首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 968 毫秒
1.
The present study was undertaken in order to investigate the muscarinic (M(1)), dopaminergic (D(1) and D(2)) and serotonergic (5-HT(2)) receptors densities in hippocampus and striatum of Wistar rats after status epilepticus (SE) induced by pilocarpine. The control group was treated with 0.9% saline. An other group of rats received pilocarpine (400 mg/kg, s.c.) and both groups were sacrificed 1 h after treatment. The results have shown that pilocarpine administration and resulting SE produced a downregulation of M(1) receptor in hippocampus (41%) and striatum (51%) and an increase in the dissociation constant (K(d)) values in striatum (42%) alone. In both areas the 5-HT(2) receptor density remained unaltered, but a reduction (50%) and an increase (15%) in the K(d) values were detected in striatum and hippocampus, respectively. D(1) and D(2) receptor densities in hippocampus and striatum remained unaltered meanwhile K(d) values for D(1) receptor declined significantly, 33% in hippocampus and 26% in striatum. Similarly, K(d) values for D(2) decreased 55% in hippocampus and 52% in striatum. From the preceding results, it is clear that there is a possible relation between alterations in muscarinic receptor density and others systems studied as well as they suggest that changes in dissociation constant can be responsible for the establishment of pilocarpine-induced SE by altering the affinity of neurotransmitters such as acetylcholine, dopamine and serotonine.  相似文献   

2.
We have investigated whether prejunctional inhibitory muscarinic receptors ("autoreceptors") exist on cholinergic nerves in human airways in vitro and whether guinea pig trachea provides a good model for further pharmacological characterization of these receptors. Pilocarpine was used as a selective agonist and gallamine as a selective antagonist of these autoreceptors. Acetylcholine (ACh) release from postganglionic cholinergic nerves was elicited by electrical field stimulation (EFS) (40 V, 0.5 ms, 32 Hz). In human bronchi, pilocarpine inhibited the contractile response to EFS in a dose-related fashion; the dose inhibiting 50% of the control contraction was 2.2 +/- 0.4 x 10(-7) (SE) M (n = 22), and the inhibition was 96% at 3 x 10(-5) M. The inhibitory effects of pilocarpine were antagonized by gallamine in a dose-related fashion. The results were qualitatively the same in the guinea pig. Gallamine significantly enhanced the contractile response to EFS in the guinea pig, whereas pirenzepine failed to do so, which suggests that M2-receptors are involved. We conclude that prejunctional muscarinic receptors that inhibit ACh release are present on cholinergic nerves in human airways and that guinea pig trachea is a good model for further pharmacological characterization of these receptors, which appear to belong to the M2-subtype.  相似文献   

3.
4.
Busch L  Borda E 《Life sciences》2007,80(9):842-851
We have studied the signaling pathways involved in pilocarpine-induced mucin release in rat submandibular slices. Pilocarpine produced a significant increment of PGE2 levels and a positive (r=0.8870) and significant (p=0.0077) correlation between PGE2 production and mucin released was determined. The participation of PGE2 was confirmed by the use of indomethacin (indo) and of acetyl salicylic acid (ASA), cyclooxygenase inhibitors, which inhibited pilocarpine-induced mucin release. The muscarinic receptors involved in the regulation of mucin release were identified as M1 and M4 by the use of the selective acetylcholine receptors (mAChR) antagonists, pirenzepine, AF-DX 116, 4-DAMP and tropicamide. The secretory process was dependent on both, intracellular and extracellular calcium pools since it was inhibited by thapsigargin and verapamil. Cyclic AMP, nitric oxide synthase and PKC also participated in pilocarpine-induced mucin release. It is concluded that pilocarpine, by activation the M1 and M4 mAChR subtypes induces an increase of intracellular Ca2+ concentration ([Ca2+]I) and elevates cAMP levels, which in turn stimulates COX, PKC and NOS and promotes mucin exocytosis. PGE2 released induces cAMP accumulation which, together with PKC are involved in the PGE2 increased Ca2+/cAMP-regulated exocytosis. Thus, cAMP accumulation induced by cholinergic stimulation is, in part, the result of PGE2 production.  相似文献   

