首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
A search for noncanonical variants of the gypsy retrotransposon (MDG4) in the genome of the Drosophila melanogaster strain G32 led to the cloning of four copies of the poorly studied 7411-bp gtwin element. Sequence analysis showed that gtwin belongs to a family of endogeneous retroviruses, which are widespread in the Drosophila genome and have recently been termed insect erantiviruses. The gtwin retrotransposon is evolutionarily closest to MDG4, as evident from a good alignment of their nucleotide sequences including ORF1 (the pol gene) and ORF3 (the env gene), as well as the amino acid sequences of their protein products. These regions showed more than 75% homology. The distribution of gtwin was studied in several strains of the genus Drosophila. While strain G32 contained more than 20 copies of the element, ten other D. melanogaster strains carried gtwin in two to six copies per genome. The gtwin element was not detected in D. hydei or D. virilis. Comparison of the cloned gtwin sequences with the gtwin sequence available from the D. melanogaster genome database showed that the two variants of the mobile element differ by the presence or absence of a stop codon in the central region of ORF3. Its absence from the gtwin copies cloned from the strain G32 may indicate an association between the functional state of ORF3 and amplification of the element.  相似文献   

3.
In Drosophila melanogaster there are two genes which encode the enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), Gapdh-43E and Gapdh-13F. We have shown that Gapdh-43E codes for the GAPDH subunit with an apparently larger molecular weight while Gapdh-13F encodes the GAPDH subunit having an apparently smaller molecular weight. Immunoblots of sodium dodecyl sulfate gels were used to survey species from throughout the genus and results indicated that two classes of GAPDH subunits are present only in Drosophila species of the melanogaster and takahashi subgroups of the melanogaster group. Only the smaller subunit is found in species of the obscura group while all other species have only a large subunit. Drosophila hydei was analyzed at the DNA level as a representative species of the subgenus Drosophila. The genome of this species has a single Gapdh gene which is localized at a cytogenetic position likely to be homologous to Gapdh-43 E of D. melanogaster. Comparison of its sequence with the sequence of the D. melanogaster Gapdh genes indicates that the two genes of D. melanogaster are more similar to one another than either is to the gene from D. hydei. The Gapdh gene from D. hydei contains an intron following codon 29. Neither Gapdh gene of D. melanogaster has an intron within the coding region. Southern blots of genomic DNA were used to determine which species have duplicate Gapdh genomic sequences. Gene amplification was used to determine which species have a Gapdh gene that is interrupted by an intron. Species of the subgenus Drosophila have a single Gapdh gene with an intron. Species of the willistoni and saltans groups have a single Gapdh gene that does not contain an intron.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

4.
The phylogenetic relationships among nine Drosophila species belonging to the obscura group were investigated by establishing the segments displaying banding homologies in their element B (equivalent to the U element of D. subobscura). The phylogenetic ordering of the species was accomplished using overlapping inversions. Two African species, D. kitumensis and D. microlabis, were investigated. These species are homosequential for their element B gene arrangement but differ from that of D. obscura by several rearrangements. Drosophila obscura seems to be most closely related to D. subsilvestris, from which the respective element B gene arrangements differ at least by six inversions. Three species, D. obscura, D. ambigua, and D. tristis, are closely related and form a cluster. Drosophila obscura displays an element B polymorphism for a pericentric inversion for which D. ambigua is fixed for one gene arrangement and D. tristis for the other. Both D. ambigua and D. tristis share a short distal inversion in the small arm of the chromosome, and differ in this respect from D. obscura. Drosophila madeirensis, D. guanche, and D. subobscura all share the same element B gene arrangement, which is acrocentric, but metacentric in all the other species mentioned. It was found that the gene arrangements of the species from the obscura cluster seem to occupy an intermediate position between those of the species of the D. subobscura cluster and those of the African one. The data reported generally are in good agreement with information provided in the literature.  相似文献   

5.
The phylogenetic distribution of transposable families, P, gypsy, hobo, I, and mariner has been analyzed in 33 species of 11 groups of neotropical Drosophila and a Drosophilidae species Zygotrica vittimaculosa, using squash blot and dot blot. Genomic DNA of almost all neotropical species tested hybridized with gypsy probe and some species showed a particularly strong hybridization signal, as D. gaucha, D. virilis, and species of flavopilosa group. The hobo element was restricted to melanogaster group and some strains of D. willistoni. Only D. simulans DNA showed hybridization to mariner probe in all species tested and D. simulans and D. melanogaster showed hybridization with I element probe. P element homologous sequence was present in D. melanogaster and all species and strains of the willistoni and saltans groups tested. The presence of at least one P-homologous sequence was detected in Drosophila mediopunctata. This one was the only P-bearing species of all six tested from the tripunctata group. Four different pairs of primers homologous to segments of the canonical sequence of D. melanogaster's P were used to amplify specific sequences from D. mediopunctata DNA, showing the occurrence of seemingly well-conserved P-homologous sequences. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

