions. The effect was mimicked by (±)-1-phenyl-2,3,4,5-tetrahydro-(1H)-3-benzazepine-7,8-diol hydrobromide (SKF-38393), D1-like receptor agonist and antagonized by SCH-23390, MRS 2179, or L-NAME. Western blotting analysis determined the expression of DA receptor proteins in mouse distal colon. Notably, SCH-23390 per se induced an increase in amplitude of spontaneous and neurally evoked cholinergic contractions, unaffected by neural blockers, L-NAME, MRS 2179, muscarinic, adrenergic, or D2-like receptor antagonists. Indeed, SCH-23390-induced effects were antagonized by an adenylyl cyclase blocker. In conclusion, DA inhibits colonic motility in mice via D2- and D1-like receptors, the latter reducing acetylcholine release from enteric neurons, involving nitrergic and purinergic systems. Whether constitutively active D1-like receptors, linked to adenylyl cyclase pathway, are involved in a tonic inhibitory control of colonic contractility is questioned.  相似文献   

7.
Radiolabeling and in vitro and in vivo evaluation of an iodinated benzazepine: [125I] FISCH 7-Chloro-8-hydroxy-1-(4'-iodophenyl)-3-methyl-2,3,4,5- tetrahydro-1H-3-benzazepine, as a potential imaging agent for CNS D-1 dopamine receptors in animals, were investigated. After an iv injection, this benzazepine derivative showed good brain uptake in rats (2.70, 1.28, 0.48 %dose/whole brain at 2, 15 and 60 min, respectively). The striatum/cerebellum ratio was 2.50 at 60 min after the injection. The regional distribution in rat brain, as measured by ex vivo autoradiography, displayed highest uptake in the regions of the striatal complex and the substantia nigra, regions known to have a high concentration of D-1 dopamine receptors. Furthermore, this localized regional cerebral distribution was blocked by pretreatment with SCH-23390, a selective D-1 dopamine receptor antagonist. The in vitro binding affinity of this agent in rat striatum tissue preparation displayed a Kd of 1.43 +/- 0.15 nM. Competition data (in vitro) showed the following rank order of potency: SCH-23390 greater than (+/-)IBZP much greater than apomorphine greater than WB 4101 greater than ketanserin approximately spiperone. The preliminary data suggest that this analog of SCH-23390 shows similar selectivity for the CNS D-1 receptor.  相似文献   

8.
The effects of neurotensin (NT) alone or in combination with the dopamine antagonist sulpiride were tested on the release of endogenous acetylcholine (ACh) from striatal slices. NT enhanced potassium (25 mM)-evoked ACh release from striatal slices in a dose-dependent manner. This effect was tetrodotoxin-insensitive, suggesting an action directly on cholinergic elements. The dopamine antagonist sulpiride (5 x 10(-5) M) significantly increased (63%) potassium-evoked ACh release from striatal slices; potassium-evoked ACh release was further increased (90%) in the presence of NT (10(-5) M) and sulpiride (5 x 10(-5) M). The second set of experiments tested the effects of 6-hydroxydopamine (6-OHDA) lesions of the substantia nigra on NT-induced increases of potassium-evoked ACh release. These lesions did not alter the NT regulation of potassium-evoked ACh release from striatal slices, but did significantly increase spontaneous (33%) and potassium-evoked (40%) ACh release from striatal slices. Striatal choline acetyltransferase activity was not affected by 6-OHDA lesions. In addition, following 6-OHDA lesions, sulpiride was ineffective in altering ACh release from striatal slices. Furthermore, evoked ACh release in the presence of the combination of NT and sulpiride was not different from that in the presence of NT alone. These results suggest that in the rat striatum, NT regulates cholinergic interneuron activity by interacting with NT receptors associated with cholinergic elements. Moreover, the NT modulation of cholinergic activity is independent of either an interaction of NT with D2 dopamine receptors or the sustained release of dopamine.  相似文献   

9.
The neostriatum (dorsal striatum) is composed of the caudate and putamen. The ventral striatum is the ventral conjunction of the caudate and putamen that merges into and includes the nucleus accumbens and striatal portions of the olfactory tubercle. About 2% of the striatal neurons are cholinergic. Most cholinergic neurons in the central nervous system make diffuse projections that sparsely innervate relatively broad areas. In the striatum, however, the cholinergic neurons are interneurons that provide very dense local innervation. The cholinergic interneurons provide an ongoing acetylcholine (ACh) signal by firing action potentials tonically at about 5 Hz. A high concentration of acetylcholinesterase in the striatum rapidly terminates the ACh signal, and thereby minimizes desensitization of nicotinic acetylcholine receptors. Among the many muscarinic and nicotinic striatal mechanisms, the ongoing nicotinic activity potently enhances dopamine release. This process is among those in the striatum that link the two extensive and dense local arbors of the cholinergic interneurons and dopaminergic afferent fibers. During a conditioned motor task, cholinergic interneurons respond with a pause in their tonic firing. It is reasonable to hypothesize that this pause in the cholinergic activity alters action potential dependent dopamine release. The correlated response of these two broad and dense neurotransmitter systems helps to coordinate the output of the striatum, and is likely to be an important process in sensorimotor planning and learning.  相似文献   