5.
It has previously been demonstrated that the fetal lamb cardiovascular system can respond to peripheral muscarinic stimulation. However the role of central muscarinic mechanisms in modulating fetal cardiovascular function has not been described. Pilocarpine is a muscarinic agonist that readily crosses the blood-brain barrier and was therefore employed to examine both central and peripheral muscarinic mechanisms in modulating fetal cardiovascular function. Fetal lambs were prepared for chronic intrauterine recording of fetal blood pressure (FBP) and heart rate (FHR). Direct administration of pilocarpine to the fetus resulted in an immediate dose-dependent decrease in both systolic and diastolic blood pressure and a rapid fall in FHR. The initial phase of hypotension was very short-lived (1-2 min) and was subsequently followed by a significant increase in systolic, diastolic and pulse pressures (30-60 min). Fetal heart rate gradually returned to control levels by 30 min after pilocarpine administration. Atropine pretreatment was effective in completely blocking the cardiovascular actions of pilocarpine, while methylatropine was only able to block the initial hypotensive and bradycardiac response. A prolonged tachycardia was also unmasked by methylatropine pretreatment. These data suggest that the initial hypotension and bradycardia in response to pilocarpine administration are mediated via peripheral muscarinic receptors, while stimulation of central muscarinic receptors result in hypertension and tachycardia. These data confirm that, as in the adult, central cholinergic mechanisms are involved in the modulation of cardiovascular function in the developing fetus.  相似文献   

6.
Muscarinic receptors of the M2 subtype, which inhibit acetylcholine release from cholinergic nerves (autoreceptors), have been described in animal and human bronchi in vitro. We investigated whether these receptors may be involved in feedback inhibition of cholinergic reflex bronchoconstriction induced by sulfur dioxide (SO2) in seven nonasthmatic atopic subjects and in six mild asthmatic subjects. In a control experiment, total respiratory resistance (Rrs) was increased by 30 +/- 5% in nonasthmatic and by 60 +/- 18% in asthmatic subjects. In nonasthmatic subjects, pilocarpine, an agonist of muscarinic M2-autoreceptors, increased Rrs by 15 +/- 5% and addition of SO2 increased Rrs to 21 +/- 5% above base line, which was not significantly greater than after pilocarpine alone. Histamine gave a comparable bronchoconstriction (25 +/- 3% increase in Rrs) and SO2 further increased Rrs to 39 +/- 6% above base line (P less than 0.05). Thus pilocarpine appears to inhibit SO2-induced bronchoconstriction in nonasthmatic subjects, and this effect is not explained by an increase in airway tone. In asthmatic subjects, pretreatment with pilocarpine increased Rrs by 31 +/- 8% and SO2 further increased Rrs to 88 +/- 17% above base line. SO2 alone gave a 60 +/- 18% increase in Rrs. Our results suggest that feedback inhibitory muscarinic receptors may be present on cholinergic nerves in normal airways and that there may be a dysfunction of this feedback mechanism in asthmatic airways. This might be contributory to exaggerated cholinergic reflex bronchoconstriction in asthma.  相似文献   

7.
The interaction between the neuropeptide alpha-MSH and the acetylcholinergic system as reflected by changes in cAMP and inositol 1-3-5 triphosphate(IP(3))production was investigated in an in vitro model of striatal slices. The possible involvement of D(1) receptors in cholinergic and alpha-MSH- stimulated cAMP and IP(3) production in slices of rat striatum was also examined, because it has been demonstrated that acetylcholinergic drugs induce endogenous dopamine release in the striatum. alpha-MSH, pilocarpine(PL) and the selective muscarinic M1 agonist McN-A-343 increased cAMP and IP(3) striatal levels, effects blocked by the D(1) antagonist SCH-23390, except for the effects of alpha-MSH on IP(3).The muscarinic M(2) antagonist gallamine (GL) brought about an increase in cAMP levels, an effect blocked by SCH-23390. The M(1) antagonist pirenzepine (Pz) induced a decrease both in cAMP and IP(3) content, and the nicotinic antagonist di-hydro-beta-eritroidine(DBE) only diminished cAMP production. When alpha-MSH and cholinergic agents were simultaneously added, cAMP and IP(3) levels were modified with respect to the values reached when these agents were added alone. An interaction between the acetylcholinergic system and alpha-MSH through M(1) and nicotinic receptors was also observed. These results suggest that the intracellular signaling pathways related to cAMP and IP(3) production gated by alpha-MSH and these cholinergic receptors are probably related. alpha-MSH striatum cAMP IP(3) muscarinic and nicotinic receptors an in vitro model.  相似文献   

