首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When the extracellular concentration of glucose was raised from 3 mM to 7 mM (the concentration interval in which beta-cell depolarization and the major decrease in K+ permeability occur), the cytosolic free [NADPH]/[NADP+] ratio in mouse pancreatic islets increased by 29.5%. When glucose was increased to 20 mM, a 117% increase was observed. Glucose had no effect on the cytosolic free [NADH]/[NAD+] ratio. Neither the cytosolic free [NADPH]/[NADP+] ratio nor the corresponding [NADH]/[NAD+] ratio was affected when the islets were incubated with 20 mM-fructose or with 3 mM-glucose + 20 mM-fructose, although the last-mentioned condition stimulated insulin release. The insulin secretagogue leucine (10 mM) stimulated insulin secretion, but lowered the cytosolic free [NADPH]/[NADP+] ratio; 10 mM-leucine + 10 mM-glutamine stimulated insulin release and significantly enhanced both the [NADPH]/[NADP+] ratio and the [NADH]/[NAD+] ratio. It is concluded that the cytosolic free [NADPH]/[NADP+] ratio may be involved in coupling beta-cell glucose metabolism to beta-cell depolarization and ensuing insulin secretion, but it may not be the sole or major coupling factor in nutrient-induced stimulation of insulin secretion.  相似文献   

2.
The pyridine nucleotides NAD(H) and NADP(H) play major roles in the formation of by-products. To analyse how Saccharomyces cerevisiae (S. cerevisiae) metabolism during growth on glucose might be altered when intracellular NADH pool is decreased, we expressed noxE encoding a water-forming NADH oxidase from Lactococcus lactis (L. lactis) in the S. cerevisiae strain V5. During batch fermentation under controlled microaeration conditions, expression of the NADH oxidase under the control of a yeast promoter lead to large decreases in the intracellular NADH concentration (five-fold) and NADH/NAD+ ratio (six-fold). This increased NADH consumption caused a large redistribution of metabolic fluxes. The ethanol, glycerol, succinate and hydroxyglutarate yields were significantly reduced as a result of the lower NADH availability, whereas the formation of more oxidized metabolites, acetaldehyde, acetate and acetoin was favoured. The biomass yield was low and consumption of glucose, at concentration above 10%, was impaired. The metabolic redistribution in cells expressing the NADH oxidase was a consequence of the maintenance of a redox balance and of the management of acetaldehyde formation, which accumulated at toxic levels early in the process.  相似文献   

3.
Skeletal muscle can maintain ATP concentration constant during the transition from rest to exercise, whereas metabolic reaction rates may increase substantially. Among the key regulatory factors of skeletal muscle energy metabolism during exercise, the dynamics of cytosolic and mitochondrial NADH and NAD+ have not been characterized. To quantify these regulatory factors, we have developed a physiologically based computational model of skeletal muscle energy metabolism. This model integrates transport and reaction fluxes in distinct capillary, cytosolic, and mitochondrial domains and investigates the roles of mitochondrial NADH/NAD+ transport (shuttling) activity and muscle glycogen concentration (stores) during moderate intensity exercise (60% maximal O2 consumption). The underlying hypothesis is that the cytosolic redox state (NADH/NAD+) is much more sensitive to a metabolic disturbance in contracting skeletal muscle than the mitochondrial redox state. This hypothesis was tested by simulating the dynamic metabolic responses of skeletal muscle to exercise while altering the transport rate of reducing equivalents (NADH and NAD+) between cytosol and mitochondria and muscle glycogen stores. Simulations with optimal parameter estimates showed good agreement with the available experimental data from muscle biopsies in human subjects. Compared with these simulations, a 20% increase (or approximately 20% decrease) in mitochondrial NADH/NAD+ shuttling activity led to an approximately 70% decrease (or approximately 3-fold increase) in cytosolic redox state and an approximately 35% decrease (or approximately 25% increase) in muscle lactate level. Doubling (or halving) muscle glycogen concentration resulted in an approximately 50% increase (or approximately 35% decrease) in cytosolic redox state and an approximately 30% increase (or approximately 25% decrease) in muscle lactate concentration. In both cases, changes in mitochondrial redox state were minimal. In conclusion, the model simulations of exercise response are consistent with the hypothesis that mitochondrial NADH/NAD+ shuttling activity and muscle glycogen stores affect primarily the cytosolic redox state. Furthermore, muscle lactate production is regulated primarily by the cytosolic redox state.  相似文献   

