首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
 Perceived duration can be assessed behaviorally by adjusting the interval between two flashes so that an observer just perceives a certain relation between them. In such studies, the cognitive characteristics of the required relation necessarily interact with the sensory characteristics of the responses evoked by the two flashes. To dissociate the contributions of these two factors, we executed a physiological study which yielded more complete information on the role of each factor in two paradigms which have been used to characterize perceived duration behaviorally, namely the persistence-of-form design and the successive field design. The effect of sensory manipulations have yielded particularly problematic results in these two paradigms because opposite trends were found when intensity was varied. Intracellular recordings were therefore taken from photoreceptor cells exposed to procedural manipulations which match the sensory and cognitive variations employed in behavioral paradigms. The sensory variables of flash intensity, state of adaptation, and flash interval were explored with some completeness. Cognitive factors were assessed in two ways. First, the contribution of the neural site of sensory integration was determined by making a clear distinction between data collected when all stimuli affect the same receptors versus data collected when different stimuli affect different receptors. Second, the consequences of arbitrary choices of candidate code and dependent variable were also explored. When so organized, the physiological data provide a coherent basis for harmonizing apparently contradictory behavioral results because they qualitatively paralleled the behavioral data's complex dependence on intensity and interval. In particular, both direct and inverse dependencies of response duration on intensity exist in both physiology and behavior with the exact nature of the trend depending as much on the cognitive analysis of the neural responses as on their dynamics and energetics. Further, large quantitative differences were found which also were an expression of the different ways in which the two behavioral paradigms affect receptor potentials. Received: 5 July 2000 / Accepted in revised form: 14 February 2001  相似文献   

2.
3.
Bumps, the responses evoked by single photons in the ventral photoreceptor of Limulus polyphemus, were measured under voltage clamp conditions. The bumps were evoked by illuminating the photoreceptor either with a global flash or a small light spot (diameter about 5 m) which covers only 0.25% of the light-sensitive part of the cell membrane. The light energy of both flash types was adjusted so that each flash on average evoked one bump. Parameters of bumps evoked by local light spots in various membrane areas were compared with those evoked by light flashes which illuminated the whole photoreceptor. The results show that the bump amplitude depends on the location of the illumination. Membrane areas were found where the average value of the bump amplitude was either smaller or larger for a spot illumination than for a whole cell illumination. The latency and the shape (e.g. width) of the bumps does not depend on the location of the illumination.  相似文献   

4.
 Nerve cell signals are different in form from the stimuli that evoke them and they exhibit complex spatio-temporal characteristics. This defines a neural coding problem which is addressed by two current theories: Multiple Meaning Theory holds that neural signals contain patterns that make statements about combinations of stimulus properties; the Task Dependence Hypothesis suggests that different features of identical neural signals mediate performance in different behavioral tasks. These coding issues were addressed by investigating the representation of sensory information in the distal nervous system after transduction of visual stimuli into bio-electric signals. The objects of study were light-evoked neural responses which had been intracellularly recorded from single retinula (photoreceptor) cells in Limulus lateral eyes. The efficacies with which sensory information was represented by various candidate neural codes were calculated using receiver operating characteristic (ROC) analyses to provide objective indices. The specific visual problem under investigation was discrimination between light flashes whose intensities differed by a very small amount. A wide range of light adaptation states and relative stimulus intensities were explored. Extremely stringent data quality standards were applied which restricted the investigation to cells whose potentials did not exhibit any statistically significant drift during the hours required for data collection. Seven cellular characterizations were simultaneously monitored to detect drift in a given cell’s potentials; these characterizations included the value of the membrane potential and the values of six candidate codes. These codes were: the area under the light-evoked receptor potential (RP), the mean value of the RP, the peak height of the RP, the slope of the onset of the RP, the duration required for the RP to drop from its peak by a given amount, and the duration required for the RP to end. The results were: (1) Light adaptation increases efficacy. (2) Thus, light adaptation trades sensitivity for acuity (as characterized by ROC discriminations). (3) Increasing relative light flash intensity also increases efficacy. (4) The efficacies of the various codes are significantly different and fall in the following order: area?peak=mean?duration-end=slope= duration-drop. These findings further demonstrate that arbitrary characterizations of stimulus-response relationships are very likely to be incomplete. They particularly indicate that many commonly used and quite conventional neural analysis strategies may substantially underestimate system performance. Received: 21 August 1995/Accepted in revised form: 19 April 1996  相似文献   