8.
Pilocarpine has been used to lower intraocular pressure (IOP) in glaucoma patients for more than 100 years. Since the identification of five muscarinic receptor subtypes, there has been an interest in separating the IOP-lowering effects from the ocular side effects of pupil constriction and lens accommodation. However, all these actions seem to be mediated by the M3 receptor. A novel muscarinic receptor agonist, AGN 199170, that has no activity on the M3 subtype was compared to pilocarpine in a monkey glaucoma model. This compound lowered IOP suggesting that muscarinic agonists targeted at muscarinic receptors other than the M3 subtype may be able to selectively lower IOP.  相似文献   

9.
The retina is the most metabolically active tissue in the human body and hypoxia-induced retinal ganglion cell (RGC) death has been implicated in glaucomatous optic neuropathy. The aim of this study is to determine whether muscarinic receptor agonist pilocarpine, a classic antiglaucoma drug, possesses neuroprotection against cobalt chloride (CoCl2)-mimetic hypoxia-induced apoptosis of rat retinal ganglion cells (RGC-5 cells) and its underlying mechanisms. Cell viability was determined by Cell Counting Kit-8 assay and apoptosis was examined by annexin V and mitochondrial membrane potential (MMP) assays. Expressions of hypoxia-induced factor-1α (HIF-1α), p53, and BNIP3 were investigated by quantitative real-time PCR and western blot analysis. After treatment of 200 μM CoCl2 for 24 h, RGC-5 cells showed a marked decrease of cell viability by approximately 30%, increased apoptosis rate and obvious decline in MMP, which could largely be reversed by the pretreatment of 1 μM pilocarpine mainly via the activation of muscarinic receptors. Meanwhile, pretreatment of 1 μM pilocarpine could significantly prevent CoCl2-induced HIF-1α translocation from cytoplasm to nucleus and down-regulate the expression of HIF-1α, p53, and BNIP3. These studies demonstrated that pilocarpine had effective protection against hypoxia-induced apoptosis in RGCs via muscarinic receptors and HIF-1α pathway. The findings suggest that HIF-1α pathway as a “master switch” may be used as a therapeutic target in the cholinergic treatment of glaucoma.  相似文献   

10.
1. The study of changes that persist after drug discontinuation could be fundamental to understand the mechanisms involved in craving and relapse. 2. In this work the changes occurring in muscarinic, D1- and D2-like receptors after 30 min (immediate), 1 day (early), 5 and 30 days (late) withdrawal periods were studied, in the striatum of rats treated once a day for 7 days with cocaine 20 and 30 mg/kg, i.p. 3. Binding assays were performed in 10% homogenates and ligands used were [3H]-N-methylscopolamine, [3H]-SCH 23390, and [3H]-spiroperidol for muscarinic (M1 + M2-like), D1-, and D2-like receptors, respectively. 4. Muscarinic receptors presented a downregulation at all doses and discontinuation times, while the dissociation constant (Kd) for this receptor decreased after 30 min, 5 and 30 days abstinence times. In relation to D1-like receptors we found an antagonistic effect with 100% increase in receptor number 30 min after the last cocaine injection, but after 1-day withdrawal a downregulation was observed with both doses that persisted up to 30 days, only with the higher dose. The dissociation constant value (Kd) for this receptor showed a decrease only with 5 and 30 days withdrawal. An increase occurred with D2-like receptors at all doses and withdrawal periods studied, while Kd increased in 30-min, 5, and 30 days withdrawal. 5. In this work we found that the subchronic cocaine treatment produces early and long-lasting modifications in cholinergic muscarinic as well in dopaminergic receptors that persist up to 30 days of cocaine withdrawal.  相似文献   

11.
The aim of the present work was to examine the role of muscarinic acetylcholine receptors (mAChRs) on apoptosis in human skin fibroblast cells. Neonatal human skin fibroblast cultures were stimulated with pilocarpine in the presence or absence of specific antagonists. Pilocarpine stimulates apoptosis, total inositol phosphates (InsP) accumulation and nitric oxide synthase (NOS) activity. All these effects were inhibited by atropine, mustard hydrochloride (4‐DAMP) and pirenzepine, indicating that M1 and M3 mAChRs are implicated in pilocarpine action. Pilocarpine apoptotic action is accompanied by caspase‐3 and JNK activation. The intracellular pathway leading to pilocarpine‐induced biological effects involved phospholipase C, calcium/calmodulin and extracellular calcium as U‐73122, W‐7, verapamil, BAPTA and BAPTA‐AM blocked pilocarpine effects. L ‐NMMA, a NOS inhibitor, had no effect, indicating that the enzyme does not participate in the apoptosis phenomenon. These results may contribute to a better understanding of the modulatory role of the parasympathetic muscarinic system on the apoptotic human skin fibroblast process. J. Cell. Physiol. 222: 640–647, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

