首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
The genetic structures of bacterial communities associated with Medicago truncatula Gaertn. cv. Jemalong line J5 (Myc+ Nod+) and its symbiosis-defective mutants TRV48 (Myc+ Nod-) and TRV25 (Myc- Nod-) were compared. Plants were cultivated in a fertile soil (Chateaurenard, France) and in soil from the Mediterranean basin showing a low fertility (Mas d'Imbert, France). Plant growth, root architecture, and the efficiency of root symbiosis of the three plant genotypes were characterized in the two soils. Structures of the bacterial communities were assessed by automated-ribosomal intergenic spacer analysis (A-RISA) fingerprinting from DNA extracted from the rhizosphere soil and root tissues. As expected, the TRV25 mutant did not develop endomycorrhizal symbiosis in any of the soils, whereas mycorrhization of line J5 and the TRV48 mutant occurred in both soils but at a higher intensity in the Mas d'Imbert (low fertility) than in the Chateaurenard soil. However, modifications of plant growth and root architecture, between mycorrhizal (J5 and TRV48) and nonmycorrhizal (TRV25) plants, were recorded only when cultivated in the Mas d'Imbert soil. Similarly, the genetic structures of bacterial communities associated with mycorrhizal and nonmycorrhizal plants differed significantly in the Mas d'Imbert soil but not in the Chateaurenard soil. Multivariate analysis of the patterns allowed the identification of molecular markers, explaining these differences, and markers were further sequenced. Molecular marker analysis allowed the delineation of 211 operational taxonomic units. Some of those belonging to the Comamonadaceae and Oxalobacteraceae (beta-Proteobacteria) families were found to be significantly more represented within bacterial communities associated with the J5 line and the TRV48 mutant than within those associated with the TRV25 mutant, indicating that these bacterial genera were preferentially associated with mycorrhizal roots in the Mas d'Imbert soil.  相似文献   

2.
Morandi D  Prado E  Sagan M  Duc G 《Mycorrhiza》2005,15(4):283-289
From a pool of Medicago truncatula mutants—obtained by gamma-irradiation or ethyl methanesulfonate mutagenesis—impaired in symbiosis with the N-fixing bacterium Sinorhizobium meliloti, new mutants are described and genetically analysed, and for already reported mutants, complementary data are given on their phenotypic and genetic analysis. Phenotypic data relate to nodulation and mycorrhizal phenotypes. Among the five new mutants, three were classified as [Nod+ Fix Myc+] and the mutations were ascribed to two loci, Mtsym20 (TRV43, TRV54) and Mtsym21 (TRV49). For the two other new mutants, one was classified as [Nod–/+ Myc+] with a mutation ascribed to gene Mtsym15 (TRV48), and the other as [Nod Myc-/+] with a mutation ascribed to gene Mtsym16 (TRV58). Genetic analysis of three previously described mutants has shown that [Nod–/+ Myc+] TR74 mutant can be ascribed to gene Mtsym14, and that [Nod–/+ Myc–/+] TR89 and TRV9 mutants are ascribed to gene Mtsym2 (dmi2). Using a detailed analysis of mycorrhizal phenotype, we have observed a delayed typical arbuscular mycorrhizal formation on some mutants that present thick lens-shaped appressoria. This phenotype was called [Myc–/+] and mutants TR25, TR26, TR89, TRV9, P1 and Y6 were reclassified as [Myc–/+]. Mutant P1 was reclassified as [Nod–/+] because of a late nodulation observed on roots of this mutant.  相似文献   

3.
4.
5.
Mycorrhizal fungi and nonhydraulic root signals of soil drying   总被引:4,自引:1,他引:3       下载免费PDF全文
Augé RM  Duan X 《Plant physiology》1991,97(2):821-824
We propose that mycorrhizal colonization of roots alters nonhydraulic root to shoot communication of soil drying. Split-root rose (Rosa hybrida L. cv Samantha) plants—one side of the root system colonized by Glomus intraradices Schenck & Smith, the other side nonmycorrhizal—displayed different stomatal conductances upon partial drying, depending upon whether mycorrhizal or nonmycorrhizal roots were dried. No differences in leaf water status were observed among control plants and those whose mycorrhizal or nonmycorrhizal roots were dried.  相似文献   