10.
The main objective of the present study was to determine whether cholinergic markers (choline acetyltransferase activity and nicotinic and muscarinic receptors) are altered in Alzheimer's disease. Choline acetyltransferase activity in Alzheimer's brains was markedly reduced in various cortical areas, in the hippocampus, and in the nucleus basalis of Meynert. The maximal density of nicotinic sites, measured using the novel nicotinic radioligand N-[3H]methylcarbamylcholine, was decreased in cortical areas and hippocampus but not in subcortical regions. M1 muscarinic cholinergic receptor sites were assessed using [3H]pirenzepine as a selective ligand; [3H]pirenzepine binding parameters were not altered in most cortical and subcortical structures, although the density of sites was modestly increased in the hippocampus and striatum. Finally, M2-like muscarinic sites were studied using [3H]-acetylcholine, under muscarinic conditions. In contrast to M1 muscarinic sites, the maximal density of M2-like muscarinic sites was markedly reduced in all cortical areas and hippocampus but was not altered in subcortical structures. These findings reveal an apparently selective alteration in the densities of putative nicotinic and muscarinic M2, but not M1, receptor sites in cortical areas and in the hippocampus in Alzheimer's disease.  相似文献   

11.
The striatum is the largest input nucleus to the basal ganglia and associated with reward-based behavior. We assessed whether acute ethanol (EtOH) exposure could modulate synaptic efficacy in the dorsolateral striatum of juvenile Wistar rats. Since acute EtOH administration can both increase and decrease the probability of release of different neurotransmitters from synaptic terminals, we used field potential recordings to evaluate the net effect of EtOH on striatal output. We showed that 50mM EtOH but not 20, 80 or 100mM, depresses population spike (PS) amplitude in the dorsolateral striatum. This depression of synaptic output is insensitive to the N-methyl-d-aspartic acid (NMDA) receptor inhibitor DL-2-amino-5-phosphonopentanoic acid (AP-5, 50μM), but is blocked in slices treated with glycine receptor antagonists (strychnine, 1μM; PMBA, 50μM), nicotinic acetylcholine receptor antagonists (mecamylamine, 10μM; methyllycaconitine citrate (MLA), 40nM), or GABA(A) receptor inhibitors (picrotoxin, 100μM; bicuculline, 2μM, 20μM). A long-term facilitation of synaptic output, which is more pronounced in slices from adult Wistar rats, is detected following EtOH washout (50, 80, 100mM). This long-term enhancement of PS amplitude is regulated by cholinergic interneurons and completely blocked by mecamylamine, MLA or the non-selective muscarinic antagonist scopolamine (10μM). Administration of 100mM EtOH significantly depresses PS amplitude in scopolamine-treated slices, suggesting that EtOH exerts dual actions on striatal output that are initiated instantly upon drug wash-on. In conclusion, EtOH modulates striatal microcircuitry and neurotransmission in a way that could be of importance for understanding the intoxicating properties as well as the acute reward sensation of EtOH.  相似文献   

12.
Bovine adrenal chromaffin cells possess both nicotinic and muscarinic cholinergic receptors, but only nicotinic receptors have heretofore appeared to mediate Ca2+-dependent exocytosis. We have now found that muscarinic receptor stimulation in bovine adrenal chromaffin cells leads to enhanced inositol phospholipid metabolism as evidenced by the rapid (less than 1 min) formation of inositol trisphosphate (IP3) and inositol bisphosphate (IP2). Muscarinic receptor-mediated accumulation of IP3 and IP2 continues beyond 1 min in the presence of LiCl and is accompanied by large increases in inositol monophosphate. Muscarinic receptor stimulation was also found to enhance nicotine-induced catecholamine secretion by 1.7-fold if muscarine was added 30 s before nicotine addition. Moreover, since the muscarinic antagonist atropine reduces acetylcholine-induced secretion, we conclude that muscarinic receptor stimulation somehow primes these cells for nicotinic receptor-mediated secretion, perhaps by causing small nonstimulatory increases in cytosolic free Ca2+ mediated by IP3. Furthermore, we show that small depolarizations of these cells with 10 mM K+, which themselves do not affect basal secretion, also enhance nicotine-induced secretion. Thus, small increases in cytosolic free Ca2+ produced either by physiologic muscarinic receptor stimulation or by small experimental depolarizations with K+ may prime the chromaffin cells for nicotinic receptor-mediated secretion.  相似文献   