12.
Nutritional therapy is a challenging but necessary dimension in the management of diabetes and neurodegenerative changes associated with it. The study evaluates the effect of vitamin D3 in preventing the altered function of cholinergic, insulin receptors and GLUT3 in the cerebral cortex of diabetic rats. Muscarinic M3 acetylcholine receptors in pancreas control insulin secretion. Vitamin D3 treatment in M3 receptor regulation in the pancreatic islets was also studied. Radioreceptor binding assays and gene expression was done in the cerebral cortex of male Wistar rats. Immunocytochemistry of muscarinic M3 receptor was studied in the pancreatic islets using specific antibodies. Y-maze was used to evaluate the exploratory and spatial memory. Diabetes induced a decrease in muscarinic M1, insulin and vitamin D receptor expression and an increase in muscarinic M3, α7 nicotinic acetylcholine receptor, acetylcholine esterase and GLUT3 expression. Vitamin D3 and insulin treatment reversed diabetes-induced alterations to near control. Diabetic rats showed a decreased Y-maze performance while vitamin D3 supplementation improved the behavioural deficit. In conclusion, vitamin D3 shows a potential therapeutic effect in normalizing diabetes-induced alterations in cholinergic, insulin and vitamin D receptor and maintains a normal glucose transport and utilisation in the cortex. In addition vitamin D3 modulated muscarinic M3 receptors activity in pancreas and plays a pivotal role in controlling insulin secretion. Hence our findings proved, vitamin D3 supplementation as a potential nutritional therapy in ameliorating diabetes mediated cortical dysfunctions and suggest an interaction between vitamin D3 and muscarinic M3 receptors in regulating insulin secretion from pancreas.  相似文献   

13.
This study was conducted to investigate the subtypes of muscarinic receptors involved in the action of cholinergic agents on prostacyclin synthesis in the rabbit aorta. Prostacyclin production measured as 6-keto-PGF1 alpha was assessed after exposing the aortic rings to different cholinergic agents. Acetylcholine (ACh) (M1 and M2 agonist) (1-10 microM) and arecaidine proparagyl ester (APE) (M2 selective agonist) (1-10 microM) enhanced 6-keto-PGF1 alpha output in a concentration-dependent manner. A selective M1 receptor agonist, McN-A-343, at 1 microM-1 mM did not alter 6-keto-PGF1 alpha output. ACh- and APE induced increases in 6-keto-PGF1 alpha output were attenuated by the M1/M2 antagonist atropine (0.1 microM), M2 alpha antagonist (AF-DX 116), (0.1-1.0 microM), and by selective M2 beta antagonist, hexahydro-sila-difendiol (HHSiD) (0.1-1.0 microM), but not by the M1 antagonist pirenzepine (1.0 microM). 6-Keto-PGF1 alpha output elicited by ACh- or APE was not altered by the adrenergic receptor antagonists phentolamine and propranolol or by the nicotinic receptor blocker hexamethonium. Similarly, the arachidonic acid- or norepinephrine induced 6-keto-PGF1 alpha accumulation was not altered by these muscarinic receptor antagonists. Indomethacin, a cyclooxygenase inhibitor, prevented arachidonic acid, ACh- or APE induced 6-keto-PGF1 alpha output. Removal of the endothelium abolished the production of 6-keto-PGF1 alpha elicited by ACh, APE, bradykinin, and calcium ionophore A 23187, but not that induced by angiotensin II, K+ or norepinephrine. These data suggest that vascular prostaglandin generation elicited by cholinergic agonists is mediated via activation of M2 alpha and M2 beta but not M1 muscarinic receptors, which are most likely located on the endothelium.  相似文献   

14.
We investigated the effects of a neurokinin-1 (NK(1)) receptor antagonist (SR-140333) and a NK(2) receptor antagonist (SR-48968) on airway responsiveness and on the function of neuronal M(2) muscarinic receptors, which normally inhibit vagal acetylcholine release, in guinea pigs infected with parainfluenza virus. Antagonists were given 1 h before infection and daily thereafter. Four days later, bronchoconstriction induced by either intravenous histamine (which is partly vagally mediated) or electrical stimulation of the vagus nerves was increased by viral infection compared with control. In addition, the ability of the muscarinic agonist pilocarpine to inhibit vagally induced bronchoconstriction was lost in virus-infected animals, demonstrating loss of neuronal M(2) receptor function. Macrophage influx into the lungs was inhibited by pretreatment with both antagonists. However, only the NK(1) receptor antagonist prevented M(2) receptor dysfunction and inhibited hyperresponsiveness (measured as an increase in either vagally induced or histamine-induced bronchoconstriction). Thus virus-induced M(2) receptor dysfunction and hyperresponsiveness are prevented by a NK(1) receptor antagonist, but not by a NK(2) receptor antagonist, whereas both antagonists had similar anti-inflammatory effects.  相似文献   