6.
Moisture retention properties of a mycorrhizal soil   总被引:1,自引:0,他引:1  
The water relations of arbuscular mycorrhizal plants have been compared often, but virtually nothing is known about the comparative water relations of mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis typically affects soil structure, and soil structure affects water retention properties; therefore, it seems likely that mycorrhizal symbiosis may affect soil water relations. We examined the water retention properties of a Sequatchie fine sandy loam subjected to three treatments: seven months of root growth by (1) nonmycorrhizal Vigna unguiculata given low phosphorus fertilization, (2) nonmycorrhizal Vigna unguiculata given high phosphorus fertilization, (3) Vigna unguiculata colonized by Glomus intraradices and given low phosphorus fertilization. Mycorrhization of soil had a slight but significant effect on the soil moisture characteristic curve. Once soil matric potential (m) began to decline, changes in m per unit change in soil water content were smaller in mycorrhizal than in the two nonmycorrhizal soils. Within the range of about –1 to –5 MPa, the mycorrhizal soil had to dry more than the nonmycorrhizal soils to reach the same m. Soil characteristic curves of nonmycorrhizal soils were similar, whether they contained roots of plants fed high or low phosphorus. The mycorrhizal soil had significantly more water stable aggregates and substantially higher extraradical hyphal densities than the nonmycorrhizal soils. Importantly, we were able to factor out the possibly confounding influence of differential root growth among mycorrhizal and nonmycorrhizal soils. Mycorrhizal symbiosis affected the soil moisture characteristic and soil structure, even though root mass, root length, root surface area and root volume densities were similar in mycorrhizal and nonmycorrhizal soils.  相似文献   

7.
The influence of two vesicular-arbuscular mycorrhizal fungi and phosphorus (P) nutrition on penetration, development, and reproduction by Meloidogyne incognita on Walter tomato was studied in the greenhouse. Inoculation with either Gigaspora margarita or Glomus mosseae 2 wk prior to nematode inoculation did not alter infection by M. incognita compared with nonmycorrhizal plants, regardless of soil P level (either 3 μg [low P] or 30 μg [high P] available P/g soil). At a given soil P level, nematode penetration and reproduction did not differ in mycorrhizal and nonmycorrhizal plants. However, plants grown in high P soil had greater root weights, increased nematode penetration and egg production per plant, and decreased colonization by mycorrhizal fungi, compared with plants grown in low P soil. The number of eggs per female nematode on mycorrhizal and nonmycorrhizal plants was not influenced by P treatment. Tomato plants with split root systems grown in double-compartment containers which had either low P soil in both sides or high P in one side and low P in the other, were inoculated at transplanting with G. margarita and 2 wk later one-half of the split root system of each plant was inoculated with M. incognita larvae. Although the mycoorhizal fungus increased the inorganic P content of the root to a level comparable to that in plants grown in high P soil, nematode penetration and reproduction were not altered. In a third series of experiments, the rate of nematode development was not influenced by either the presence of G. margarita or high soil P, compared with control plants grown in low P soil. These data indicate that supplemental P (30 μ/g soil) alters root-knot nematode infection of tomato more than G. mosseae and G. margarita.  相似文献   

8.
The effect of application of the fungicide pentachloronitrobenzene (PCNB) at levels between 2 and 50 mg kg–1 soil on root growth, mycorrhizal infection and P uptake was studied in pot culture with oats (Avena sativa cv. Alfred) growing in a rendzina soil low in available P. The soil had been partially sterilized by X-ray, and half of the pots were inoculated with spores of the VAM-fungusGlomus mosseae (indigenous species).Soil irradiation (0.5 Mrad) did not decrease the levels of infection by VAM. Application of PCNB decreased the VAM-infected root length, at 50 mg PCNB kg–1 soil VAM-infected root length was about 12% of the controls. Total root length, however, increased to about 126% of control values at PCNB rates up to 20 mg kg–1 soil, but decreased to 89% of the controls at 50 mg kg–1 soil. Total P-uptake decreased with increasing levels of PCNB and was linearly correlated with infected root length (r=0.92).The stimulation of root growth by PCNB at rates up to 20 mg kg–1 soil is regarded as an indirect effect, brought about by suboptimal P-supply due to inhibition of VA-mycorrhiza. Conversely, the reduction of total root length at 50 mg PCNB kg–1 soil is most likely a direct effect. Due to the phytotoxicity of the fungicide, the contribution of the indigenous VA-mycorrhiza to plant P uptake under field conditions cannot be determined by soil application of PCNB at rates sufficient for complete inhibition of VAM.As inhibition or absence of VAM may lead to compensatory root growth, mycorrhizal dependency ought to be calculated from the amounts of P taken up per unit root length in mycorrhizal and nonmycorrhizal plants, respectively.  相似文献   