5.
The electrophysiology of extraocular photoreception in the myopsidsquid, Loligo forbesi Steenstrup 1856 has been examined. Extracellulargenerator potentials were evoked by white light flashes. Intracellularrecordings from extraocular photoreceptor cells in the parolfactorybodies of the squid demonstrated that they had resting potentialsaround –40 mV, and were depolarised by flashes of white,but not red light (>650 nm). The evoked depolarisation consistedof a transient component, followed by a steady plateau component.The amplitude of depolarisation increased with the logarithmof the light intensity and was maintained for the duration ofthe light stimulus. Action potentials were seen in some recordingsand these increased in frequency during light flash stimulation. (Received 11 February 1997; accepted 10 May 1997)  相似文献   

6.
In situ cGMP phosphodiesterase and photoreceptor potential in gecko retina   总被引:3,自引:1,他引:2  
The possible involvement of phosphodiesterase (PDE) activation in phototransduction was investigated in gecko photoreceptors by comparing the in situ PDE activity with the photoreceptor potential. In the dark, intracellular injection of cGMP into a gecko photoreceptor caused a long-lasting depolarization. An intense light flash given during the depolarization phase repolarized the cell with a short latency comparable to that of the light-evoked hyperpolarizing response, which indicates that the activation of PDE in situ is rapid enough to generate the photoreceptor potential. PDE activity in situ was estimated quantitatively from the duration of the cGMP-induced depolarization, since it was expected that the higher the PDE activity, the shorter the duration. Under steady illumination, the enzyme exhibited a constant activity. On exposure to a light flash, PDE became activated, but recovered in the dark with a time course that was dependent on the intensity of the preceding stimulus. When PDE activity and photoreceptor sensitivity to light were measured in the same cell after a light flash, both recovery processes showed similar kinetics. Theoretical analysis showed that the parallelism in the recovery time courses could be explained if cGMP is the transduction messenger. These results suggest that PDE activation is involved not only in the generation but also in the adaptation mechanisms of the photoreceptor potential.  相似文献   

7.
Enhancement and phototransduction in the ventral eye of limulus   总被引:9,自引:8,他引:1       下载免费PDF全文
Limulus ventral photoreceptors were voltage clamped to the resting (dark) potential and stimulated by a 20-ms test flash and a 1-s conditioning flash. At a constant level of adaptation, we measured the response to the test flash given in the dark (control) and the incremental response produced when the test flash occurred within the duration of the conditioning flash. The incremental response is defined as the response to the conditioning and test flashes minus the response to the conditioning flash given alone. When the test flash was presented within 100 ms after the onset of the conditioning flash we observed that: (a) for dim conditioning flashes the incremental response equaled the control response; (b) for intermediate intensity conditioning flashes the incremental response was greater than the control response (we refer to this as enhancement); (c) for high intensity conditioning flashes the incremental response nearly equaled the control response. Using 10-μm diam spots of illumnination, we stimulated two spatially separate regions of one photoreceptor. When the test flash and the conditioning flash were presented to the same region, enhancement was present; but when the flashes were applied to separate regions, enhancement was nearly absent. This result indicates that enhancement is localized to the region of illumination. We discuss mechanisms that may account for enhancement.  相似文献   

8.
Bumps were recorded in Limulus ventral nerve photoreceptor as deflections in membrane voltage during 10 s illuminations by dim light which were repeated every 20 s. The bump amplitude vs frequency distribution and its dependence on the intensity of a preadapting light flash are described. Light adaptation which diminishes the average bump amplitude alters the character of the bump amplitude distribution from a curve with a convex region to a continuously falling concave curve. Weak light adaptation can increase frequency (and height) of the bumps elicited by constant stimuli. Raising the external Ca2+-concentration from 10 to 40 mmol/l augments the effect of a preadapting light flash in diminishing the bump amplitudes and also increases the bump frequency. The results are consistent with the assumptions
  • that light adaptation is based on a Ca2+-dependent reduction of the amplification factor which determines the bump size and
  • that the coupling between light induced rhodopsin reactions and bump generation is Ca2+-dependent.
  •   相似文献   

    9.
    Calcium ions were iontophoretically injected into ventral photoreceptors of Limulus by passing current between two intracellular pipettes. Changes in sensitivity and photoresponse time course were measured for both light adaptation and Ca++ injection. We found for some photoreceptors that there was no significant difference in the photoresponse time course for desensitization produced by light adaptation or by Ca++ injection. In other photoreceptors, the time delay of photoresponse for Ca++ injection was slightly longer than for light adaptation. The variability of threshold response amplitude and time delay decreases when the photoreceptor is desensitized by either light adaptation or Ca++ injection. The peak amplitude versus log stimulus intensity relationships for controls, light adaptation, and Ca++ injection all could be described very closely by a single template curve shifted along the log intensity axis. A 40- to 50-fold change in sensitivity is associated with a 2-fold change in photoresponse time delay for both light adaptation and Ca++ injection.  相似文献   