4.
Sun F  Dai C  Xie J  Hu X 《PloS one》2012,7(5):e34525
Cytosolic free NAD/NADH ratio is fundamentally important in maintaining cellular redox homeostasis but current techniques cannot distinguish between protein-bound and free NAD/NADH. Williamson et al reported a method to estimate this ratio by cytosolic lactate/pyruvate (L/P) based on the principle of chemical equilibrium. Numerous studies used L/P ratio to estimate the cytosolic free NAD/NADH ratio by assuming that the conversion in cells was at near-equilibrium but not verifying how near it was. In addition, it seems accepted that cytosolic free NAD/NADH ratio was a dependent variable responding to the change of L/P ratio. In this study, we show (1) that the change of lactate/glucose (percentage of glucose that converts to lactate by cells) and L/P ratio could measure the status of conversion between pyruvate + NADH and lactate + NAD that tends to or gets away from equilibrium; (2) that cytosolic free NAD/NADH could be accurately estimated by L/P only when the conversion is at or very close to equilibrium otherwise a calculation error by one order of magnitude could be introduced; (3) that cytosolic free NAD/NADH is stable and L/P is highly labile, that the highly labile L/P is crucial to maintain the homeostasis of NAD/NADH; (4) that cytosolic free NAD/NADH is dependent on oxygen levels. Our study resolved the key issues regarding accurate estimation of cytosolic free NAD/NADH ratio and the relationship between NAD/NADH and L/P.  相似文献   

5.
The objective of the present study was to assess metabolic changes in the neocortex and hippocampus of well-oxygenated or moderately hypoxic rats in which fluorothyl-induced seizures were sustained for 5 or 20 min, or which were allowed recovery periods of 5, 15, or 45 min following cessation of 20-min seizure activity by withdrawal of the convulsant gas. Sustained fluorothyl-induced seizures were found to cause metabolic alterations qualitatively and quantitatively similar to those previously observed with other commonly used convulsants. Thus, although the phosphorylation state of the adenine nucleotide pool remained only moderately perturbed, if at all, there were decreases in tissue concentrations of phosphocreatine and glycogen, and increases in those of cyclic AMP, lactate, and pyruvate, with a calculated fall in intracellular pH of about 0.15 units and a rise in the cytoplasmic NADH/NAD+ ratio. The enhanced metabolic rate was reflected in a marked reduction in the tissue-to-plasma glucose concentration ratio. Induced moderate hypoxia (arterial PO2 40-50 mm Hg) had no metabolic effect after 5 min of seizures but moderately increased lactate concentrations after 20 min (from about 10 to about 15 mumol X g-1). On cessation of seizure discharge cyclic AMP and phosphocreatine concentrations normalized already within 5 min, whereas glycogen and lactate concentrations normalized more slowly. In the neocortex (but not the hippocampus) postepileptic tissue-to-plasma glucose concentration ratios rose above control, probably reflecting metabolic depression. The results suggest that intracellular pH promptly returned to control, and that postepileptic alkalosis developed. They also suggest that some elevation of the NADH/NAD+ ratio persisted even after 45 min of recovery.  相似文献   