9.
A pot experiment was conducted to examine the effect of arbuscular mycorrhizal fungus, Glomus fasciculatum, and salinity on the growth of Acacia nilotica. Plants were grown in soil under different salinity levels (1.2, 4.0, 6.5, and 9.5 dS m−1). In saline soil, mycorrhizal colonization was higher at 1.2, 4.0, and 6.5 dS m−1 salinity levels in AM-inoculated plants, which decreased as salinity levels further increased (9.5 dS m−1). Mycorrhizal plants maintained greater root and shoot biomass at all salinity levels compared to nonmycorrhizal plants. AM-inoculated plants had higher P, Zn, and Cu concentrations than uninoculated plants. In mycorrhizal plants, nutrient concentrations decreased with the increasing levels of salinity, but were higher than those of the nonmycorrhizal plants. Mycorrhizal plants had greater Na concentration at low salinity levels (1.2, 4.0 dS m−1), which lowered as salinity levels increased (6.5, 9.5 dS m−1), whereas Na concentration increased in control plants. Mycorrhizal plants accumulated a higher concentration of K at all salinity levels. Unlike Na, the uptake of K increased in shoot tissues of mycorrhizal plants with the increasing levels of salinity. Our results indicate that mycorrhizal fungus alleviates deleterious effects of saline soils on plant growth that could be primarily related to improved P nutrition. The improved K/Na ratios in root and shoot tissues of mycorrhizal plants may help in protecting disruption of K-mediated enzymatic processes under salt stress conditions.  相似文献   

10.
Rough lemon seedlings were grown in mycorrhizal-infested or phosphorus-amended soil (25 and 300 mg P/kg) in greenhouse experiments. Plants Were inoculated with the citrus burrowing nematode, Radopholus citrophilus (0, 50, 100, or 200 nematodes per pot). Six months later, mycorrhizal plants and nonmycorrhizal, high-P plants had larger shoot and root weights than did non-mycorrhizal, low-P plants. Burrowing nematode population densities were lower in roots of mycorrhizal or nonmycorrhizal, high-P plants than in roots of nonmycorrhizal, low-P plants; however, differences in plant growth between mycorrhizal and nonmycorrhizal plants were not significant with respect to initial nematode inoculum densities. Phosphorus content in leaf tissue was significantly greater in mycorrhizal and nonmycorrhizal, high-P plants compared with nonmycorrhizal, low-P plants. Nutrient concentrations of K, Mg, and Zn were unaffected by nematode parasitism, whereas P, Ca, Fe, and Mn were less in nematode-infected plants. Enhanced growth associated with root colonization by the mycorrhizal fungus appeared to result from improved P nutrition and not antagonism between the fungus and the nematode.  相似文献   

11.
Growth of mycorrhizal tomato and mineral acquisition under salt stress   总被引:19,自引:0,他引:19  
 High salt levels in soil and water can limit agricultural production and land development in arid and semiarid regions. Arbuscular mycorrhizal fungi (AMF) have been shown to decrease plant yield losses in saline soils. The objective of this study was to examine the growth and mineral acquisition responses of greenhouse-grown tomato to colonization by the AMF Glomus mosseae [(Nicol. And Gerd.) Gerd. and Trappe] under varied levels of salt. NaCl was added to soil in the irrigation water to give an ECe of 1.4 (control), 4.7 (medium) and 7.4 dS m–1 (high salt stress). Plants were grown in a sterilized, low P (silty clay) soil-sand mix. Mycorrhizal colonization was higher in the control than in saline soil conditions. Shoot and root dry matter yields and leaf area were higher in mycorrhizal than in nonmycorrhizal plants. Total accumulation of P, Zn, Cu, and Fe was higher in mycorrhizal than in nonmycorrhizal plants under both control and medium salt stress conditions. Shoot Na concentrations were lower in mycorrhizal than in nonmycorrhizal plants grown under saline soil conditions. The improved growth and nutrient acquisition in tomato demonstrate the potential of AMF colonization for protecting plants against salt stress in arid and semiarid areas. Accepted: 21 February 2000  相似文献   