    10.
    The possible role of Ca ions in mediating the drop in sensitivity associated with light adaptation in Limulus ventral photoreceptors was assessed by simultaneously measuring the sensitivity to light and the intracellular free Ca concentration (Cai); the latter was measured by using Ca-selective microelectrodes. In dark-adapted photoreceptors, the mean resting Cai was 3.5 +/- 2.5 microM SD (n = 31). No correlation was found between resting Cai and absolute sensitivity from cell to cell. Typically, photoreceptors are not uniformly sensitive to light; the Cai rise evoked by uniform illumination was 20-40 times larger and faster in the most sensitive region of the cell (the rhabdomeral lobe) than it was away from it. In response to a brief flash, the Cai rise was barely detectable when 10(2) photons were absorbed, and it was saturated when approximately 10(5) photons were absorbed. During maintained illumination, starting near the threshold of light adaptation, steady Cai increases were associated with steady desensitizations over several log units of light intensity: a 100-fold desensitization was associated with a 2.5-fold increase in Cai. After a bright flash, sensitivity and Cai recovered with different time courses: the cell was still desensitized by approximately 0.5 log units when Cai had already recovered to the prestimulus level, which suggests that under those conditions Cai is not the rate-limiting step of dark adaptation. Ionophoretic injection of EGTA markedly decreased the light-induced Cai rise and increased the time to peak of the light response, but did not alter the resting Cai, which suggests that the time to peak is affected by a change in the capacity to bind Ca2+ and not by resting Cai. Lowering the extracellular Ca2+ concentration (Cao) first decreased Cai and increased sensitivity. Longer exposure to low Cao resulted in a further decrease of Cai but decreased rather than increased sensitivity, which suggests that under certain conditions it is possible to uncouple Cai and sensitivity.  相似文献   

    11.
    Electrical potentials from the eye (ERG) and from the contralateral visual cortex were recorded in response to flashes of white and of colored light of various intensities and durations. The evoked potentials were found to parallel the behavior of the ERG in several significant respects. Selective changes in the ERG brought about by increasing the light intensity and by light adaptation led to parallel selective changes in the cortical responses. The dual waves (b1, b2) of the ERG were found to have counterparts in two cortical waves (c1, c2) which, in respect to changes in light intensity and to light adaptation, behaved analogously to the two retinal components. The responses evoked at high intensity showed only the diphasic c1-potential. As stimulus intensity was lowered the c1-wave decreased in magnitude and a delayed c2-component appeared. The c2-potential increased in amplitude as light intensity of the flash was further reduced. Eventually the c2-wave, too, decreased as stimulus reduction continued. There was no wave length specificity in regard to either the duplex b-waves or duplex cortical waves. Both appeared at all wave lengths from 454 mµ to 630 mµ. The two cortical waves evoked by brief flashes of colored light showed all the behavior to changes in stimulus intensity and to light adaptation that occurred with white light.  相似文献   

    12.
    Response properties of short-type (R1-6) photoreceptors of the blowfly (Calliphora vicina) were investigated with intracellular recordings using repeated sequences of pseudorandomly modulated light contrast stimuli at adapting backgrounds covering 5 log intensity units. The resulting voltage responses were used to determine the effects of adaptational regulation on signal-to-noise ratios (SNR), signal induced noise, contrast gain, linearity and the dead time in phototransduction. In light adaptation the SNR of the photoreceptors improved more than 100-fold due to (a) increased photoreceptor voltage responses to a contrast stimulus and (b) reduction of voltage noise at high intensity backgrounds. In the frequency domain the SNR was attenuated in low frequencies with an increase in the middle and high frequency ranges. A pseudorandom contrast stimulus by itself did not produce any additional noise. The contrast gain of the photoreceptor frequency responses increased with mean illumination and the gain was best fitted with a model consisting of two second order and one double pole of first order. The coherence function (a normalized measure of linearity and SNR) of the frequency responses demonstrated that the photoreceptors responded linearly (from 1 to 150 Hz) to the contrast stimuli even under fairly dim conditions. The theoretically derived and the recorded phase functions were used to calculate phototransduction dead time, which decreased in light adaptation from approximately 5-2.5 ms. This analysis suggests that the ability of fly photoreceptors to maintain linear performance under dynamic stimulation conditions results from the high early gain followed by delayed compressive feed-back mechanisms.  相似文献   