6.
The no-on-transient A (nonA) gene encodes a putative RNA-binding protein, and mutations in this gene are known to affect vision, male courtship song and viability in Drosophila melanogaster. Here we have sequenced the coding region of the nonA gene of Drosophila littoralis and compared it with those of Drosophila virilis and D. melanogaster. All portions of nonA appeared to be conserved between D. littoralis and D. virilis, while the 5' region of the gene of these two species showed high divergence from that of a more distantly-related species, D. melanogaster. The same was true for the glycine repeat regions. No significant deviation from neutrality was observed in the analysis of intraspecific nucleotide variation in 5' or 3' region of the nonA gene in D. littoralis population. Also, comparison of D. littoralis sequences with homologous sequence of D. virilis suggests that the gene is evolving neutrally in D. virilis group. Divergence of the 5' regions between D. virilis group species and D. melanogaster could be a result of positive selection, but this finding is obscured by the long divergence time of the species groups.  相似文献   

7.
The endogenous Drosophila melanogaster retrovirus gypsy (mdg4) forms virus-like particles (VLPs) which are found as extracellular particles in the medium used to culture D. melanogaster cells. The D. hydei somatic cell line DH14, which does not harbour gypsy sequences, was exposed to D. melanogaster VLPs. Subsequent PCR and Southern analysis revealed that gypsy elements had penetrated into the D. hydei cells, suggesting interspecific transmission of the retrovirus. A D. hydei cell line containing gypsy sequences was established and grown in a mixed culture together with the G418-resistant D. hydei cell line DH33, and gypsy was shown to be transmitted from cell to cell. The proportion of cells carrying gypsy increased with time. The rate of gypsy invasion of the lines DH14 and DH33 was 10(-3) and 10(-2) per cell per generation, respectively. The results demonstrate the possibility of interspecific horizontal transfer of gypsy in the form of its VLPs.  相似文献   

8.
9.
We have determined the nucleotide sequence of a 7.5 kb full-size gypsy element from Drosophila subobscura strain H-271. Comparative analyses were carried out on the sequence and molecular structure of gypsy elements of D.subobscura (gypsyDs), D.melanogaster (gypsyDm) and D.virilis (gypsyDv). The three elements show a structure that maintains a common mechanism of expression. ORF1 and ORF2 show typical motifs of gag and pol genes respectively in the three gypsy elements and could encode functional proteins necessary for intracellular expansion. In the three ORF1 proteins an arginine-rich region was found which could constitute a RNA binding motif. The main differences among the gypsy elements are found in ORF3 (env-like gene); gypsyDm encodes functional env proteins, whereas gypsyDs and gypsyDv ORF3s lack some motifs essential for functionality of this protein. On the basis of these results, while gypsyDm is the first insect retrovirus described, gypsyDs and gypsyDv could constitute degenerate forms of these retroviruses. In this context, we have found some evidence that gypsyDm could have recently infected some D.subobscura strains. Comparative analyses of divergence and phylogenetic relationships of gypsy elements indicate that the gypsy elements belonging to species of different subgenera (gypsyDs and gypsyDv) are closer than gypsy elements of species belonging to the same subgenus (gypsyDs and gypsyDm). These data are congruent with horizontal transfer of gypsy elements among different Drosophila spp.  相似文献   

10.
11.
D Maier  A Preiss    J R Powell 《The EMBO journal》1990,9(12):3957-3966
An evolutionary approach was applied to identify elements involved in the regulation of the segmentation gene fushi tarazu (ftz) by comparing the Drosophila melanogaster ftz gene with its Drosophila hydei homologue. The overall organization of the ftz gene is very similar in both species. Surprisingly, ftz proved to be inverted in the ANT-C of D. hydei with respect to D. melanogaster. Strong homologies extend over the entire 6 kb of the ftz upstream region with the best match in the 'upstream element'. We identified several highly conserved boxes embedded in unrelated sequences that correspond extremely well to two germ layer specific enhancers in the upstream element. Transformation experiments revealed that D. hydei ftz gene products can restore D. melanogaster ftz function and, furthermore, that trans-acting factors from D. melanogaster recognize and control D. hydei ftz regulatory elements. These findings indicate a conservation of the entire regulatory network among segmentation genes for several millions of years during the evolution of Drosophila.  相似文献   