6.
辅酶NADH/NAD+在细胞内氧化还原反应中起着重要的作用,是细胞生长和能量代谢必不可少的辅因子。调节微生物胞内NADH/NAD+的比率是定向改变微生物代谢,高效获得目标代谢产物的有效手段。嗜热厌氧乙醇菌(Thermoanaerobacter ethanolicus)是高温厌氧菌中乙醇产量较高的代表性菌株,本文利用不同氧化还原态的碳源改变T.ethanolicus的胞内NADH/NAD+含量和比例,进而研究了其对细胞生长、代谢产物分布的影响。以不同比例的葡萄糖/甘露醇作为混合碳源发酵,胞内氧化还原水平、细胞的生长特性、代谢产物都发生了不同程度的差异,以葡萄糖作为唯一碳源进行培养时,T.ethanolicus生长良好,乙醇产量为0.79g/L,但胞内NADH/NAD+比值和乙醇/乙酸的比值都比较低,分别为0.47和4.82;随着葡萄糖在混合碳源中比例的下降,NADH/NAD+比值增高,发酵产物中乙醇/乙酸比值也呈现上升的趋势。而以甘露醇作为唯一碳源时,发酵产物中乙醇浓度为0.389g/L,NADH/NAD+比值和乙醇/乙酸的比值分别为1.04和16.0。  相似文献   

7.
1. The effects of changes in the cytoplasmic [NADH]/[NAD+] ratio on the efficacy of glucagon to alter rates of metabolism in isolated rat hepatocytes were examined. 2. Under reduced conditions (with 10mM-lactate), 10nM-glucagon stimulated both gluconeogenesis and urea synthesis in isolated hepatocytes from 48h-starved rats; under oxidized conditions (with 10mM-pyruvate), 10nM-glucagon had no effect on either of these rates. 3. The ability of glucagon to alter the concentration of 3':5'-cyclic AMP and the rates of glucose output, glycogen breakdown and glycolysis in cells from fed rats were each affected by a change in the extracellular [lactate]/[pyruvate] ratio; minimal effects of glucagon occurred at low [lactate]/[pyruvate] ratios. 4. Dose-response curves for glucagon-mediated changes in cyclic AMP concentration and glucose output indicated that under oxidized conditions the ability of glucagon to alter each parameter was decreased without affecting the concentration of hormone at which half-maximal effects occurred. 5. The phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine (0.05 mM) significantly reversed the inhibitory effects of pyruvate on glucagon-stimulated glucose output. 6. For exogenously added cyclic [3H]AMP(0.1 mM), oxidized conditions decreased the stimulatory effect on glucose output as well as the intracellular concentration of cyclic AMP attained, but did not alter the amount of cyclic [3H]AMP taken up. 7. The effects of lactate, pyruvate, NAD+ and NADH on cyclic AMP phosphodiesterase activities of rat hepatocytes were examined. 8. NADH (0.01--1 MM) inhibited the low-Km enzyme, particularly that which was associated with the plasma membrane. 9. The inhibition of membrane-bound cyclic AMP phosphodiesterase by NADH was specific, reversible and resulted in a decrease in the maximal velocity of the enzyme. 10. It is proposed that regulation of the membrane-bound low-Km cyclic AMP phosphodiesterase by nicotinamide nucleotides provides the molecular basis for the effect of redox state on the hormonal control of hepatocyte metabolism by glucagon.  相似文献   

8.
2SC [S-(2-succino)-cysteine] is a chemical modification formed by a Michael addition reaction of fumarate with cysteine residues in proteins. Formation of 2SC, termed 'succination' of proteins, increases in adipocytes grown in high-glucose medium and in adipose tissues of Type?2 diabetic mice. However, the metabolic mechanisms leading to increased fumarate and succination of protein in the adipocyte are unknown. Treatment of 3T3 cells with high glucose (30?mM compared with 5?mM) caused a significant increase in cellular ATP/ADP, NADH/NAD+ and Δψm (mitochondrial membrane potential). There was also a significant increase in the cellular fumarate concentration and succination of proteins, which may be attributed to the increase in NADH/NAD+ and subsequent inhibition of tricarboxylic acid cycle NAD+-dependent dehydrogenases. Chemical uncouplers, which dissipated Δψm and reduced the NADH/NAD+ ratio, also decreased the fumarate concentration and protein succination. High glucose plus metformin, an inhibitor of complex I in the electron transport chain, caused an increase in fumarate and succination of protein. Thus excess fuel supply (glucotoxicity) appears to create a pseudohypoxic environment (high NADH/NAD+ without hypoxia), which drives the increase in succination of protein. We propose that increased succination of proteins is an early marker of glucotoxicity and mitochondrial stress in adipose tissue in diabetes.  相似文献   