15.
The characteristics of the acetylcholine (ACh) and 5-hydroxytryptamine (5-HT) receptors of Deroceras buccal muscle were examined using specific pharmacological probes and sucrose gap electrophysiological analysis. ACh induced concentration-dependent smooth tonic contractures coupled with considerable depolarisation from the normal resting membrane potential of -30.6 mV. The use of choline ester analogues such as carbachol, propionylcholine and butyrylcholine, specific cholinergic agonists such as nicotine, muscarine, bethanecol and pilocarpine and antagonists such as d-tubocurarine, succinylcholine, hexamethomium, atropine, gallamine, pirenzepine and scopolamine indicated that the ACh receptor showed both nicotinic and muscarinic characteristics; the muscarinic activity resembled that of a mammalian M(2)-like receptor. Alternatively, it can not be ruled out that both mammalian types of receptor may be present in this preparation since both nicotine and muscarine induced noticeable tension. 5-HT application induced characteristic dose-dependent phasic contractions accompanied by small but quite consistent depolarisations. Serotonergic agonist and antagonist experiments using 1-(3-chlorophenyl) piperazine, 1-(m-chlorophenyl) biguanide, methiothepin, methysergide and metoclopramide strongly suggested that the 5-HT receptor showed closest pharmacological affinity with the 5-HT(1) receptor class of mammals but with some 5-HT(2) activity. In view of the phylogenetic gap between molluscs and mammals it is not surprising that the ACh and 5-HT receptors of Deroceras can not be properly classified by conventional mammalian terminology.  相似文献   

16.
The antennal motor system is activated by the muscarinic agonist pilocarpine in the American cockroach Periplaneta americana, and its output patterns were examined both in restrained intact animals and in isolated CNS preparations. The three-dimensional antennal movements induced by the hemocoelic drug injection were analyzed in in vivo preparations. Pilocarpine effectively induced prolonged rhythmic movements of both antennae. The antennae tended to describe a spatially patterned trajectory, forming loops or the symbol of infinity (∞). Such spatial regularity is comparable to that during spontaneous tethered-walking. Rhythmic bursting activities of the antennal motor nerves in in vitro preparations were also elicited by bath application of pilocarpine. Cross-correlation analyses of the bursting spike activities revealed significant couplings among certain motor units, implying the spatial regularity of the antennal trajectory. The pilocarpine-induced rhythmic activity of antennal motor nerves was effectively suppressed by the muscarinic antagonist atropine. These results indicate that the activation of the antennal motor system is mediated by muscarinic receptors.  相似文献   

17.
Lee HK  Lim MY  Bok SM  Cho ES  Lee EM  Kim SW  Kim YH  Kim HW 《Life sciences》2007,81(3):204-209
Children seem more susceptible to increased airway reactivity than adults. Such an age-dependent discrepancy in airway reactivity may involve different airway smooth muscle functions. Therefore, we compared the in vivo and in vitro responsiveness of airway smooth muscles between two age groups of animals. Rats of 6 and 21 weeks old were challenged in vivo with acetylcholine (ACh) infused intravenously and airway resistance (R(aw)) was measured. Tracheal muscle was also isolated and the isometric force developed to ACh or KCl was measured. Furthermore, the level of genes encoding muscarinic receptor subtypes (M(1-3)) and acetylcholinesterase (AChE) expressed in the tracheal muscle was determined by RT-PCR. In results, the basal R(aw) was similar in the two age groups. The R(aw) at each ACh dose was significantly greater in young rats than older rats (p<0.05, n=22-27). Tracheal muscles from young rats were more sensitive to ACh than older rats (p<0.05, n=20-21), while receptor-independent muscle contraction to KCl was greater in older rats (p<0.05, n=10-19). Genes encoding AChE, M(2) and M(3) muscarinic receptors were more highly expressed in the tracheal muscles from young than older rats (p<0.05, n=4-6). In conclusion, airway smooth muscle in young rat is more sensitive to cholinergic stimulation in vivo and in vitro compared to older rats, which may be due to a higher expression of M(2) and M(3) muscarinic receptors in airway smooth muscle.  相似文献   