13.
The effects of Pro-Leu-Gly-NH2 (melanotropin release inhibiting factor, MIF) and its analog, cyclo (Leu-Gly) on the mouse and rat striatal cholinergic muscarinic receptors labeled with 3H-quinuclidinyl benzilate (QNB) were investigated. 3H-QNB bound to the rat striatal muscarinic receptors at a single high affinity site with receptor density (Bmax value) of 1200 fmol per mg protein and an apparent dissociation constant (Kd value) of 53.5 pM. At 140 pM concentration of 3H-QNB, the specific binding to the receptors was 724 fmol per mg protein. MIF in a concentration range of 10(-9) to 10(-4) M did not alter the binding of 3H-QNB but at 10(-3) M decreased the binding by 25%. Cyclo (Leu-Gly), on the other hand, in the concentration range of 10(-9) to 10(-3) M had no effect on the binding of 3H-QNB. A single injection of MIF (3 or 10 mg/kg IP) to rats did not alter the Bmax or the Kd value of 3H-QNB to bind to the striatal membranes. 3H-QNB bound to the mouse striatal muscarinic receptors at a single high affinity site with a Bmax value of 991 fmol/per mg protein and a Kd value of 21 pM. Neither acute administration of MIF (3 or 10 mg/kg IP) nor chronic treatment of the peptide (2, 8 or 32 mg/kg IP, daily for 5 days) to mice could influence the binding of 3H-QNB to the striatal muscarinic receptors.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
J M Gorell  B Czarnecki 《Life sciences》1986,38(24):2239-2246
This study was done to provide pharmacologic evidence for the location of those striatal dopamine D-1 and D-2 receptors that participate in the regulation of local acetylcholine (ACh) release. Striatal tissue slices from adult male Sprague-Dawley rats were preloaded with [3H]choline and superfused in separate experiments with buffer containing either: a D-2-specific agonist (LY141865 or LY171555), a D-2 specific antagonist (L-sulpiride), a D-1 specific agonist (SKF38393), or a D-1 antagonist (SCH23390), in the presence or absence of tetrodotoxin (TTX), used to block interneuronal activity. With either D-2 agonist there was a dose-dependent decrease in K+-stimulated [3H]ACh release, maximally at 5 X 10(-7)-10(-6) M [agonist] and to the same extent with each drug. Both SKF38393 and SCH23390 increased [3H]ACh release at tested concentrations of these agents. Results were unchanged when any of the drugs used was superfused in the presence of TTX, 5 X 10(-7) M. These data are consistent with the hypothesis that populations of striatal D-1 and D-2 receptors exist on local cholinergic neurons, where they regulate ACh release. Alternative interpretations are discussed.  相似文献   

15.
High doses of the muscarinic cholinergic agonist pilocarpine are a useful model for investigation of the essential mechanisms for seizure generation and spread in rodents. Pilocarpine (400 mg/kg; subcutaneously) was administered in 2-month-old female rats, and the content of striatum monoamines and (M(1)+M(2)) muscarinic and D(2) dopaminergic receptors was measured in the acute period. All treated animals showed peripheral cholinergic signs, stereotyped and clonic movements, tremors, seizures and the percentage mortality was approximately 63%. High performance liquid chromatography determinations, performed 24 h later, showed a decrease of striatal levels of dopamine, dihydroxyphenylacetic acid, 4-hydroxy-3-methoxy-phenylacetic acid and 5-hydroxytryptamine. Pilocarpine treatment induced downregulation of (M(1)+M(2)) muscarinic receptors and reduced the dissociation constants of (M(1)+M(2)) muscarinic and D(2) dopaminergic receptors, suggesting that these systems exert opposite effects on the regulation of convulsive activity. These and other important neurochemical changes found in the course of establishment of an epileptic focus can be observed after status epilepticus induced by pilocarpine.  相似文献   

16.
S Nomura  S H Zorn  S J Enna 《Life sciences》1987,40(18):1751-1760
Experiments were undertaken to determine whether the anticholinergic actions of tricyclic antidepressants are mediated by a selective interaction with a subclass of muscarinic receptors. To this end, the potencies of these antidepressants to inhibit [3H]-QNB binding to rat brain cerebral cortical membranes was compared to their potencies as antagonists of carbachol-stimulated inositol phosphate accumulation in cerebral cortical slices and carbachol-induced inhibition of GTP-stimulated adenylate cyclase in striatal membranes. Whereas amitriptyline was more potent than pirenzepine, a selective muscarinic M1 receptor antagonist, in competing for [3H]-QNB binding sites and as an antagonist of carbachol-induced inhibition of adenylate cyclase, pirenzepine was substantially more active (ten-fold) than amitriptyline in blocking carbachol-stimulated phosphatidyl inositol turnover. Atropine was more potent than all other agents in these assays, failing to display any significant degree of selectivity. The results suggest that the tricyclic antidepressants, in particular amitriptyline, appear to be selective antagonists for muscarinic receptors associated with adenylate cyclase in striatal membranes. Given the current classification of cholinergic receptors, these findings indicate that the tricyclic antidepressants may be useful for defining the properties of M2 receptors in brain.  相似文献   