12.
Osmotic adjustment in Rosa hybrida L. cv Samantha was characterized by the pressure-volume approach in drought-acclimated and unacclimated plants brought to the same level of drought strain, as assayed by stomatal closure. Plants were colonized by either of the vesicular-arbuscular mycorrhizal fungi Glomus deserticola Trappe, Bloss and Menge or G. intraradices Schenck and Smith, or were nonmycorrhizal. Both the acclimation and the mycorrhizal treatments decreased the osmotic potential (Ψπ) of leaves at full turgor and at the turgor loss point, with a corresponding increase in pressure potential at full turgor. Mycorrhizae enabled plants to maintain leaf turgor and conductance at greater tissue water deficits, and lower leaf and soil water potentials, when compared with nonmycorrhizal plants. As indicated by the Ψπ at the turgor loss point, the active Ψπ depression which attended mycorrhizal colonization alone was 0.4 to 0.6 megapascals, and mycorrhizal colonization and acclimation in concert 0.6 to 0.9 megapascals, relative to unacclimated controls without mycorrhizae. Colonization levels and sporulation were higher in plants subjected to acclimation. In unacclimated hosts, leaf water potential, water saturation deficit, and soil water potential at a particular level of drought strain were affected most by G. intraradices. G. deserticola had the greater effect after drought preconditioning.  相似文献   

13.
Plasmids which contained wild-type or mutated Rhizobium meliloti nodulation (nod) genes were introduced into NodR. trifolii mutants ANU453 and ANU851 and tested for their ability to nodulate clover. Cloned wild-type and mutated R. meliloti nod gene segments restored ANU851 to Nod+, with the exception of nodD mutants. Similarly, wild-type and mutant R. meliloti nod genes complemented ANU453 to Nod+, except for nodCII mutants. Thus, ANU851 identifies the equivalent of the R. meliloti nodD genes, and ANU453 specifies the equivalent of the R. meliloti nodCII genes. In addition, cloned wild-type R. trifolii nod genes were introduced into seven R. meliloti Nod mutants. All seven mutants were restored to Nod+ on alfalfa. Our results indicate that these genes represent common nodulation functions and argue for an allelic relationship between nod genes in R. meliloti and R. trifolii.  相似文献   

14.
Carbon (C) uptake by terrestrial ecosystems represents an important option for partially mitigating anthropogenic CO2 emissions. Short‐term atmospheric elevated CO2 exposure has been shown to create major shifts in C flow routes and diversity of the active soil‐borne microbial community. Long‐term increases in CO2 have been hypothesized to have subtle effects due to the potential adaptation of soil microorganism to the increased flow of organic C. Here, we studied the effects of prolonged elevated atmospheric CO2 exposure on microbial C flow and microbial communities in the rhizosphere. Carex arenaria (a nonmycorrhizal plant species) and Festuca rubra (a mycorrhizal plant species) were grown at defined atmospheric conditions differing in CO2 concentration (350 and 700 ppm) for 3 years. During this period, C flow was assessed repeatedly (after 6 months, 1, 2, and 3 years) by 13C pulse‐chase experiments, and label was tracked through the rhizosphere bacterial, general fungal, and arbuscular mycorrhizal fungal (AMF) communities. Fatty acid biomarker analyses and RNA‐stable isotope probing (RNA‐SIP), in combination with real‐time PCR and PCR‐DGGE, were used to examine microbial community dynamics and abundance. Throughout the experiment the influence of elevated CO2 was highly plant dependent, with the mycorrhizal plant exerting a greater influence on both bacterial and fungal communities. Biomarker data confirmed that rhizodeposited C was first processed by AMF and subsequently transferred to bacterial and fungal communities in the rhizosphere soil. Over the course of 3 years, elevated CO2 caused a continuous increase in the 13C enrichment retained in AMF and an increasing delay in the transfer of C to the bacterial community. These results show that, not only do elevated atmospheric CO2 conditions induce changes in rhizosphere C flow and dynamics but also continue to develop over multiple seasons, thereby affecting terrestrial ecosystems C utilization processes.  相似文献   