9.
K562 erythroleukemic cells cultured at low population density in the absence of serum die within 12-24 hours, unless 0.1 mM glyoxylic acid is added to the culture medium. Earlier events, preceding cell death and occurring within 2 hours culture, are: a) a marked drop of both the NAD+/NADH ratio and the NAD+ concentration, which is prevented by 10mM benzamide, b) an increased biosynthesis of NAD+, leading to extensive depletion of cellular ATP. In the presence of 0.1 mM glyoxylic acid the NAD+/NADH ratio as well as their absolute concentrations remain unchanged, while NAD+ biosynthesis is absent. A NAD+/NADH glycohydrolase activity is present in the cell extract, inhibited by 10 mM benzamide and with a higher affinity for NADH than for NAD+. Preservation of a high NAD+/NADH ratio by glyoxylic acid apparently prevents enzyme activity and the related loss of pyridine nucleotides.  相似文献   

10.
Since controversy exists on how hypoxia influences vascular reactive oxygen species (ROS) generation, and our previous work provided evidence that it relaxes endothelium-denuded bovine coronary arteries (BCA) in a ROS-independent manner by promoting cytosolic NADPH oxidation, we examined how hypoxia alters relationships between cytosolic and mitochondrial NAD(P)H redox and superoxide generation in BCA. Methods were developed to image and interpret the effects of hypoxia on NAD(P)H redox based on its autofluorescence in the cytosolic, mitochondrial, and nuclear regions of smooth muscle cells isolated from BCA. Aspects of anaerobic glycolysis and cytosolic NADH redox in BCA were assessed from measurements of lactate and pyruvate. Imaging changes in mitosox and dehydroethidium fluorescence were used to detect changes in mitochondrial and cytosolic-nuclear superoxide, respectively. Hypoxia appeared to increase mitochondrial and decrease cytosolic-nuclear superoxide under conditions associated with increased cytosolic NADH (lactate/pyruvate), mitochondrial NAD(P)H, and hyperpolarization of mitochondria detected by tetramethylrhodamine methyl-ester perchlorate fluorescence. Rotenone appeared to increase mitochondrial NAD(P)H and superoxide, suggesting hypoxia could increase superoxide generation by complex I. However, hypoxia decreased mitochondrial superoxide in the presence of contraction to 30 mM KCl, associated with decreased mitochondrial NAD(P)H. Thus, while hypoxia augments NAD(P)H redox associated with increased mitochondrial superoxide, contraction with KCl reverses these effects of hypoxia on mitochondrial superoxide, suggesting mitochondrial ROS increases do not mediate hypoxic relaxation in BCA. Since hypoxia lowers pyruvate, and pyruvate inhibits hypoxia-elicited relaxation and NADPH oxidation in BCA, mitochondrial control of pyruvate metabolism associated with cytosolic NADPH redox regulation could contribute to sensing hypoxia.  相似文献   

11.
Functionally intact mitochondria from rabbit reticulocytes are characterized by a low NAD+ level after the preparation (0.29 nmoles NAD+ + NADH/mg protein). They are apparently impermeable for NADH and exhibit a slow net uptake of NAD+. From the increase of O2-uptake in state 3 and the increase of NADH concentration in state 4 of respiration after the addition of NAD+ we concluded that 3--10 min are necessary for the saturation with NAD+ at 23 degrees C. 2mM NAD+ extramitochondrially are not sufficient to saturate the mitochondria with NADH and probably NAD+, too. Because of the net uptake of NAD+ we assume that reticulocyte mitochondria lose NAD+ during their preparation. If they are incubated with the physiological concentration of 300 micrometer NAD+, which was found in reticulocytes, a value of 1.9 nmoles NAD+ + NADH mg protein was calculated. At an extramitochondrial NAD+ concentration of 300 micrometer, reticulocyte mitochondria exhibit an almost maximal O2-uptake in the presence of oxaloacetate or alpha-ketoglutarate. It is concluded that the mitochondria in intact reticulocytes contain the "normal" complement of NAD+ + NADH.  相似文献   