    13.
    In previous work we have presented evidence for electrogenic Na+/Ca2+ exchange in Limulus ventral photoreceptors (1989. J. Gen. Physiol. 93:473-492). This article assesses the contributions to photoreceptor physiology from Na+/Ca2+ exchange. Four separate physiological processes were considered: maintenance of resting sensitivity, light-induced excitation, light adaptation, and dark adaptation. (a) Resting sensitivity: reduction of [Na+]o caused a [Ca2+]o-dependent reduction in light sensitivity and a speeding of the time courses of the responses to individual test flashes; this effect was dependent on the final value to which [Na+]o was reduced. The desensitization caused by Na+ reduction was dependent on the initial sensitivity of the photoreceptor; in fully dark-adapted conditions no desensitization was observed; in light-adapted conditions, extensive desensitization was observed. (b) Excitation: Na+ reduction in fully dark-adapted conditions caused a Ca2+o-dependent depolarizing phase in the receptor potential that persisted beyond the stimulus duration and was evoked by a bright adapting flash. (c) Light adaptation: the degree of desensitization induced by a bright adapting flash was Na+o dependent, being larger with lower [Na+]o. Na+ reduction enhanced light adaptation only at intensities brighter than 4 x 10(-6) W/cm2. In addition to being Na+o dependent, light adaptation was Ca2+o dependent, being greater at higher [Ca2+]o. (d) Dark adaptation: the recovery of light sensitivity after adapting illumination was Na+o dependent. Dark adaptation after bright illumination in voltage-clamped and in unclamped conditions was faster in normal-Na+ saline than in reduced Na+ saline. The final sensitivity to which photoreceptors recovered was lower in reduced-Na+ saline when bright adapting illumination was used. The results suggest the involvement of Na+/Ca2+ exchange in each of these physiological processes. Na+/Ca2+ exchange may contribute to these processes by counteracting normal elevations in [Ca2+]i.  相似文献   

    14.
    The responses of rabbit rods to light were studied by drawing a single rod outer segment projecting from a small piece of retina into a glass pipette to record membrane current. The bath solution around the cells was maintained at near 40 degrees C. Light flashes evoked transient outward currents that saturated at up to approximately 20 pA. One absorbed photon produced a response of approximately 0.8 pA at peak. At the rising phase of the flash response, the relation between response amplitude and flash intensity (IF) had the exponential form 1-e-kappa FIF (where kappa F is a constant denoting sensitivity) expected from the absence of light adaptation. At the response peak, however, the amplitude-intensity relation fell slightly below the exponential form. At times after the response peak, the deviation was progressively more substantial. Light steps evoked responses that rose to a transient peak and rapidly relaxed to a lower plateau level. The response-intensity relation again indicated that light adaptation was insignificant at the early rising phase of the response, but became progressively more prominent at the transient peak and the steady plateau of the response. Incremental flashes superposed on a steady light of increasing intensity evoked responses that had a progressively shorter time-to-peak and faster relaxation, another sign of light adaptation. The flash sensitivity changed according to the Weber-Fechner relation (i.e., inversely) with background light intensity. We conclude that rabbit rods adapt to light in a manner similar to rods in cold-blooded vertebrates. Similar observations were made on cattle and rat rods.  相似文献   

    15.
    The effects of the intracellular iontophoretic injection of Na+ ions have been quantitatively compared with adaptation in ventral photoreceptors of Limulus. We find that: (a) both light adaptation and sodium injection are associated with a decrease in the variability of the threshold response amplitued; (b) both light adaptation and sodium injection are associated with a decrease in the absolute value of the temporal dispersion of the threshold response time delay; (c) the same template curve adequately fits the intensity response relationships measured under light adaptation and Na+ injection; (d) both light adaptation and Na+ injection produce a fourfold decrease in response time delay for a desensitization of 3 log units; (e) the time coures of light adaptation and dark adaptation is significantly faster than the onset of and recovery from desensitization produced by Na+ injection; (f) unlike local illumination, Na+ injection does not produce localized desensitization of the photoreceptor. These findings suggest that a rise in intracellular Na+ concentration makes at most only a minor contribution (probably less than 5%) to the total adaptation of these receptors in the intensity range we have examined (up to 3 log units above absolute threshold). However, changes in intracellular Na+ concentration may contribute to certain components of light and dark adaptation in these receptors.  相似文献   