15.
The failure of Vigna luteola L. to colonize tropical montane regions of Venezuela with acid P-deficient soils that lack vegetation has been mainly attributed to the inability of indigenous arbuscular mycorrhizal fungi (AMFi) to be effective suppliers of P to this host plant. To test this hypothesis, Vigna luteola plants were grown in non sterile soil collected from this habitat. Plants became nodulated by indigenous rhizobia (Nod+) and the roots were colonized by AMFi (AMFi+). Some plants were inoculated with the arbuscular mycorrhizal fungus Rhizophagus manihotis (AMFg+). Other plants were fertilized with 6 mM nitrate and 2 mM P to inhibit nodulation (Nod-) and AMFi colonization (AMFi-), respectively and these served as controls. The Nod+AMFi+ plants displayed the smallest shoot and nodule dry weights upon harvest, the poorest AMF colonization, lowest foliar mineral content (N, P, Mg, Mn, Fe, Zn, and Cu), highest leaf ureide concentrations and lowest soil dehydrogenase, urease and acid phosphatase activities. Greater growth, nodulation, nutrient uptake, photosynthesis, catabolism of ureides in leaves, leaf superoxide dismutase and soil enzymatic activities were found in Nod+AMFg+ plants. The Nod-AMFg+ plants grew even better attributed to their higher P uptake that was allocated mainly to the photosynthetic apparatus rather than to N2-fixation. The results showed that V. luteola plants inoculated with R. manihotis and nodulated by indigenous rhizobia are capable successfully of colonizing open montane regions devoid of ground cover vegetation. The Nod+AMFg+ plants had greater growth, nodulation and root colonization by AMFg resulting in improved nutrient condition, enhanced uptake of nitrate and high catabolism of ureides in leaves than Nod+AMFi+ plants. However, more research is needed before the inoculation of open montane regions with AMFg can be recommended to land managers since a) the enhanced N2 fixation rate in Nod+AMFg+ plants have an extra cost of 1.2 mg P kg−1 leaf dry weight plant−1 which could places an extra burden on the plants grown in the P-deficient soils, and b) the possible impact of AMFg on the microbiology of these former forest soils must be assessed.  相似文献   

16.
Effects of inoculation with the arbuscular mycorrhizal (AM) fungus Glomus mosseae on the behavior of Hg in soil–plant system were investigated using an artificially contaminated soil at the concentrations of 0, 1.0, 2.0, and 4.0 mg Hg kg−1. Mercury accumulation was lower in mycorrhizal roots than in nonmycorrhizal roots when Hg was added at the rates of 2.0 and 4.0 mg kg−1, while no obvious difference in shoot Hg concentration was found between mycorrhizal and nonmycorrhizal treatments. Mycorrhizal inoculation significantly decreased the total and extractable Hg concentrations in soil as well as the ratio of extractable to total Hg in soil. Equilibration sorption of Hg by soil was investigated, and the results indicated that mycorrhizal treatment enhanced Hg sorption on soil. The uptake of Hg was lower by mycorrhizal roots than by nonmycorrhizal roots. These experiments provide further evidence for the role of mycorrhizal inoculation in increasing immobilization of Hg in soil and reducing the uptake of Hg by roots. Calculation on mass balance of Hg in soil suggests the presence of Hg loss from soil presumably through evaporation, and AM inoculation enhanced Hg evaporation. This was evidenced by a chamber study to detect the Hg evaporated from soil.  相似文献   