12.
It is generally known that cofactors play a major role in the production of different fermentation products. This paper is part of a systematic study that investigates the potential of cofactor manipulations as a new tool for metabolic engineering. The NADH/NAD+ cofactor pair plays a major role in microbial catabolism, in which a carbon source, such as glucose, is oxidized using NAD+ and producing reducing equivalents in the form of NADH. It is crucially important for continued cell growth that NADH be oxidized to NAD+ and a redox balance be achieved. Under aerobic growth, oxygen is used as the final electron acceptor. While under anaerobic growth, and in the absence of an alternate oxidizing agent, the regeneration of NAD+ is achieved through fermentation by using NADH to reduce metabolic intermediates. Therefore, an increase in the availability of NADH is expected to have an effect on the metabolic distribution. We have previously investigated a genetic means of increasing the availability of intracellular NADH in vivo by regenerating NADH through the heterologous expression of an NAD(+)-dependent formate dehydrogenase and have demonstrated that this manipulation provoked a significant change in the final metabolite concentration pattern both anaerobically and aerobically (Berríos-Rivera et al., 2002, Metabolic engineering of Escherichia coli: increase of NADH availability by overexpressing an NAD(+)-dependent formate dehydrogenase, Metabolic Eng. 4, 217-229). The current work explores further the effect of substituting the native cofactor-independent formate dehydrogenase (FDH) by an NAD(+)-dependent FDH from Candida boidinii on the NAD(H/+) levels, NADH/NAD+ ratio, metabolic fluxes and carbon-mole yields in Escherichia coli under anaerobic chemostat conditions. Overexpression of the NAD(+)-dependent FDH provoked a significant redistribution of both metabolic fluxes and carbon-mole yields. Under anaerobic chemostat conditions, NADH availability increased from 2 to 3 mol NADH/mol glucose consumed and the production of more reduced metabolites was favored, as evidenced by a dramatic increase in the ethanol to acetate ratio and a decrease in the flux to lactate. It was also found that the NADH/NAD+ ratio should not be used as a sole indicator of the oxidation state of the cell. Instead, the metabolic distribution, like the Et/Ac ratio, should also be considered because the turnover of NADH can be fast in an effort to achieve a redox balance.  相似文献   

13.
Initial velocity and product inhibition studies were carried out on UDP-glucose dehydrogenase (UDPglucose: NAD+ 6-oxidoreductase, EC 1.1.1.22) from beef liver to determine if the kinetics of the reaction are compatible with the established mechanism. An intersecting initial velocity pattern was observed with NAD+ as the variable substrate and UDPG as the changing fixed substrate. UDPglucuronic acid gave competitive inhibition of UDPG and non-competitive inhibition of NAD+. Inhibition by NADH gave complex patterns.Lineweaver-Burk plots of 1/upsilon versus 1/NAD+ at varied levels of NADH gave highly non-linear curves. At levels of NAD+ below 0.05 mM, non-competitive inhibition patterns were observed giving parabolic curves. Extrapolation to saturation with NAD+ showed NADH gave linear uncompetitive inhibition of UDPG if NAD+ was saturating. However, at levels of NAD+ above 0.10 mM, NADH became a competitive inhibitor of NAD+ (parabolic curves) and when NAD+ was saturating NADH gave no inhibition of UDPG. NADH was non-competitive versus UDPG when NAD+ was not saturating. These results are compatible with a mechanism in which UDPG binds first, followed by NAD+, which is reduced and released. A second mol of NAD+ is then bound, reduced, and released. The irreversible step in the reaction must occur after the release of the second mol of NADH but before the release of UDPglucuronic acid. This is apparently caused by the hydrolysis of a thiol ester between UDPglucoronic acid and the essential thiol group of the enzyme. Examination of rate equations indicated that this hydrolysis is the rate-limiting step in the overall reaction. The discontinuity in the velocities observed at high NAD+ concentrations is apparently caused by the binding of NAD+ in the active site after the release of the second mol of NADH, eliminating the NADH inhibition when NAD+ becomes saturating.  相似文献   