17.
Dopamine or agonists with D1 receptor potency stimulated cyclic AMP (cAMP) accumulation in whole cell preparations of NS20Y neuroblastoma cells. The accumulation of cAMP after D1 stimulation was rapid and linear for 3 min. Both dopamine and the novel D1 receptor agonist dihydrexidine stimulated cAMP accumulation two- to three-fold over baseline. The pseudo-Km for dopamine was approximately 2 microM, whereas for dihydrexidine it was approximately 30 nM. The effects of both drugs were blocked by either the D1-selective antagonist SCH23390 (Ki, 0.3 nM) or the nonselective antagonist (+)-butaclamol (Ki, 5 nM). Both (-)-butaclamol and the D2-selective antagonist (-)-sulpiride were ineffective (Ki greater than 3 microM). Forskolin (10 microM), prostaglandin E1 (1 microM), and adenosine (10 microM) also stimulated cAMP accumulation, but none were antagonized by SCH23390 (1 microM). Finally, muscarinic receptor stimulation (100 microM carbachol) inhibited both D1- and forskolin-stimulated increases in cAMP accumulation by 80%. The present results indicate that NS20Y neuroblastoma cells have D1 receptors that are coupled to adenylate cyclase, and that these receptors have a pharmacological profile similar to that of the D1 receptor(s) found in rat striatum.  相似文献   

18.
In order to investigate the possibility that there may be two conformationally distinct dopamine D1 binding sites, the effect of lysine-modifying agents on striatal dopamine D1 receptors was investigated. Treatment with the distilbene derivative, 4,4'-diisothiocyanostilbene-2,2'-disulfonate, (DIDS), resulted in an irreversible D1 receptor inactivation that was associated with a 70% loss of binding sites. The remaining DIDS-insensitive sites displayed both a decreased affinity (approximately 5 fold) for the D1 antagonist SCH-23390 and an enhanced affinity of dopaminergic agonists (approximately 10 fold) for the agonist high-affinity form of the receptor. Pretreatment with Gpp(NH)p, a non-hydrolysable guanine nucleotide, prevented the formation of the agonist high-affinity form, indicating that these sites are G-protein-linked. Prior occupancy of D1 receptors with dopaminergic agonists and antagonists afforded no protection against DIDS inactivation, suggesting that a site outside the ligand binding subunit of the D1 receptor was modified. Taken together, these data suggest that [3H]SCH-23390 labels two conformationally distinct populations of dopamine D1 receptors.  相似文献   

19.
The bovine striatal dopamine D1 receptor was solubilized with a combination of sodium cholate and NaCl in the presence of phospholipids, following treatment of membranes with a dopaminergic agonist (SKF-82526-J) or antagonist (SCH-23390). The solubilized receptors were subsequently reconstituted into lipid vesicles by gel-filtration. A comparison of ligand-binding properties shows that the solubilized and reconstituted receptors bound [3H]SCH-23390 to a homogeneous site in a saturable, stereospecific and reversible manner with a Kd of 0.95 and 1.1 nM and a Bmax of 918 and 885 fmol/mg protein respectively for agonist- and antagonist-pretreated preparations. These values are very similar to those obtained for membrane-bound receptors. The competition of antagonists for [3H]SCH-23390 binding exhibited a clear D1 dopaminergic order in the reconstituted preparation obtained from either agonist or antagonist-pretreated membranes, except that (+)butaclamol was about four-fold more potent thancis-flupentixol in displacing [3H]SCH-23390 binding in preparation obtained from agonist-pretreated membranes compared to antagonist-pretreated membranes. The agonist/[3H]SCH-23390 competition studies revealed the presence of a highaffinity component of agonist binding in both the reconstituted receptor preparations. The number of high-affinity agonist binding sites, however, is 40–80% higher in reconstituted preparation obtained from antagonist-treated membrane compared to that obrained from the agonist-treated membrane. In both the preparations, 100 M guanylylimidodiphosphate (Gpp(NH)p) completely abolished the high-affinity component of agonist binding compared to partial abolition in the native membranes, indicating a close association of a G-protein with the solubilized receptors. Whether the receptor was solubilized following agonist or antagonist preincubation of the membranes, the receptor-detergent complex eluted from a steric-exclusion HPLC column with an apparent molecular size of 360,000. Preincubation of the solubilized preparations with Gpp(NH)p had virtually no effect on the elution profile suggesting a lack of guanine nucleotide-dependent dissociation of G-protein receptor complex.  相似文献   

20.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号