12.
E B Kokoza  E S Beliaeva  E F Zhimulev 《Genetika》1991,27(12):2082-2090
The DNA sequences from Drosophila melanogaster early ecdysterone-inducible puff 2B have been located in 8 Drosophila species by in situ hybridization. The location site of the ecs, dor and swi genes in D. funebris, D. virilis, D. hydei, D. repleta, D. mercatorum, D. paranaensis is a puff on the telomeric and of X chromosome; in D. kanekoi it is the puff in distal part of X chromosome; and in D. pseudoobscura it is the puff in proximal portion of X chromosome. So, conservative organization of DNA sequences located in D. melanogaster 2B puff could be suggested. Dispersed distribution of some DNA segments from the region studied in D. hydei chromosomes was revealed.  相似文献   

13.
T Barnett  P M Rae 《Cell》1979,16(4):763-775
A large proportion of the 28S ribosomal RNA genes in Drosophila virilis are interrupted by a DNA sequence 9.6 kilobase pairs long. As regards both its presence and its position in the 28S gene (about two thirds of the way in), the D. virilis rDNA intervening sequence is similar to that found in D. melanogaster rDNA, but lengths differ markedly between the two species. Degrees of nucleotide sequence homology have been detected bewteen rDNA interruptions of the two species. This homology extends to putative rDNA intervening sequences in diverse higher diptera (other Drosophila species, the house fly and the flesh fly), but hybridization of cloned D. melanogaster and D. virilis rDNA interruption segments to DNA of several lower diptera has been negative. As is the case with melanogaster rDNA interruptions, segments of the virilis rDNA intervening sequence hybridize with non-rDNA components of the virilis genome, and interspecific homology may involve these non-rDNA sequences as well as rDNA interruptions. There is, however, evidence from buoyant density fractionation of DNA that the distributions of interruption-related sequences are distinct in D. melanogaster and D. virilis genomes. Moreover, thermal denaturation studies have indicated differing extents of homology between hybridizable sequences in D. virilis DNA and different segments of the D. melanogaster rDNA intervening sequence. We infer from our studies that rDNA intervening sequences are prevalent among higher diptera; that in the course of the evolution of these organisms, elements of the intervening sequences have been moderately to highly conserved; and that this conservation extends in at least two distantly related species of Drosophila to similar sequences found elsewhere in the genomes.  相似文献   

14.
A Brehm  C B Krimbas 《Génome》1992,35(6):1075-1085
The phylogenetic relationships among nine species belonging to the obscura group of the genus Drosophila were deduced, based on similarities of the banding pattern of their polytene chromosomal element D. These similarities were inferred by the comparison of chromosomal photomaps. The phylogenetic reconstruction was the most parsimonious based on seriation by overlapping inversions and on the principle of conservation/disassociation of nearby located segments. The gene sequences of element D for all species studied were relatively easy to recognize in terms of the map of D. obscura, already found to occupy a relative central position in this group. Thus, three clusters of closely related species could be identified: obscura (D. obscura, D. ambigua, and D. tristis), African (D. kitumensis and D. microlabis), and subobscura (D. subobscura, D. madeirensis and D. guanche), with D. subsilvestris standing apart. The results are in agreement with those from the previously studied elements B and E, but element D was found to be much more conclusive concerning the links among the different clusters. Thus, it is inferred that D. guanche occupies an intermediate position between the other two species of its own cluster and all the others. The gene arrangement of D. obscura, directly related to those of the other species, has been identified. In the phylogenetic tree proposed, both the African cluster and D. subsilvestris derive from a hypothetical gene arrangement, intermediate in the pathway between the subobscura and obscura clusters.  相似文献   

15.
Circular DNA Molecules in the Genus Drosophila   总被引:1,自引:0,他引:1       下载免费PDF全文
The satellite DNA's from the embryos of five species of Drosophila (D. melanogaster, D. simulans, D. nasuta, D. virilis and D. hydei) have been analyzed for the presence of closed circular duplex DNA molecules, as determined by CsCl-EBr gradients. Circular DNA molecules were found in every species but D. melanogaster. Analyses of cell fractions from adult Drosophila and organ fractions from Drosophila larvae show that fractions containing mitochondria are highly enriched in these molecules.  相似文献   

16.
In genome of Drosophila melanogaster, various families of retrotransposons with different combination of functional domens and mechanisms of transposition are present. However only retrotransposons of gypsy family are retroviruses related to errantiviruses. Other families seemingly appeared as intermediate forms of retroviruses evolution. Despite the fact that the question on origin of retroviruses remains unclear, now the hypothesis of their origin from retrotransoposons can be considered the most consistent. Infectious properties of errantiviruses are linked to the presence of the third open reading frame (the env gene). Acquisition of the env gene conversed retrotransposons into retroviruses. So, origin of this gene is of special interest. Homologues of the env gene of errantiviruses are discovered in genomes of D. melanogaster, as well as in baculoviruses and in bacteria Wolbachia pipientis, the endosymbiont of Drosophila. It was shown that homologue of the env gene come to Wolbachia genome from Drosophila genome by horizontal transfer of the gypsy group retrotransposon. Thus, Wolbachia was not a donor of the env gene for errantiviruses. Seemingly, errantiviruses captured the baculoviral homologue of the env gene (f). However origin of the f gene is not clear. At the same time the env gene homologue in D. melanogaster genome exist (Iris). It must not be ruled out that the Iris gene was the source of the env gene of errantiviruses and baculoviruses.  相似文献   