14.
Production of L-valine under oxygen deprivation conditions by Corynebacterium glutamicum lacking the lactate dehydrogenase gene ldhA and overexpressing the L-valine biosynthesis genes ilvBNCDE was repressed. This was attributed to imbalanced cofactor production and consumption in the overall L-valine synthesis pathway: two moles of NADH was generated and two moles of NADPH was consumed per mole of L-valine produced from one mole of glucose. In order to solve this cofactor imbalance, the coenzyme requirement for L-valine synthesis was converted from NADPH to NADH via modification of acetohydroxy acid isomeroreductase encoded by ilvC and introduction of Lysinibacillus sphaericus leucine dehydrogenase in place of endogenous transaminase B, encoded by ilvE. The intracellular NADH/NAD(+) ratio significantly decreased, and glucose consumption and L-valine production drastically improved. Moreover, L-valine yield increased and succinate formation decreased concomitantly with the decreased intracellular redox state. These observations suggest that the intracellular NADH/NAD(+) ratio, i.e., reoxidation of NADH, is the primary rate-limiting factor for L-valine production under oxygen deprivation conditions. The L-valine productivity and yield were even better and by-products derived from pyruvate further decreased as a result of a feedback resistance-inducing mutation in the acetohydroxy acid synthase encoded by ilvBN. The resultant strain produced 1,470 mM L-valine after 24 h with a yield of 0.63 mol mol of glucose(-1), and the L-valine productivity reached 1,940 mM after 48 h.  相似文献   

15.
V B Lawlis  T E Roche 《Biochemistry》1981,20(9):2519-2524
Micromolar Ca2+ markedly reduces NADH inhibition of bovine kidney alpha-ketoglutarate dehydrogenase complex [Lawlis, V. B., & Roche, T. E. (1980) Mol. Cell. Biochem. 32, 147-152]. Product inhibition patterns from initial velocity studies conducted at less than 10(-9) M or at 1.5 X 10(-5) M Ca2+ with NAD+, CoA, or alpha-ketoglutarate as the variable substrate showed that NADH was a noncompetitive inhibitor with respect to each of these substrates, except at high NAD+ concentrations, where reciprocal plots were nonlinear and the inhibition pattern for NADH vs. NAD+ changed from a noncompetitive to a competitive pattern. From slope and intercept replots, 2-fold to 12-fold higher inhibition constants were estimated for inhibition by NADH vs. the various substrates in the presence of 1.5 X 10(-5) M Ca2+ than for inhibition at less than 10(-9) M Ca2+. These inhibition patterns and the lack of an effect of Ca2+ on the inhibition of the dihydrolipoyl dehydrogenase component suggested that Ca2+-modulated NADH inhibition occurs at an allosteric site with competitive binding at the site by high levels of NAD+. Decarboxylation of alpha-keto[1-14C]glutarate by the resolved alpha-ketoglutarate dehydrogenase component was investigated in the presence of 5.0 mM glyoxylate which served as an efficient acceptor. NADH (0.2 mM) or 1.0 mM ATP inhibited the partial reaction whereas 15 muM Ca2+, 1.0 mM ADP, or 10 mM NAD+ stimulated the partial reaction and reduced NADH inhibition of this reaction. Thus these effectors alter the activity of the alpha-ketoglutarate dehydrogenase complex by binding at allosteric sites on the alpha-ketoglutarate dehydrogenase component. Inhibition by NADH over a wide range of NADH/NAD+ ratios was measured under conditions in which the level of alpha-ketoglutarate was adjusted to give matching control activities at less than 10(-9) M Ca2+ or 1.5 X 10(-5) M Ca2+ in either the presence or the absence of 1.6 mM ADP. These studies establish that both Ca2+ and ADP decreased NADH inhibition under conditions compensating for the effects of Ca2+ and ADP on S0.5 for alpha-ketoglutarate. ADP was particularly effective in reducing NADH inhibition; further studies are required to determine whether this occurs through binding of NADH and ADP at the same, overlapping, or interacting sites.  相似文献   