    16.
    Objectives: The paper was aimed to establish the influence of some general and local factors on adaptation process to removable prostheses (RPs). The adaptation process is a complex issue, which is often associated with painful reactions. Those complaints force patients to visit a dentist who makes alterations to reduce the patient's discomfort. Material and methods: The study involved analysis of 300 dental records of patients who visited our Department for RPs. The authors analysed the influence of gender, age, condition of general health, maintenance of the prosthetic base tissues and the kind of prostheses on the process of adaptation. It was measured by means of a number of follow‐up visits of the patients to our polyclinic. The findings were analysed statistically by means of chi‐squared test. The level of significance was assumed to be p < 0.05. Results and conclusions: Adaptation to RPs without any correction was revealed by about one‐fifth of patients. Men adapted to RPs better than women. The biggest problems with adaptation to RPs were observed in patients using a complete and partial prosthesis simultaneously. The number of follow‐up visits by patients who were treated with RPs for the first time or had been treated before was almost the same. Adaptation of RPs on an atrophic muco‐osseous ridge was associated with more multiple visits than in the case of a well‐preserved ridge. Healthy patients adapt to RPs better than patients with systemic disorders. Taking into account the limitations of the study, the number of follow‐up visits may be used as a helpful indicator of the adaptation process.  相似文献   

    17.
    The level of dark adaptation of the whirligig beetle can be measured in terms of the threshold intensity calling forth a response. The course of dark adaptation was determined at levels of light adaptation of 6.5, 91.6, and 6100 foot-candles. All data can be fitted by the same curve. This indicates that dark adaptation follows parts of the same course irrespective of the level of light adaptation. The intensity of the adapting light determines the level at which dark adaptation will begin. The relation between log aI 0 (instantaneous threshold) and log of adapting light intensity is linear over the range studied.  相似文献   

    18.
    E D Lipson 《Biophysical journal》1975,15(10):1013-1031
    By means of white gaussian noise stimulation, the Wiener kernels are derived for the Phycomyces light growth response for a variety of intensity conditions. In one experiment the intensity I, rather than log I, is used as the input variable. Under the very limited dynamic range of that experiment, the response is fairly linear. To examine the dependence of the kernels on dynamic range, a series of experiments were performed in which the range of log I was halved and doubled relative to normal. The amplitude of the kernels, but not the time course, is affected strongly by the choice of dynamic range, and the dependence reveals large-scale nonlinearities not evident in the kernels themselves. In addition kernels are evaluated for experiments at a number of absolute intensity levels ranging from 10(-12) to 10(-3) W/cm2. The kernel amplitudes are maximal at about 10(-6) W/cm2. At 10(-12) W/cm2, just above the absolute threshold, the respond is very small. The falloff at high intensity, attributable to inactivation of the photoreceptor, is analyzed in the framework of a first-order pigment kinetics model, yielding estimates for the partial extinction coefficient for inactivation epsilonI455 = (1.5 +/- 0.2) X 10(4) liter/mol-cm and a regeneration time constant of tau = (2.7 +/- 0.6) min. A model is introduced which associates the processes of adaptation and photoreceptor inactivation. The model predicts that the time constants for adaptation and pigment should be identical. This prediction is consistent with values in this and the preceding paper. The effects of pigment inactivation are simulated by a linear electronic analog circuit element, which may be cascaded with the linear simulator circuit in the preceding paper.  相似文献   

    19.
    Besides the physical limits imposed on photon absorption, the coprocessing of visual information by the phototransduction cascade and photoreceptor membrane determines the fidelity of photoreceptor signaling. We investigated the response dynamics and signaling efficiency of Drosophila photoreceptors to natural-like fluctuating light contrast stimulation and intracellular current injection when the cells were adapted over a 4-log unit light intensity range at 25 degrees C. This dual stimulation allowed us to characterize how an increase in the mean light intensity causes the phototransduction cascade and photoreceptor membrane to produce larger, faster and increasingly accurate voltage responses to a given contrast. Using signal and noise analysis, this appears to be associated with an increased summation of smaller and faster elementary responses (i.e., bumps), whose latency distribution stays relatively unchanged at different mean light intensity levels. As the phototransduction cascade increases, the size and speed of the signals (light current) at higher adapting backgrounds and, in conjunction with the photoreceptor membrane, reduces the light-induced voltage noise, and the photoreceptor signal-to-noise ratio improves and extends to a higher bandwidth. Because the voltage responses to light contrasts are much slower than those evoked by current injection, the photoreceptor membrane does not limit the speed of the phototransduction cascade, but it does filter the associated high frequency noise. The photoreceptor information capacity increases with light adaptation and starts to saturate at approximately 200 bits/s as the speed of the chemical reactions inside a fixed number of transduction units, possibly microvilli, is approaching its maximum.  相似文献   

    20.
    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号