17.
The mechanism by which patterns are produced appears to be repeated in each segment of an animal, and it has been proposed that it may even have been conserved in evolution so that different species would have the same system of positional information. This idea has been tested by mixing cells of a defined fragment of the wing disc of Drosophila melanogaster with wing disc fragments of five other dipteran species to assay the ability of these disc fragments to stimulate intercalary regeneration of the D. melanogaster cells. The genetically marked (y; mwh) D. melanogaster fragment was mechanically mixed with wing discs or wing disc fragments of four drosophilids (D. melanogaster as a control, D. virilis, D. hydei, Zaprionus vittiger), of Musca domestica, and of Piophila casei. The mixed aggregates were cultured in vivo for 7 days, then metamorphosed in D. melanogaster larval hosts. The D. melanogaster fragments were only stimulated to regenerate when combined with complementary fragments from D. melanogaster or D. virilis wing discs. In the combination between D. melanogaster and D. hydei, the tissue formed integrated mosaic patterns, but no regeneration ensued. The one positive result (D. melanogaster mixed with D. virilis) shows that positional cues can be exchanged and correctly interpreted between cells of different species. The negative results do not prove that the mechanism for establishing patterns is different in the tested species, but may be due to incompatibilities that are not related to pattern formation.  相似文献   

18.
We compare the sequences for the mitochondrial cytochrome oxidase II gene of 13 species of the Drosophila obscura group. The survey includes six members of the D. affinis subgroup, four of the D. pseudoobscura subgroup, and three of the D. obscura subgroup. In all species, the gene is 688 nucleotides in length, encoding a protein of 229 amino acids plus the first position T of the stop codon. The sequences show the typical high-transition bias for closely related species, but that bias is essentially eliminated for species pairs of > 5% sequence divergence. The phylogenetic relationships in the species group are inferred using both neighbor-joining and maximum parsimony. The two procedures give comparable results, showing that the D. affinis and D. pseudoobscura subgroups are monophyletic groupings that appear to have closer affinities to one another than either has to the D. obscura subgroup. We use transversion distances to estimate times of divergence, on the basis of three different estimates of the time of separation of the D. obscura species group from the D. melanogaster group. If that event occurred 35 Mya, then we can estimate the origin of the nearctic forms at approximately 22 Mya and the separation of the D. affinis and D. pseudoobscura subgroups at approximately 17 Mya.   相似文献   

19.
A tentative evolutionary pattern has been found for two classes of the multiple satellite DNA's found in the genus Drosophila. The satellite DNA's from five Drosophila species (D. melanogaster, D. simulans, D. nasuta, D. virilis and D. hydei) were analyzed and found to fall into three arbitrary CsCl buoyant density classes: Class I, rho = 1.661-1.669 g cm(-3), DNA molecules composed of primarily dA and dT moieties; Class II, rho = 1.685 and rho = 1.692, DNA molecules of low GC content; and Class III, rho = 1.711, a DNA of high GC composition. The dAT satellite DNA's appear in all the species studied except D. hydei, the species of most recent evolutionary divergence, whereas the heavy satellite appears only in the two species of most recent divergence, D. virilis and D. hydei.  相似文献   

20.
Gypsy is an endogenous retrovirus of Drosophila melanogaster. Phylogenetic studies suggest that occasional horizontal transfer events of gypsy occur between Drosophila species. gypsy possesses infective properties associated with the products of the envelope gene that might be at the origin of these interspecies transfers. We report here the existence of DNA sequences putatively encoding full-length Env proteins in the genomes of Drosophila species other than D. melanogaster, suggesting that potentially infective gypsy copies able to spread between sexually isolated species can occur. The ability of gypsy to invade the genome of a new species is conditioned by its capacity to be expressed in the naive genome. The genetic basis for the regulation of gypsy activity in D. melanogaster is now well known, and it has been assigned to an X-linked gene called flamenco. We established an experimental simulation of the invasion of the D. melanogaster genome by gypsy elements derived from other Drosophila species, which demonstrates that these non- D. melanogaster gypsy elements escape the repression exerted by the D. melanogaster flamenco gene.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号