16.
17.
The coenzyme NAD plays a major role in metabolism as a key redox carrier and signaling molecule but current measurement techniques cannot distinguish between different compartment pools, between free and protein-bound forms and/or between NAD(H) and NADP(H). Local free NAD/NADH ratios can be determined from product/substrate ratios of suitable near-equilibrium redox reactions but the application of this principle is often precluded by uncertainties regarding enzyme activity, localization and coenzyme specificity of dehydrogenases. In Saccharomyces cerevisiae, we circumvented these issues by expressing a bacterial mannitol-1-phosphate 5-dehydrogenase and determining the cytosolic free NAD/NADH ratio from the measured [fructose-6-phosphate]/[mannitol-1-phosphate] ratio. Under aerobic glucose-limited conditions we estimated a cytosolic free NAD/NADH ratio between 101(+/-14) and 320(+/-45), assuming the cytosolic pH is between 7.0 and 6.5, respectively. These values are more than 10-fold higher than the measured whole-cell total NAD/NADH ratio of 7.5(+/-2.5). Using a thermodynamic analysis of central glycolysis we demonstrate that the former are thermodynamically feasible, while the latter is not. Furthermore, we applied this novel system to study the short-term metabolic responses to perturbations. We found that the cytosolic free NAD-NADH couple became more reduced rapidly (timescale of seconds) upon a pulse of glucose (electron-donor) and that this could be reversed by the addition of acetaldehyde (electron-acceptor). In addition, these dynamics occurred without significant changes in whole-cell total NAD and NADH. This approach provides a new experimental tool for quantitative physiology and opens new possibilities in the study of energy and redox metabolism in S. cerevisiae. The same strategy should also be applicable to other microorganisms.  相似文献   

18.
1. The concentrations of the oxidized and reduced substrates of the lactate-, beta-hydroxybutyrate- and glutamate-dehydrogenase systems were measured in rat livers freeze-clamped as soon as possible after death. The substrates of these dehydrogenases are likely to be in equilibrium with free NAD(+) and NADH, and the ratio of the free dinucleotides can be calculated from the measured concentrations of the substrates and the equilibrium constants (Holzer, Schultz & Lynen, 1956; Bücher & Klingenberg, 1958). The lactate-dehydrogenase system reflects the [NAD(+)]/[NADH] ratio in the cytoplasm, the beta-hydroxybutyrate dehydrogenase that in the mitochondrial cristae and the glutamate dehydrogenase that in the mitochondrial matrix. 2. The equilibrium constants of lactate dehydrogenase (EC 1.1.1.27), beta-hydroxybutyrate dehydrogenase (EC 1.1.1.30) and malate dehydrogenase (EC 1.1.1.37) were redetermined for near-physiological conditions (38 degrees ; I0.25). 3. The mean [NAD(+)]/[NADH] ratio of rat-liver cytoplasm was calculated as 725 (pH7.0) in well-fed rats, 528 in starved rats and 208 in alloxan-diabetic rats. 4. The [NAD(+)]/[NADH] ratio for the mitochondrial matrix and cristae gave virtually identical values in the same metabolic state. This indicates that beta-hydroxybutyrate dehydrogenase and glutamate dehydrogenase share a common pool of dinucleotide. 5. The mean [NAD(+)]/[NADH] ratio within the liver mitochondria of well-fed rats was about 8. It fell to about 5 in starvation and rose to about 10 in alloxan-diabetes. 6. The [NAD(+)]/[NADH] ratios of cytoplasm and mitochondria are thus greatly different and do not necessarily move in parallel when the metabolic state of the liver changes. 7. The ratios found for the free dinucleotides differ greatly from those recorded for the total dinucleotides because much more NADH than NAD(+) is protein-bound. 8. The bearing of these findings on various problems, including the following, is discussed: the number of NAD(+)-NADH pools in liver cells; the applicability of the method to tissues other than liver; the transhydrogenase activity of glutamate dehydrogenase; the physiological significance of the difference of the redox states of mitochondria and cytoplasm; aspects of the regulation of the redox state of cell compartments; the steady-state concentration of mitochondrial oxaloacetate; the relations between the redox state of cell compartments and ketosis.  相似文献   