17.
The mechanism responsible for phosphorus inhibition of vesicular-arbuscular mycorrhiza formation in sudangrass (Sorghum vulgare Pers.) was investigated in a phosphorus-deficient sandy soil (0.5 micrograms phosphorus per gram soil) amended with increasing levels of phosphorus as superphosphate (0, 28, 56, 228 micrograms per gram soil). The root phosphorus content of 4-week-old plants was correlated with the amount of phosphorus added to the soil. Root exudation of amino acids and reducing sugars was greater for plants grown in phosphorus-deficient soil than for those grown in the phosphorus-treated soils. The increase in exudation corresponded with changes in membrane permeability of phosphorus-deficient roots, as measured by K+ (86Rb) efflux, rather than with changes in root content of reducing sugars and amino acids. The roots of phosphorus-deficient plants inoculated at 4 weeks with Glomus fasciculatus were 88% infected after 9 weeks as compared to less than 25% infection in phosphorus-sufficient roots; these differences were correlated with root exudation at the time of inoculation. For plants grown in phosphorus-deficient soil, infection by vesicular-arbuscular mycorrhizae increased root phosphorus which resulted in a decrease in root membrane permeability and exudation compared to nonmycorrhizal plants. It is proposed that, under low phosphorus nutrition, increased root membrane permeability leads to net loss of metabolites at sufficient levels to sustain the germination and growth of the mycorrhizal fungus during pre- and postinfection. Subsequently, mycorrhizal infection leads to improvement of root phosphorus nutrition and a reduction in membrane-mediated loss of root metabolites.  相似文献   

18.
19.
A method was developed to perform real-time analysis of cytosolic pH of arbuscular mycorrhizal fungi in culture using dye and ratiometric measurements (490/450 nm excitations). The study was mainly performed using photometric analysis, although some data were confirmed using image analysis. The use of nigericin allowed an in vivo calibration. Experimental parameters such as loading time and concentration of the dye were determined so that pH measurements could be made for a steady-state period on viable cells. A characteristic pH profile was observed along hyphae. For Gigaspora margarita, the pH of the tip (0–2 μm) was typically 6.7, increased sharply to 7.0 behind this region (9.5 μm), and decreased over the next 250 μm to a constant value of 6.6. A similar pattern was obtained for Glomus intraradices. The pH profile of G. margarita germ tubes was higher when cultured in the presence of carrot (Daucus carota) hairy roots (nonmycorrhizal). Similarly, extraradical hyphae of G. intraradices had a higher apical pH than the germ tubes. The use of a paper layer to prevent the mycorrhizal roots from being in direct contact with the medium selected hyphae with an even higher cytosolic pH. Results suggest that this method could be useful as a bioassay for studying signal perception and/or H+ cotransport of nutrients by arbuscular mycorrhizal hyphae.  相似文献   

20.
Early community assembly of soil microbial communities is essential for pedogenesis and development of organic legacies. We examined fungal and bacterial successions along a well‐established temperate glacier forefront chronosequence representing ~70 years of deglaciation to determine community assembly. As microbial communities may be heavily structured by establishing vegetation, we included nonvegetated soils as well as soils from underneath four plant species with differing mycorrhizal ecologies (Abies lasiocarpa, ectomycorrhizal; Luetkea pectinata, arbuscular mycorrhizal; Phyllodoce empetriformis, ericoid mycorrhizal; Saxifraga ferruginea, nonmycorrhizal). Our main objectives were to contrast fungal and bacterial successional dynamics and community assembly as well as to decouple the effects of plant establishment and time since deglaciation on microbial trajectories using high‐throughput sequencing. Our data indicate that distance from glacier terminus has large effects on biomass accumulation, community membership, and distribution for both fungi and bacteria. Surprisingly, presence of plants rather than their identity was more important in structuring bacterial communities along the chronosequence and played only a very minor role in structuring the fungal communities. Further, our analyses suggest that bacterial communities may converge during assembly supporting determinism, whereas fungal communities show no such patterns. Although fungal communities provided little evidence of convergence in community structure, many taxa were nonrandomly distributed across the glacier foreland; similar taxon‐level responses were observed in bacterial communities. Overall, our data highlight differing drivers for fungal and bacterial trajectories during early primary succession in recently deglaciated soils.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号