18.
The ability of different receptors to mediate inhibition of cyclic AMP accumulation due to a variety of agonists was examined in rat striatal slices. In the presence of 1 mM 3-isobutyl-1-methylxanthine, dopamine D-2, muscarinic cholinergic, and opiate receptor stimulation by RU 24926, carbachol, and morphine (all at 10(-8)-10(-5) M), respectively, inhibited the increase in cyclic AMP accumulation in slices of rat striatum due to dopamine D-1 receptor stimulation by 1 microM SKF 38393. In contrast, these inhibitory agents were unable to reduce the ability of a number of other agonists, including isoprenaline, prostaglandin E1, 2-chloroadenosine, vasoactive intestinal polypeptide, and cholera toxin, to increase cyclic AMP levels in striatal slices. These results suggest that in rat striatum either dopamine D-2, muscarinic cholinergic, and opiate receptors are only functionally linked to dopamine D-1 receptors or that the D-1 and D-2 receptors linked to adenylate cyclase lie on the cells, distinct from other receptors capable of elevating striatal cyclic AMP levels.  相似文献   

19.
Cui YY  Zhu L  Wang H  Advenier C  Chen HZ  Devillier P 《Life sciences》2008,82(17-18):949-955
Gastro-oesophageal acid reflux may cause airway responses such as cough, bronchoconstriction and inflammation in asthmatic patients. Studies in humans or in animals have suggested that these responses involve cholinergic nerves. The purpose of this study was to investigate the role of the efferent vagal component on airway microvascular leakage induced by instillation of hydrochloric acid (HCl) into the oesophagus of guinea-pigs and the subtype of muscarinic receptors involved. Airway microvascular leakage induced by intra-oesophageal HCl instillation was abolished by bilateral vagotomy or by the nicotinic receptor antagonist, hexamethonium. HCl-induced leakage was inhibited by pretreatment with atropine, a non-specific muscarinic receptor antagonist, and also by pretreatment with either pirenzepine, a muscarinic M(1) receptor antagonist, or 4-DAMP, a muscarinic M(3) receptor antagonist. Pirenzepine was more potent than atropine and 4-DAMP. These antagonists were also studied on airway microvascular leakage or bronchoconstriction induced by intravenous administration of acetylcholine (ACh). Atropine, pirenzepine and 4-DAMP inhibited ACh-induced airway microvascular leakage with similar potencies. In sharp contrast, 4-DAMP and atropine were more potent inhibitors of ACh-induced bronchoconstriction than pirenzepine. Methoctramine, a muscarinic M(2) receptor antagonist, was ineffective in all experimental conditions. These results suggest that airway microvascular leakage caused by HCl intra-oesophageal instillation involves ACh release from vagus nerve terminals and that M(1) and M(3) receptors play a major role in cholinergic-mediated microvascular leakage, whereas M(3) receptors are mainly involved in ACh-induced bronchoconstriction.  相似文献   

20.
Complications arising from diabetes mellitus include cognitive deficits, neurophysiological and structural changes in the brain. The current study investigated the expression of cholinergic, insulin, Vitamin D receptor and GLUT 3 in the brainstem of streptozotocin-induced diabetic rats. Radioreceptor binding assays and gene expression were done in the brainstem of male Wistar rats. Our results showed that Bmax of total muscarinic, muscarinic M3 receptors was increased and muscarinic M1 receptor was decreased in diabetic rats compared to control. A significant increase in gene expression of muscarinic M3, α7 nicotinic acetylcholine, insulin, Vitamin D3 receptors, acetylcholine esterase, choline acetyl transferase and GLUT 3 were observed in the brainstem of diabetic rats. Immunohistochemistry studies of muscarinic M1, M3 and α7 nicotinic acetylcholine receptors confirmed the gene expression at protein level. Vitamin D3 and insulin treatment reversed diabetes-induced alterations to near control. This study provides an evidence that diabetes can alter the expression of cholinergic, insulin, Vitamin D receptors and GLUT 3 in brainstem. We found that Vitamin D3 treatment could modulate the Vitamin D receptors and plays a pivotal role in maintaining the glucose transport and expressional level of cholinergic receptors in the brainstem of diabetic rats. Thus, our results suggest a therapeutic role of Vitamin D3 in managing neurological disorders associated with diabetes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号