19.
The cytoplasmic NADH/NAD redox potential affects energy metabolism and contractile reactivity of vascular smooth muscle. NADH/NAD redox state in the cytosol is predominately determined by glycolysis, which in smooth muscle is separated into two functionally independent cytoplasmic compartments, one of which fuels the activity of Na(+)-K(+)-ATPase. We examined the effect of varying the glycolytic compartments on cystosolic NADH/NAD redox state. Inhibition of Na(+)-K(+)-ATPase by 10 microM ouabain resulted in decreased glycolysis and lactate production. Despite this, intracellular concentrations of the glycolytic metabolite redox couples of lactate/pyruvate and glycerol-3-phosphate/dihydroxyacetone phosphate (thus NADH/NAD) and the cytoplasmic redox state were unchanged. The constant concentration of the metabolite redox couples and redox potential was attributed to 1) decreased efflux of lactate and pyruvate due to decreased activity of monocarboxylate B-H(+) transporter secondary to decreased availability of H(+) for cotransport and 2) increased uptake of lactate (and perhaps pyruvate) from the extracellular space, probably mediated by the monocarboxylate-H(+) transporter, which was specifically linked to reduced activity of Na(+)-K(+)-ATPase. We concluded that redox potentials of the two glycolytic compartments of the cytosol maintain equilibrium and that the cytoplasmic NADH/NAD redox potential remains constant in the steady state despite varying glycolytic flux in the cytosolic compartment for Na(+)-K(+)-ATPase.  相似文献   

20.
1. Two-day-old rats were exposed at constant temperature to atmospheres containing air and nitrogen with the air content varied in steps from 100 to 0%. By using this system of graded hypoxia a comparison was made between rates of gluconeogenesis from lactate, serine and aspartate in the whole animal and the concentrations of several liver metabolites. 2. Gluconeogenesis, expressed as the percentage incorporation of labelled isotope into glucose plus glycogen, proceeds linearly for 30min when the animals are incubated in a normal air atmosphere, but is completely suppressed if the atmosphere is 100% nitrogen. 3. Preincubation of animals for between 5 and 30min under an atmosphere containing 19% air results in the attainment of a new steady state with respect to gluconeogenesis and hepatic concentrations of ATP, ADP, AMP, lactate, pyruvate, beta-hydroxybutyrate and acetoacetate. 4. When lactate (100mumol), aspartate (20mumol) or serine (20mumol) was injected, it was shown that the more severe the hypoxia the greater the depression of gluconeogenesis. Under conditions when gluconeogenesis was markedly inhibited there were no changes in the degree of phosphorylation of hepatic adenine nucleotides, but free [NAD(+)]/[NADH] ratios fell in both cytosol and mitochondrial compartments of the liver cell. 5. Measurements of total liver NAD(+) and NADH showed that the concentrations of these nucleotide coenzymes changed less with anoxia, in comparison with the concentration ratio of free coenzymes. 6. Calculations showed that the difference in NAD(+)-NADH redox potentials between mitochondrial and cytosol compartments increased with the severity of hypoxia. 7. From the constancy of the concentrations of adenine nucleotides it is concluded that liver of hypoxic rats can conserve ATP by lowering the rate of ATP utilization for gluconeogenesis. Gluconeogenesis may be regulated in turn by the changes in mitochondrial and cytosol redox state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号